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Abstract

In many settings, a group of agents must come to a joint decision on multiple
issues. In practice, this is often done by voting on the issues in sequence. In this pa-
per, we model sequential voting in multi-issue domains as a complete-information
extensive-form game, in which the agents are perfectly rational and their prefer-
ences are common knowledge. In each step, the voters simultaneously vote on one
issue, and the order of the issues is determined before the process. We call this
modelstrategic sequential voting.

We focus on domains with binary issues, so that this process leads to a unique
outcome under a natural solution concept. We show severalmultiple-election para-
doxesin strategic sequential voting: there exists a profile for which the winner
under strategic sequential voting is ranked nearly at the bottom in all votes, and the
winner is Pareto-dominated by almost every other alternative. We also show that
changing the order of the issues cannot completely prevent such paradoxes. We
also study paradoxes for strategic sequential voting in which the profiles satisfy do-
main restrictions such as separability, lexicographicityor O-legality. Finally, we
study other common voting rules (from a non-strategic perspective). For some of
them, we show that there exist paradoxes that are similar to the multiple-election
paradoxes, and for the others, we show that there are no such paradoxes.
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1 Introduction

In a traditional voting system, each voter is asked to reporta linear order over the al-
ternatives to represent her preferences. Then, avoting rule is applied to the resulting
profile of reported preferences, to select a winning alternative.

In practice, the set of alternatives often has amulti-issuestructure. That is, there
arep issuesI = {x1, . . . ,xp}, and each issue can take values in alocal domain. In
other words, the set of alternatives is the Cartesian product of the local domains. For
example, inmultiple referenda, the inhabitants of a local district are asked to vote on
multiple inter-related issues [4]. Another example isvoting by committees, in which the
voters select a subset of objects [1], where each object can be seen as a binary issue.

Voting in multi-issue domains has been extensively studiedby economists, and more
recently has attracted the attention of computer scientists. Previous work has focused
on proposing a natural and compactvoting languagefor the agents to represent their
preferences, as well as designing a sensible voting rule to make decisions based on
preferences represented in such languages. A natural approach is to let voters vote
on the issues separately, in the following way. For each issue (simultaneously, not
sequentially), each voter reports her preferences for thatissue, and then, alocal rule is
used to select the winning value that the issue will take. This voting process is called
issue-by-issueor seat-by-seatvoting. Computing the winner for issue-by-issue voting
rules is easy, and it only requires a modest amount of communication from the agents
to the mechanism. Nevertheless, issue-by-issue voting hassome drawbacks. First, a
voter may feel uncomfortable expressing her preferences over one issue independently
of the values that the other issues take [12]. It has been pointed out that issue-by-
issue voting avoids this problem if the voters’ preferencesareseparable(that is, for
any issuei, regardless of the values for the other issues, the voter’s preferences over
issuei are always the same) [11]. Second,multiple-election paradoxesarise in issue-
by-issue voting [4, 11, 17, 19]. In models that do not consider strategic (game-theoretic)
voting, previous works have shown several types of paradoxes: sometimes the winner
is a Condorcet loser; sometimes the winner is Pareto-dominated by another alternative
(that is, that alternative is preferred to the winner in all votes); and sometimes the winner
is ranked in a very low position by all voters.

A way to (partly) escape these paradoxes consists in organizing the multiple elec-
tionssequentially: given an orderO over all issues (without loss of generality, we take
O to bex1 > . . . > xn), the voters first vote on issuex1; then, the value collectively
chosen forx1 is determined using some voting rule and broadcast to the voters, who
then vote on issuex2, and so on. When the issues are all binary, it is natural to choose
the majority rule at each stage (plus, in the case of an even number of voters, some
tie-breaking mechanism). Such processes are conducted in many real-life situations,
such as recruiting commitees (suppose there is a full professor position and an assis-
tant professor position to be filled; then, it is realistic toexpect that the committee will
first decide who gets the full professor position); or, at theexecutive meeting of the
co-owners of a building, important decisions (whether a lift should be installed or not,
how much money should be spent to repair the roof) are usuallytaken before minor de-
cisions. In each of these cases, it is clear that the decisionmade on one issue influences
the votes on later issues, thus the order in which the issues are decided potentially has
a strong influence on the final outcome. Now, if voters are assumed to know the prefer-
ences of other voters well enough, then we can expect them to vote strategically at each
step, forecasting the outcome at later steps conditional onthe outcomes at earlier steps.
Our contributions.
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In this paper, we analyze the complete-information game-theoretic model of se-
quential voting that we illustrated by the example above. This model applies to any
preferences that the agents may have (not justO-legal ones), though they must be strict
orders.

