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Abstract

We introduce a new logic by modifying Moss-Parikh subset logic that addresses change during knowledge ac-
quisition. This notion of change does not necessarily result in a restriction of possible alternatives, but rather tracks
change on each of them. We prove completeness and decidability.

1 Introduction
Subset logic is a bimodal logic that combines two modal operators, one corresponding to knowledge, and one corre-
sponding to effort, and models the increase of knowledge after a larger amount of resources has been spent in acquiring
it. Subset logic has been introduced by Moss and Parikh who also established the basic results ([MP92],[DMP96]). A
great deal of further research has been devoted to characterizing the underlying structure of subsets using axioms of
this logic. For example, the system topologic has been found complete with respect to topological spaces ([Geo93]).
Variants of this logic have also been developed to address knowledge after program termination and time passing
([Hei99],[Hei07]).

The main novelty of subset logic is its semantics, where, after fixing a space of subsets of a set of worlds, sentences
are interpreted over a pair (x,U), where x is the actual world the agent resides in, and U is the view the agent has. The
agent’s view consists of those worlds the agent considers possible. We can represent effort by restricting the agent’s
view. Restricting the view means that the agent cancels out some of the alternatives, and, as a result, increase of
knowledge occurs. In this paper, we would like to explore the possibility of using subsets of world to model any kind
of change, rather than change that corresponds to increase of knowledge. Consider the following example.

Example 1 Imagine a room with a table and two cubes: a red one and a blue one. The agent is outside the room but
knows that one of the cubes is on the table and one is on the floor. Now, suppose that the agent instructs a robot to
enter the room and place the red cube on the floor. The update of the agent’s knowledge base after the robot’s action
can be modeled as follows. Denote the sentence “the red cube is on the floor” with r, and similarly with b for the blue
cube. The initial view is U = {w1,w2} where w1 = {r∧¬b} and w2 = {¬r∧b}. After the robot is instructed to place
the red cube on the floor the first possibility persists while the second possibility turns into w′2 = {r∧b}. The resulting
view of the agent is U ′ = {w1,w′2}.
∗This research was supported by a PSC-CUNY grant. The idea for this research grew out of discussions with Bernhard Heinemann, who also
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Note that, in the above example, U ′ is not a subset of U and change does not result in an increase but rather in an
update of knowledge (in the sense of [KM91]). In particular, the sentence

K(r↔¬b)

is true at U but false in U ′. Further, the resulting subset is determined by the transformation of its components. Before
instructing the robot we do not know whether the red cube is on the floor:

¬K¬r

but after instructing the robot (call this action a) the following holds:

[a]Kr.

Our modification is threefold:

• We consider subsets that do not necessarily form a topological space but rather they are determined by the
accessibility relations. This is not contrary to the basic intuition behind the Moss-Parikh logics but rather
complementary. We do not want to express the structure of subsets but rather the structure of actions that restrict
the agent’s view to those subsets.

• We consider changes that do not necessarily result in a smaller subset. Frequently, we reason with defeasible
knowledge or we jump to conclusions as in nonmonotonic reasoning. Other times, we need to revise our beliefs.
In such cases, the resulting epistemic state is not a refinement but rather a transformation of the original one.

• We make explicit the accessibility relations that bring about different forms of change. Such actions can be the
result of a program, a game move, pieces of information about a changing world, or, simply, the passage of time.

We view this logic as a tool for studying the transformations of knowledge in a more general setting much like dy-
namic epistemic logic ([DvdHK07]), although we restrict our attention to a single agent (for a multiple agent approach
using subset logic see [Hei08]). Systems that combine two or more modal logics are nothing new ([KW91],[GS98]).
Their theory, in the simple cases, is straightforward. Similarly, basic results such as completeness for Kripke models
and decidability are straightforward once those have been obtained for the individual logics separately. However, our
completeness and decidability results refer not to the usual frame models with accessibility relations but, instead, we
use subsets.

In the next section, we define the subset logic SC for reasoning about change and prove a normal form theorem.
Then, we apply the normal form theorem to prove completeness in section 3 and decidability in section 4. We conclude
with a sketch of a logic that incorporates actions.

2 Syntax and Semantics
We follow the notation of [MP92].

Our language is bimodal and propositional. We start with a countable set Atom of atomic formulas containing
two distinguished elements > and ⊥. Then the language L is the least set such that Atom⊆L and closed under the
following rules:

φ ,ψ ∈L

φ ∧ψ ∈L

φ ∈L

¬φ ,2φ ,Kφ ∈L

The above language can be interpreted using subsets as follows:

Definition 2 Let X be a set, R a binary relation on X , i.e., R ⊆ X ×X called accessibility, and O a subset of the
powerset of X , i.e. O ⊆P(X) such that X ∈ O . We denote the set {(x,U) : x ∈ X ,U ∈ O, and x ∈U} ⊆ X ×O by
X×̇O . For each U ∈O , let UR be the set of the elements accessible from U , that is, the set {y : (x,y) ∈ R,x ∈U}. The
set O will be called R-closed if whenever U ∈ O then UR ∈ O .

