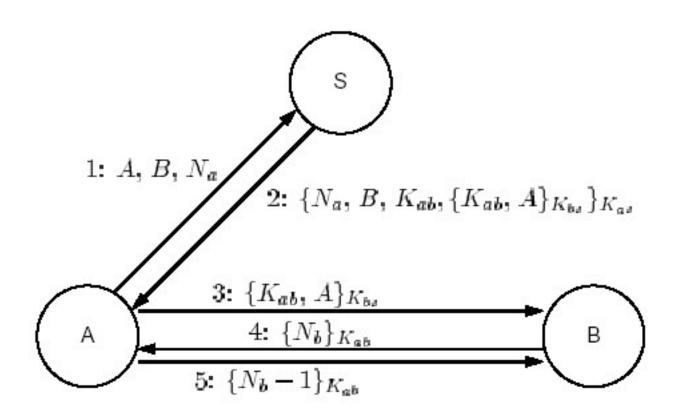
Needham-Schroeder authentication protocol and its formal analysis


Needham-Schroeder protocol

- The goal of the protocol is to establish mutual authentication between two parties A and B in the presence of adversary, who can
 - Intercept messages;
 - Delay messages;
 - Read and copy messages;
 - Generate messages,

But who does not know

- secret keys of principals, which they share with the authentication server
 S.
- A and B obtain a secret shared key though authentication server S.
- The protocol uses shared keys encryption/decryption

Needham-Schroeder protocol

The Needham-Schroeder Protocol (with shared keys)

Needham-Schroeder protocol

- Message 1 $A \rightarrow S: A, B, N_A$ • Message 2 $S \rightarrow A: \{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_B}\}_{K_A}$ • Message 3 $A \rightarrow B: \{K_{AB}, A\}_{K_B}$ • Message 4 $B \rightarrow A: \{N_B\}_{K_{AB}}$ • Message 5 $A \rightarrow B: \{N_B - 1\}_{K_{AB}}$
- Here K_A and K_B are keys of A and B shared with S, resp.
- N_A and N_B are nonces, introduced by A and B, resp.
- KAB is a secret session key for A and B provided by S

How it works

- A makes contact with the authentication server S, sending identities A and B and *nonce* N_A;
- S responds with a message encrypted with the key of A. The message contains session key K_{AB} (to be used by A and B) and certificate encrypted with B's key conveying the session key and A's identity;
- A sends the certificate to B;
- B decrypts the certificates and sends his own nonce encrypted by the session key to A; (nonce handshake);
- A decrypts the last message and sends *modified nonce* back to B.

By the end of the message exchange both A and B share the secret key and both are assured in the presence of each other.

Formal analysis using BAN logic

Explicit assumptions:

A believes:	B believes:	S believes:
$A \stackrel{K_A}{\longleftrightarrow} S$	$B \overset{KB}{\longleftrightarrow} S$	$A \stackrel{K_A}{\longleftrightarrow} S, B \stackrel{K_B}{\longleftrightarrow} S$
$\begin{array}{ccc} S \text{ controls } A & \overset{K_{AB}}{\longleftrightarrow} B \\ S \text{ controls} & & & \\ & \text{fresh}(A & \overset{K_{AB}}{\longleftrightarrow} B) \end{array}$	S controls $A \overset{K_{AB}}{\longleftrightarrow} B$	$\begin{array}{ccc} A & \overset{K_{AB}}{\longleftrightarrow} B \\ \mathbf{fresh}(A & \overset{K_{AB}}{\longleftrightarrow} B) \end{array}$
$\mathbf{fresh}(N_A)$	$\mathbf{fresh}(N_{B})$	

Authentication goals

• Main: A believes $A \overset{KAB}{\longleftrightarrow} B$ and B believes $A \overset{KAB}{\longleftrightarrow} B$

• Subsidiary: A believes B believes $A \overset{KAB}{\longleftrightarrow} B^{\text{1d}}$

B believes A believes $A \overset{KAB}{\leftrightarrow} B$

Protocol steps formalized

11.

 Transform each message into an idealized message, containing only nonces and statements (implicitly asserted by a sender)

Message	Idealized Message
$1. A \rightarrow S: A, B, N_A$	% -
2. $S \to A$: $\{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_B}\}_{K_A}$	$\{N_A, A \overset{K_{AB}}{\leftrightarrow} B, \mathbf{fresh}(A \overset{K_{AB}}{\leftrightarrow} B), \{A \overset{K_{AB}}{\leftrightarrow} B\}_{K_B}\}_{K_A}$
3. $A \rightarrow B: \{K_{AB}, A\}_{K_{B}}$	$\{A \overset{K_{AB}}{\leftrightarrow} B\}_{K_{B}}$
4. B \rightarrow A: $\{N_B\}_{KAB}$	$\{N_B, A \overset{K_{AB}}{\leftrightarrow} B\}_{KAB}$
5. $A \rightarrow B$: $\{NB-1\}_{KAB}$	$\{NB, A \overset{K_{AB}}{\longleftrightarrow} B\}_{KAB}$

First step of analysis

• Let
$$M = (N_A, A \overset{K_{AB}}{\leftrightarrow} B, \mathbf{fresh}(A \overset{K_{AB}}{\leftrightarrow} B))$$

- Then we have
 - A believes $A \overset{K_A}{\longleftrightarrow} S$, licit assumption)
 - $A \operatorname{sees} \{M\}_{K_A}^{\prime \prime \prime \prime}$ pon receiving Message 2)
- Apply message-meaning rule:

A believes
$$A \overset{K_A}{\longleftrightarrow} S$$
, A sees $\{M\}_{K_A}$
A believes (S said M)

Further steps

- We have
- A believes fresh (N_A) (explicit assumption)
- N_A is a part of $M = (N_A, A \overset{K_{AB}}{\leftrightarrow} B, \mathbf{fresh}(A \overset{K_{AB}}{\leftrightarrow} B))$

By application of second decomposition rule we deduce:

A believes fresh(M)

Further steps

By nonce-verification rule:

By the third decomposition rule

Final step

By jurisdiction rule:

A believes (S controls
$$A \overset{KAB}{\longleftrightarrow} B$$
), A believes (S believes $A \overset{KAB}{\longleftrightarrow} B$)

A believes
$$A \overset{K_{AB}}{\longleftrightarrow} B$$

The first authentication goal is achievable!

•

Remaining authentication goals

- •The statement B believes $A \overset{K_{AB}}{\longleftrightarrow} B$. is not derivable!
- •One needs one extra assumption to derive it:

B believes fresh
$$(A \overset{KAB}{\leftrightarrow} B)$$
.

Derivation of subsidiary goals is left as an exercise:

Conclusion

- The formal analysis we have just done should not be
- neither underestimated:
 - We have shown that the protocol is correct under explicit assumptions and concrete formalization;
- nor overestimated:
 - The analysis is as good as formal (idealized) model and explicit assumptions are;
 - The adequacy of the model and assumptions may be an issue here.