We focus on voting in binary multi-issue domains, that is, for anyi ≤ p, xi must take
a value in{0i, 1i}. This has the advantage that for each issue, we can use the majority
rule as the local rule for that issue. We use a game-theoreticmodel to analyze outcomes
that result from sequential voting. Specifically, we model the sequential voting process
as ap-stage complete-information game, as follows. There is an orderO over all issues
(w.l.o.g.,O = x1 > x2 > . . . > xp), which indicates the order of the issues (the order
in which they will be voted on). In stagei, the voters vote on issuexi simultaneously,
and the majority rule is used to choose the winning value forxi. We make the following
game-theoretic assumptions: the orderO is common knowledge; all voters’ preferences
are common knowledge; and, of course, all voters are perfectly rational, which is also
common knowledge.

We can solve this game by a type of backward induction: in the last (pth) stage, only
two alternatives remain (corresponding to the two possiblesettings of the last issue),
so at this point it is a (weakly) dominant strategy for each voter to vote for her more
preferred alternative of the two. Then, in the second-to-last ((p − 1)th) stage, there
are two possible local outcomes for the(p − 1)th issue; for each of them, the voters
can predict which alternative will finally be chosen, because they can predict what will
happen in thepth stage. Thus, the(p − 1)th stage is effectively a majority election
between two alternatives, and each voter will vote for her more preferred alternative;
etc. We call such a procedure thestrategic sequential voting procedure (SSP).

Given the order over issues, this game-theoretic analysis maps every profile of (strict
ordinal) preferences to a unique outcome. Since any function from profiles of prefer-
ences to alternatives can be interpreted as a voting rule, the voting rule that corresponds
to SSP is denoted bySSPO (this facilitates comparison with results where voters are
simply assumed to be voting truthfully).

After the introduction of SSP, we show that, unfortunately,multiple-election para-
doxes also arise under SSP. To better present our results, weintroduce a parameter called
theminimax satisfaction index (MSI). For an election withm alternatives andn voters,
it is defined in the following way. For each profile, consider the highest position that
the winner obtains across all of the input rankings of the alternatives (corresponding to
the most-satisfied voter); this is themaximum satisfaction indexfor this profile. Then,
the minimax satisfaction index is obtained by taking the minimum over all profiles of
the maximum satisfaction index. A low minimax satisfactionindex means that there
exists a profile in which the winner is ranked in low positionsin all votes, thus there is
a multiple-election paradox. Our main theorem is the following.

Theorem 1For anyp ∈ N and anyn ≥ 2p2 + 1, the minimax satisfaction index
of SSP when there arem = 2p alternatives andn voters isbp/2 + 2c. Moreover, in
the profileP that we use to prove the upper bound, the winnerSSPO(P ) is Pareto-
dominated by2p − (p + 1)p/2 alternatives.

We note that an alternativec Pareto-dominates another alternativec′ implies thatc
beatsc′ in their pairwise election. Therefore, Theorem 1 implies that the winner for
SSP is almost a Condorcet loser. It follows from this theoremthat SSP exhibits all
three types of multiple-election paradoxes: the winner is ranked almost in the bottom in
every vote, the winner is almost a Condorcet loser, and the winner is Pareto-dominated
by almost every other alternative. We also show a paradox (Theorem 2) that states that
there exists a profile such that foranyorderO of the issues, in each input ranking, the
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SSP winner is ranked almost in the bottom position. We also show that even when the
voters’ preferences can be represented by CP-nets that are compatible with a common
order, multiple-election paradoxes still arise.

To see if there are similar paradoxes for common voting rules(when voters are as-
sumed to vote truthfully), we calculate the minimax satisfaction index for some common
voting rules, including dictatorships, positional scoring rules (includingk-approval and
Borda), plurality with runoff, Copeland, maximin, STV, Bucklin, ranked pairs, and (not
necessarily binary) voting trees. We show that fork-approval with largek, voting trees,
Copeland0, and maximin we can find a similar paradox, and for the others there are no
such paradoxes.
Related work and discussion.

