Further techniques for Anonymity

Tor: anonymity online

- Tor (from The onion routing project, originated in the US Naval Research Lab) – practical solution for anonymity protection : www.torproject.org
- It is free and open source and available for major platforms: Windows, Mac, Linux/Unix, Android
- Can be used for web browsing and instant messaging, prevents people from learning your location or browsing habits

Tor-Networks

- Traffic routed via encrypted nodes. Each node decrypts one layer of encryption
- Entry point is only known by the first link, and exit point is only known by the last link
- Nodes are only aware of the next link.

Tor: main principles

- A combination of (variants of) mix-network and crowd mechanisms
 - Using a set of relay nodes (~crowd); currently >6000
 - Routing using random choice (similar to crowds)
 - Encrypted connections between neighbouring nodes (similar to mix-networks)
 - It uses public key cryptography to share the secret keys between neighbouring nodes => uses the shared secret to perform symmetric encryption in further communications between neighbours
 - temporarily available virtual channels

DC-networks

• D.Chaum, 1988: **D**ining **C**ryptographer networks

• At the preliminary stage between some pairs of nodes (at the picture between all) secret keys (sequences of bits) are exchanged

DC-networks

- To send a message M (sequence of bits), a node, say A, broadcasts the value (M +2 KAB+2 KAC), i.e. superposition of the message and all keys of A, here +2 stands for bitwise addition modulo 2 (or XOR operation)
- All other nodes broadcast superpositions of all their keys.
 So, B broadcasts (Кав+Квс) and C broadcasts (Кас+Квс)
- All nodes then superpose all received messages and get (M+2KAB+2KAC+2KAB+2KBC+2KAC+2KBC) = M

(the initial message !!!)

DC-network

A message sent by A in the DC-network. Picture by A.Pfitzmann

Anonymity by DC-networks

- DC-networks provide for sender anonymity because an adversary is unable to decide whether the packets he may observe contain a message or not;
- DC-networks can be used in combination with other mechanisms, such as mix-networks to enhance anonymity
- A major drawback is that DC-Networks require the preliminary stage exchanging the secret keys between participants
- Every round of communication requires a new set of keys
- Every node needs to participate every time a message is broadcasted => high load on the nodes => impractical in large networks

Recent developments in DC-networks

- Dissent system (~2012):
 - Scalable to thousands nodes
 - Client-server architecture with several servers and small groups served by a server
 - Retro-active blame mechanism to deal with *jamming*
 - XOR together with more complicated *group multiplication* operations are used
 - See further details at *dedis.cs.yale.edu/dissent*