Our setting is closely related to themulti-stage sophisticated voting[13, 14, 10].
They studied the model where the backward induction outcomes correspond to the
truthful outcomes of voting trees. Therefore, our SSP is a special case of multi-stage
sophisticated voting. However, their work mainly focused on general set of alterna-
tives (while we focus on multi-issue domains), and their results are characterization of
the outcomes as the outcomes in thesophisticated voting[7]. We, on the other hand,
study the multiple-election paradoxes for SSP. Another paper that is closely related to
part of this work was written by Dutta and Sen [6]. They show that social choice rules
corresponding to binary voting trees can be implemented viabackward induction via a
sequential voting mechanism. This is closely related to a relationship that we discuss
later in this paper, namely an equivalence between the outcome of strategic behavior
in sequential voting over multiple binary issues, and a particular type of voting tree.
It should be pointed out that the sequential mechanism that Dutta and Sen consider is
somewhat different from sequential voting as we consider it—in particular, in the Dutta-
Sen mechanism, one agent moves at a time, and a move often consists not of a vote, but
rather of choosing the next player to move. Nevertheless, the approaches are related at
a high level, though they are motivated quite differently: Dutta and Sen are interested
in social choice rules corresponding to voting trees, and are trying to create sequential
mechanisms that implement them via backward induction. We,on the other hand again,
are primarily interested in the strategic outcome of the natural mechanism for voting
sequentially over multiple issues, and use voting trees merely as a useful tool for an-
alyzing the outcome of this process. Also, the relationshipbetween sequential voting
and voting trees takes a particularly natural form in the context of domains with multi-
ple binary issues, as we will show. Less closely related, implementation by voting trees
has previously been studied at EC: Fischer et al. [8] consider the known result that the
Copeland rule (which we define later in this paper) cannot be implemented by a voting
tree [16], and set out toapproximatethe the Copeland score using voting trees.

It has been pointed out that typical multiple-election paradoxes partly comes from
the incompleteness of information about the preferences ofthe voters [11]. However,
the paradoxes in this paper show that assuming that voters’ preferences are common
knowledge does not allow to get rid of multiple election paradoxes. Another interpreta-
tion of these results is that we may need to move beyond sequential voting to properly
address voting in multi-issue domains. However, note that other approaches than se-
quential voting may be extremely costly in terms of communication and computation,
which comes down to saying, one more time, that voting on multiple related issues is
an extremely challenging problem for which probably no perfect solution exists.
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2 Preliminaries

2.1 Basics of voting

Let X be the set ofalternatives, |X | = m. A vote is a linear order overX . The set of
all linear orders overX is denoted byL(X ). For anyc ∈ X andV ∈ L(X ), we let
rankV (c) denote the position ofc in V from the top. Ann-profileP is a collection ofn
votes for somen ∈ N, that is,P ∈ L(X )n. For anyc, d ∈ X and any profileP , we say
c Pareto-dominatesd, if for anyV ∈ P , c is ranked higher thand in V , that is,c �V d.
A voting ruler is a mapping that assigns to each profile a unique winning alternative.
That is,r : L(X ) ∪ L(X )2 ∪ . . . → X . Some common voting rules are listed below.
• Dictatorship. for everyn ∈ N there exists a voterj ≤ n such that the winner is
always the alternative that is ranked in the top position inVi.
• (Positional) scoring rules: Given ascoring vector
~v = (v(1), . . . , v(m)), for any voteV ∈ L(X ) and anyc ∈ X , let s(V, c) = v(j),
where j is the rank ofc in V . For any profileP = (V1, . . . , Vn), let s(P, c) =
n∑

i=1

s(Vi, c). The rule will selectc ∈ X so thats(P, c) is maximized. Some examples of

positional scoring rules areBorda, for which the scoring vector is(m−1, m−2, . . . , 0),
k-approval (Appk, with k ≤ m), for which the scoring vector is(1, . . . , 1

︸ ︷︷ ︸

k

, 0, . . . , 0),

plurality, for which the scoring vector is(1, 0, . . . , 0), andveto, for which the scoring
vector is(1, . . . , 1, 0).
• Copelandα (0 ≤ α ≤ 1): For any two alternativesci andcj , we can simulate apair-
wise electionbetween them, by seeing how many votes preferci to cj , and how many
prefercj to ci; the winner of the pairwise election is the one preferred more often. Then,
an alternative receives one point for each win in a pairwise election,α points for each
draw, and0 point for each loss. The winner is the alternative that has the highest score.
• Plurality with runoff(Pluo): The election has two rounds. In the first round, the al-
ternatives are ranked from high to low according to the number of times they are ranked
in the top position in the votes of the profile (that is, according to their plurality scores).
Only the top two alternatives enter the second (runoff) round. In the runoff, we simu-
late a pairwise election between these two alternatives, and the alternative that wins the
pairwise election is the winner.
• Maximin: Let N(ci, cj) denote the number of votes that rankci ahead ofcj . The
winner is the alternativec that maximizesmin{N(c, c′) : c′ ∈ X , c′ 6= c}.
• STV: The election hasm − 1 rounds. In each round, we count for each remaining
alternative how many votes rank it highest among the remaining alternatives; then, the
alternative with the lowest count drops out. The last remaining alternative is the winner.
• Bucklin: An alternativec’s Bucklin score is the smallest numberk such that more than
half of the votes rankc among the topk alternatives. The winner is the alternative that
has the lowest Bucklin score. If multiple alternatives havethe lowest scorek, then ties
are broken by the number of votes that rank an alternative among the topk.
• Ranked pairs: This rule first creates an entire ranking of all the alternatives.N(ci, cj)
is defined as for the maximin rule. In each step, we will consider a pair of alternatives
ci, cj that we have not previously considered; specifically, we choose the remaining
pair with the highestN(ci, cj). We then fix the orderingci � cj , unless this contradicts
orderings that we fixed previously (that is, it violates transitivity). We continue until
we have considered all pairs of alternatives (hence we end upwith a full ranking). The
alternative at the top of the ranking wins.
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• Voting trees: A voting tree is a binary tree withm leaves, where each leaf is associated
with an alternative. In each round, there is a pairwise election between an alternativeci

and its siblingcj : if a majority of voters prefersci to cj , thencj is eliminated, andci is
associated with the parent of these two nodes; similarly, ifa majority of voters prefers
cj to ci, thenci is eliminated, andcj is associated with the parent of these two nodes.
The alternative that is associated with the root of the tree (wins all its rounds) is the
winner.

2.2 Multi-issue domains

In this paper (except Section 7), the set of all alternativesX is a binary multi-issue
domain. That is, letI = {x1, . . . ,xp} (p ≥ 2) be a set ofissues, where each issue
xi takes values in a binarylocal domainDi = {0i, 1i}. The set of alternatives is
X = D1 × . . . × Dp, that is, an alternative is uniquely identified by its valueson all
issues. IfY ⊆ I thenDY =

∏

y∈Y Dy.
Given a preference relation� in L(X ), an issuexi, and a subset of issuesW ⊆ I,

let U = I \ (W ∪ {xi}); then,xi is preferentially independent ofW givenU (with
respect to�) if for any ~u ∈ DU , anyai, bi ∈ Di, and any~w, ~w′ ∈ DW , (~u, ai, ~w) �
(~u, bi, ~w) if and only if (~u, ai, ~w′) � (~u, bi, ~w′). Informally, if we wish to find out
whether changing the value ofxi from ai to bi (while keeping everything else fixed)
will make the voter better or worse off, we only need to know the values of the issues
in U .

Let O = x1 > . . . > xp. A preference relation� is O-legal if for any i ≤ p, xi is
preferentially independent of{xi+1, . . . ,xp} given{x1, . . . ,xi−1}. Informally, to find
out whether a particular change in the value of an issue will make the voter better or
worse off, we only need to know the values of earlier issues. Apreference relation� is
separableif for any i ≤ p, xi is preferentially independent ofX \ {xi}. Informally, to
find out whether a particular change in the value of an issue will make the voter better or
worse off, we do not need to know the value of any other issue. Aseparable preference
relation isO-legal for anyO.

A preference relation� is O-lexicographicif for any i ≤ p, any~u ∈ D1 × . . . ×
Di−1, any ai, bi ∈ Di, and any~d1, ~d2, ~e1, ~e2 ∈ Di+1 × . . . × Dp, (~u, ai, ~d1) �
(~u, bi, ~e1) if and only if she prefers(~u, ai, ~d2) � (~u, bi, ~e2). Informally, if a profile isO-
lexicographic, then it isO-legal, and moreover, earlier issues are more important—that
is, to compare two alternatives, it suffices to know the values of the issues up to and in-
cluding the first issuexi on which they differ. (While the values ofx1, . . . ,xi−1 will be
the same, they still matter in that they affect the preference onxi.) O-lexicographicity
and separability are incomparable notions.

A profile is separable/O-lexicographic/O-legal if it is composed of preference rela-
tions that are all separable/O-lexicographic/O-legal.

We can now define sequential composition of local voting rules. Given a vector of
local rules(r1, . . . , rp) (where for anyi ≤ p, ri is a voting rule onDi), thesequential
compositionof r1, . . . , rp w.r.t. O, denoted bySeqO(r1, . . . , rp), is defined for allO-
legal profiles as follows:SeqO(r1, . . . , rp)(P ) = (d1, . . . , dp) ∈ X , where for any
i ≤ p, di = ri(P |xi:d1...di−1

), whereP |xi:d1...di−1
is composed of the voters’ local

preferences overxi, given that the issues preceding it take valuesd1, . . . , di−1. Thus,
the winner is selected inp steps, one for each issue, in the following way: in stepi, di is
selected by applying the local ruleri to the preferences of voters overDi, conditioned
on the valuesd1, . . . , di−1 that have already been determined for the issues that precede
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xi. In this paper, we only consider the case where everyri is the majority rule over two
alternatives.

3 Strategic sequential voting
Sequential voting on multi-issue domains can be seen as a game where in each step, the
voters decide whether to vote for or against the issue under consideration after reasoning
about what will happen next. We make the following assumptions.

(1) All voters act strategically, and this is common knowledge.
(2) The order in which the issues will be voted upon, as well asthe local voting rules

used at the different steps (namely, majority), are common knowledge.
(3) All voters’ preferences on the set of alternatives are common knowledge.
Assumption 1 is standard in game theory. Assumption 2 merelymeans that the rule

has been announced. Assumption 3 (complete information) isthe most significant as-
sumption. It may be interesting to consider more general settings with incomplete infor-
mation, resulting in a Bayesian game. Nevertheless, because the complete-information
setting is a special case of the incomplete-information setting (where the prior distri-
bution is degenerate),all negative results obtained for the complete-information setting
also apply to the incomplete-information setting. That is, the restriction to complete
information only strengthens negative results.

Given these assumptions, the voting process can be modeled as an game that is
composed ofp stages where in each stage, the voters vote simultaneously on one issue.
Let O be the order over the set of issues, which without loss of generality we assume
to bex1 > . . . > xp, andP the profile of preferences overX . The game is defined as
follows: for eachi ≤ p, in stagei the voters vote simultaneously on issuei; then, the
value ofxi is determined by the majority rule (plus, in the case of an even number of
voters, some tie-breaking mechanism), and this local outcome is broadcast to all voters.
(Equivalently, all voters could broadcast their votes at each stage.)

We now show how to solve the game. Because of assumptions 1 to 3, at stepi the
voters vote strategically, by recursively figuring out whatthe final outcome will be if
the local outcome forxi is 0, and what it will be if it is1. More concretely, suppose
that steps1 to i − 1 resulted in issuesx1, . . . ,xi−1 taking the valuesd1, . . . , di−1, and
let ~d = (d1, . . . , di−1). Suppose also that ifxi takes the value0i (resp.,1i), then,
recursively, the remaining issues will take the tuple of values~a (resp.,~b). Then,xi is
determined by a pairwise comparison between(~d, 0i,~a) and(~d, 1i,~b) in the following
way: if a majority of voters prefers(~d, 0i,~a) over (~d, 1i,~b), thenxi takes the value
0i; in the opposite case,xi takes the value1i. This process, which corresponds to the
strategic behavior in the sequential election, is what we call the strategic sequential
voting procedure, and for any profileP , the winner w.r.t. the orderO is denoted by
SSPO(P ).

As we shall see later, SSP can not only be thought of as the strategic outcome of
sequential voting, but also as a voting rule in its own right.In fact, SSP corresponds
to a particular balanced voting tree, as illustrated in Figure 1 for the casep = 3. In
this voting tree, in the first round, each alternative is paired up against the alternative
that differs only on thepth issue; each alternative that wins the first round is then paired
up with the unique other remaining alternative that differsonly on the(p − 1)th and
possibly thepth issue; etc.

Of course, there are many voting trees that donot correspond to an SSP election;
this is easily seen by observing that there are onlyp! different SSP elections (corre-
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sponding to the different orders of the issues), but many more voting trees. The voting
tree corresponding to the orderO = x1 > . . . > xp is defined by the property that for
any nodev whose depth isi (where the root has depth1), the alternative associated with
any leaf in the left (resp., right) subtree ofv gives the value0i (resp.,1i) to xi.

000 001 010 011 110 111101100

Figure 1: A voting tree that is equivalent to the strategic sequential voting procedure
(p = 3). 000 is the abbreviation for010203, etc.

4 Minimax Satisfaction Index

In the rest of this paper, we will show that strategic sequential voting on multi-issue
domains is prone to paradoxes that are almost as severe as previously studied multiple-
election paradoxes under models that are not game-theoretic [4, 11]. To facilitate the
presentation of these results, we define an index that is intended to measure one aspect
of the quality of a voting rule, calledminimax satisfaction index.

In words, the minimum satisfaction index can be defined as follows. For each pro-
file, consider the highest position that the winner obtains across all of the input rankings
of the alternatives (corresponding to the most-satisfied voter); this is themaximum satis-
faction indexfor this profile. Then, the minimax satisfaction index is obtained by taking
the minimum over all profiles of the maximum satisfaction index.

Definition 1 For any voting ruler, theminimax satisfaction index (MSI)of r is defined
by MSIr(m, n) = minP∈L(X )n maxi≤n

(
m + 1 − rankVi

(r(P ))
)

wherem is the number of alternatives andn is the number of voters.

The MSI of a voting rule is not the final word on it. For example,the MSI for dic-
tatorships ism, the maximum possible value, which is not to say that dictatorships are
desirable. However, if the MSI of a voting rule is low, then this implies the existence of
a paradox for it, namely, a profile that results in a winner that makes all voters unhappy.

Many of the multiple-election paradoxes known so far implicitly refer to such an
index. For example, Lacy and Niou [11] and Benoit and Kornhauser [2] showed that for
multiple referenda, if voters vote on issues separately (under some assumptions on how
voters vote), then there exists a profile such that in each vote, the winner is ranked near
the bottom–therefore the rule has a very low MSI.

5 Multiple-Election Paradoxes for Strategic Sequential
Voting

In this section, we show that over multi-issue domains, for any n that is sufficiently
large (we will specify the number in our theorems), there exists ann-profileP such that
SSPO(P ) is ranked almost in the bottom position in each vote inP . That is, the min-
imax satisfaction index is extremely low for the strategic sequential voting procedure
SSP.
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We first calculate the MSI forSSPO when the winner does not depend on the tie-
breaking mechanism. That is, eithern is odd, orn is even and there is never a tie in
the process of running the election. (This is our main multiple-election paradox result.)
Because of the space constraint, we omit all proofs. The fullversion of this paper
can be found online.

Theorem 1 For any p ∈ N (p ≥ 2) and anyn ≥ 2p2 + 1, MSISSPO
(m, n) =

bp/2+2c.1 Moreover, in the profileP that we use to prove the upper bound, the winner
SSPO(P ) is Pareto-dominated by2p − (p + 1)p/2 alternatives.

We note that the number of alternatives ism = 2p. Therefore,bp/2 + 2c is expo-
nentially smaller than the number of alternatives, which means that there exists a profile
for which every voter ranks the winner very close to the bottom. Moreover,(p + 1)p/2
is still exponentially smaller than2p, which means that the winner is Pareto-dominated
by almost every other alternative.

Naturally, we wish to avoid such paradoxes. One may wonder ifthe paradox occurs
only if the ordering of the issues is particularly unfortunate with respect to the prefer-
ences of the voters. If not, then, for example, perhaps a goodapproach is to randomly
choose the order of the issues.2 Unfortunately, our next result shows that we can con-
struct a single profile that results in a paradox forall orderings. While it works for all
orders, the result is otherwise somewhat weaker than Theorem 1: it does not show a
Pareto-dominance result, it requires a number of voters that is at least twice the num-
ber of alternatives, the upper bound shown on the MSI is very slightly higher than in
Theorem 1, and unlike Theorem 1 no matching lower bound is shown.

Theorem 2 For anyp, n ∈ N (with p ≥ 2 andn ≥ 2p+1), there exists ann-profile P
such that for any orderO over{x1, . . . ,xp}, SSPO(P ) = 11 . . . 1p, and anyV ∈ P
ranks11 . . . 1p somewhere in the bottomp + 2 positions.

6 Multiple-election paradoxes for SSP with restrictions
on preferences

The paradoxes exhibited so far placed no restriction on the voters’ preferences. While
SSP is perfectly well defined for any preferences that the voters may have over the al-
ternatives, we may yet wonder what happens if the voters’ preferences over alternatives
are restricted in a way that is natural with respect to the multi-issue structure of the
setting. In particular, are paradoxes avoided by such restrictions? It is well known that
natural restrictions on preferences sometimes lead to muchmore positive results in so-
cial choice and mechanism design—for example, single-peaked preferences allow for
good strategy-proof mechanisms [3, 15].

In this section, we study the MSI forSSPO for the following three cases: (1) voters’
preferences are separable; (2) voters’ preferences areO-lexicographic; and (3) voters’
preferences areO-legal. For case (1), we show a mild paradox (and that this is ef-
fectively the strongest paradox that can be obtained); for case (2), we show a positive
result; for case (3), we show a paradox that is very nearly as bad as the unrestricted case.

Theorem 3 For anyn ≥ 2p, when the profile is separable, the MSI forSSPO is be-
tween2dp/2e and2bp/2c+1.

1If n is even, then to proveMSISSPO
(m, n) ≥ bp/2+2c, we restrict attention to profiles without ties.

2Of course, for any ordering of the issues, there exists a profile that results in the paradoxes in Theorem 1;
but this does not directly imply that there exists a single profile that works for all orderings.
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That is, the MSI ofSSPO when votes are separable isΘ(
√

m). We still have that
limm→∞ Θ(

√
m)/m = 0, so in that sense this is still a paradox. However, the conver-

gence to0 is much slower than forΘ(log m)/m, which corresponds to the convergence
rate for the earlier paradoxes.

Theorem 4 For anyp ∈ N (p ≥ 2) and anyn ≥ 5, when the profile isO-lexicographic,
MSI(SSPO) = 3 · 2p−2 + 1. Moreover,SSPO(P ) is ranked somewhere in the top
2p−1 positions in at leastn/2 votes.

Naturallylimm→∞(3m/4+1)/m = 3/4, so in that sense there is no paradox when
votes areO-lexicographic.

Finally, we study the MSI forSSPO when the profile isO-legal. Theorem 5 shows
that it is very nearly as bad as the unrestricted case (Theorem 1).

Theorem 5 For anyp, n ∈ N with n ≥ 2p2+2p+1, there exists anO-legal profile such
that in each vote, no more thandp/2e+4 alternatives are ranked lower thanSSPO(P ).
Moreover,SSPO(P ) is Pareto-dominated by at least2p − 4p2 alternatives.

Of course, the lower bound on the MSI from Theorem 1 still applies when the
profile isO-legal, so together with Theorem 5 this proves that the MSI for SSPO when
the profile isO-legal isΘ(logm), just as in the unrestricted case.

7 Minimax satisfaction index of other common voting
rules

So far, we have focused strictly on strategic sequential voting (SSP) in multi-issue do-
mains (and voting trees, but only in the sense of their equivalence to strategic sequential
voting). Hence, at this point, it may not be clear whether theparadoxes (or, in some
cases, lack of paradoxes) that we have shown are due to the sequential, multi-issue na-
ture of the process, or whether they are due to the strategic behavior, or whether such
paradoxes are prevalent throughout voting settings.

First, let us address the question of to what extent they are due to strategic behav-
ior. To answer this, it is most natural to compare toSeqO(maj, . . . , maj) (“truthful”
sequential voting), which is only well defined when the profile isO-legal. We answer
this question by the following Proposition, which shows a much milder paradox.

Proposition 1 For anyn ≥ 2p, when the profile isO-legal, the MSI forSeqO(maj, . . . , maj)
is between2dp/2e and2bp/2c+1.

Having settled the effect of strategic behavior, we next investigate the effect of the
multi-issue nature of the setting. We do this by studying theMSI of common voting
rules in non-combinatorial settings, where there is a single issue (but one that can take
more than two values). In this context, studying strategic behavior seems intractable.
By the Gibbard-Satterthwaite theorem [9, 18], without restrictions on preferences, no
strategy-proof rules exist other than dictatorships and rules that exclude certain alterna-
tives ex ante. Moreover, even with complete information, common voting rules have
many different equilibria. Hence, we focus on studying the extent to which paradoxes
occur when voters vote truthfully.

Specifically, we investigate the minimax satisfaction indices of positional scoring
rules (includingk-approval and Borda), plurality with runoff (Pluo), Copelandα, max-
imin, ranked pairs, Bucklin, STV, and (not necessarily balanced) voting trees. Of
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course, these rules can be applied to multi-issue domains aswell as to any other do-
main, but they do not make use of multi-issue structure; in general, we just have a set of
alternativesC = {c1, . . . , cm}. Throughout the remainder of this section, we assume
thatm ≥ 3, and that ties are broken in the orderc1 � c2 � . . . � cm.

Proposition 2 Letm, n ∈ N.
• MSIDict(m, n) = m;
• for anyk ≤ m, MSIAppk

(m, n) = m + 1 − k;
• MSIPluo(m, n) = m;
• MSISTV (m, n) = m;
• MSIBucklin(m, n) ≥ m/2.

Proposition 3 (Borda) Letm ∈ N. For anyn ∈ N such thatn is even,MSIBorda(m, n) =
bm/2 + 1c; for any n ∈ N such thatn ≥ m, and n is odd,MSIBorda(m, n) =
dm/2 + 1e.

Proposition 4 (Copeland) Let m, n ∈ N. If either 0 < α ≤ 1, or n is odd and
α = 0, thenMSICopeland

α
(m, n) ≥ αm/4. For any n ≥ 2m such thatn is even,

MSICopeland
0
(m, n) = 2.

Proposition 5 (Maximin) Letm, n ∈ N with n ≥ m − 1. MSImaximin(m, n) ≤ 3.

Proposition 6 (Ranked pairs) Letm, n ∈ N with n ≥ √
m. MSIrp(m, n) ≥ √

m.

Proposition 7 (Voting trees) Let T be a voting tree; letc be the alternative whose
corresponding leaf is closest to the root among all leaves inT , and let its distance to
the root be denotedl. If l = 1, then for anyn ≥ 2m, MSIrT

(m, n) = 3; if l ≥ 2, then
for anyn ≥ 2m, MSIrT

(m, n) = bl/2 + 2c.
Proposition 7 implies that among all voting trees form alternatives, balanced voting
trees have the highest MSI.

8 Conclusion and future work

In this paper, we considered a complete-information game-theoretic analysis of sequen-
tial voting on binary issues, which we called strategic sequential voting. Specifically,
given that agents have complete information about each other’s preferences and their
preferences are strict, the game can be solved by a natural backward induction process,
which leads to a unique solution.

We showed that strategic sequential voting is prone to multiple-election paradoxes;
to do so, we introduced a minimax satisfaction index, which measures the degree to
which at least one voter is made happy by the outcome of the election. We showed that
the minimax satisfaction index for strategic sequential voting is exponentially small,
which means that there exists a profile for which the winner isranked almost in the bot-
tom position in all votes; even worse, the winner is Pareto-dominated by almost every
other alternative. We showed that changing the order of the issues in sequential voting
cannot completely avoid the paradoxes. These negative results indicate that the solution
of the sequential game can be very bad. We also showed that multiple-election para-
doxes can be avoided to some extent by restricting voters’ preferences to be separable
or lexicographic, but the paradoxes still exist when the voters’ preferences areO-legal.
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Voting rule MSI
Dictatorships m (Proposition 2)
Plu w/ runoff m (Proposition 2)

STV m (Proposition 2)
Copeland

α
(0 < α ≤ 1) Θ(m) (Proposition 4)

Borda (n ≥ m) Θ(m) (Proposition 3)
Bucklin Θ(m) (Proposition 2)

SeqO(maj, . . . , maj)
(O-lexico profiles) 3m/4 + 1 (Theorem 4)

SSPO (O-lexico profiles) 3m/4 + 1 (Theorem 4)
k-Approval

(incl. Plurality and Veto) m + 1 − k (Proposition 2)

Ranked pairs (n ≥ √
m) Ω(

√
m) (Proposition 6)

SeqO(maj, . . . , maj)
(separable profiles) Θ(

√
m) (Theorem 3)

SSPO (separable profiles) Θ(
√

m) (Theorem 3)
SeqO(maj, . . . , maj)

(O-legal profiles) Θ(
√

m) (Proposition 1)

SSPO (O-legal profiles)
betweenblog m/2 + 2c

andblog m/2 + 5c (Theorem 5)

SSPO
3 blog m/2 + 2c (Theorem 1)

Voting tree (n ≥ 2m) bl/2 + 2c 4 (Proposition 7)
Maximin (n ≥ m − 1) ≤ 3 (Proposition 5)
Copeland

0
(n is even) 2 (Proposition 4)

Table 1: The minimax satisfaction index for strategic sequential voting (SSP), truthful sequential voting
(Seq), and common voting rules, ranked roughly from high to low.

For the sake of benchmarking our results, we also study the minimax satisfaction in-
dex for some common voting rules (under truthful voting). The results are summarized
in Table 1. For a voting rule with a low (high) MSI, we can (cannot) find a paradox that
is similar to the multiple-election paradoxes—that is, a profile for which the winner is
ranked in extremely low positions in all votes.

From this table, it may be concluded that: (1) in sequential voting, the paradoxes
are stronger when voting is strategic than when it is truthful, though of course this is no
longer true if we are in a restricted setting where truthful and strategic voting lead to
identical results (that is, when the profile is separable or lexicographic); (2) the strength
of the paradoxes for sequential voting ranks somewhere in the middle, though perhaps
somewhat more on the strong side, among standard social choice rules (when voters are
assumed to vote truthfully).

There are many topics for future research. For example, given a profile, can we
characterize the set of alternatives that win for some orderover the issues?5 Perhaps
more importantly, how can we get around the multiple-election paradoxes in sequential
games? For example, Theorem 4 shows that if the voters’ preferences are lexicographic,
then we can avoid the paradoxes. It is not clear if there are other ways to avoid the
paradoxes (paradoxes occur even if we restrict voters’ preferences to be separable orO-
legal, as shown in Theorem 3 and Theorem 5). Another approachis to consider other,
non-sequential voting procedures for multi-issue domains. What are good examples of
such procedures? Will these avoid paradoxes? What is the effect of strategic behavior
for such procedures? How should we even define “strategic behavior” for such proce-
dures, or for sequential voting with non-binary issues, or for voting rules in general?
How can we extend these results to incomplete-information settings?6 Also, beyond

3Additionally, there exists a profileP such that forany orderO over issues, the maximum satisfaction
index ofSSPO for P is no more thanlog m + 2 (Theorem 2).

4l is the minimum distance from the root to a leaf,l ≤ log m. If l = 1, thenMSIrT
(m, n) = 3.

5This results in asocial choice setor correspondence; social choice sets have recently attracted attention
from computer scientists [5].

6Of course, because the complete-information setting is a special case of incomplete-information settings,
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proving paradoxes for individual rules, is it possible to show a general impossibility
result that shows that under certain minimal conditions, paradoxes cannot be avoided?7
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