Let O be R-closed, then the triple 〈X ,R,O〉will be called a subset frame. A model is a quadruple 〈X ,R,O, i〉, where
〈X ,R,O〉 is a subset frame and i a map from Atom to P(X) with i(>) = X and i(⊥) = /0 called initial interpretation.
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Definition 3 The satisfaction relation |=M , where M is the model 〈X ,O,R, i〉, is a subset of (X×̇O)×L defined
recursively by (we write x,U |=M φ instead of ((x,U),φ) ∈|=M ):

x,U |=M A iff x ∈ i(A), where A ∈ Atom
x,U |=M φ ∧ψ iff x,U |=M φ and x,U |=M ψ

x,U |=M ¬φ iff x,U 6|=M φ

x,U |=M Kφ iff for all y ∈U, y,U |=M φ

x,U |=M 2φ iff for all y ∈ X such that (x,y) ∈ R, y,UR |=M φ .

If x,U |=M φ for all (x,U) belonging to X×̇O then φ is valid in M , denoted by M |= φ .

We abbreviate ¬2¬φ and ¬K¬φ by 3φ and Lφ respectively. We have that

x,U |=M Lφ if there exists y ∈U such that y,U |=M φ

x,U |=M 3φ if there exists y ∈ X such that (x,y) ∈ R and y,UR |=M φ .

The axiom system SC consists of axiom schemes 1 through 8 and rules of table 1 (see page 4). In other words,
we require that 2 satisfies the K (normality) axiom and K satisfies the S5 axioms. We have two interaction axioms.
Axiom 7 is akin to “perfect recall” of [ST08] for a single modality. Axiom 8 identifies 2 and 3 for knowledge
sentences and axiomatizes the functionality of accessibility relation on subsets. Observe that the following basic
axiom of subset logic is not valid in SC:

(A→2A)∧ (¬A→2¬A), for A ∈ Atom.

The following holds:

Theorem 4 The axioms and rules of SC are sound with respect to subset frames.

We will prove that the logic SC has a normal form (Theorem 8). Through this normal form we can characterize
accessibility by decomposing the theories of the canonical model (Proposition 16). This approach is motivated by
[Geo93].

Definition 5 Let L 2 ⊆L be the set of formulas generated by the following rules:

Atom⊆L 2 φ ,ψ ∈L 2

φ ∧ψ ∈L 2

φ ∈L 2

¬φ ,2φ ∈L 2

Let L K be the set {Kφ ,Lφ |φ ∈L 2}.

Lemma 6 The following are theorems of SC.

1. 3(φ ∧Kψ)↔3φ ∧3Kψ.

2. 3>∧2Kφ → K2φ

3. 3Lφ → L3φ

4. 3>∧2Lφ →3Lφ

5. L3φ →2Lφ

Proof.
For 1, the one implication is straightforward. For the other

1. 3φ ∧3Kψ →3φ ∧2Kψ by Axioms 7 and 8
2. 3φ ∧2Kψ →3(φ ∧Kψ) in a normal system.

2 follows from Axiom 8. The rest are contrapositives of Axiom 7, Case 2, and Axiom 8.
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Axioms

1. All propositional tautologies

2. 2(φ → ψ)→ (2φ →2ψ)

3. K(φ → ψ)→ (Kφ → Kψ)

4. Kφ → φ

5. Kφ → KKφ

6. φ → KLφ

7. K2φ →2Kφ

8. 3Kφ → K2φ

Rules

φ → ψ,φ

ψ
SC

φ

Kφ
K-Necessitation

φ

2φ
2-Necessitation

Table 1: Axioms and Rules of SC
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Definition 7 1. φ is in prime normal form (PNF) if it has the form

ψ ∧Kψ
′∧

n∧
i=1

Lψi

where ψ,ψ ′,ψi ∈L 2 and n is finite.

2. φ is in disjunctive normal form (DNF) if it has the form
∨m

i=1 φi, where each φi is in PNF and m is finite.

We shall omit the cardinality of (finite) conjunctions and disjunctions, writing, e.g.,
∨

i φi instead of
∨n

i=1 φi. Sup-
pose that φ is a formula in the following form

∧
i

(
ψi∨Lψ

′
i ∨
∨

j

Kψ
j

i

)
,

where ψi,ψ
′
i ,ψ

j
i ∈L 2. We shall call such a form conjunctive normal form (CNF). Using the distributive laws, we

may show that DNF and CNF are effectively interchangeable up to equivalence.

Theorem 8 (DNF) For every φ ∈L , there is (effectively) a ψ in DNF such that

`SC φ ≡ ψ.

Proof. By induction on the logical structure of φ .

• If φ = A, where A is atomic, the result is immediate because the set of atomic formulas belongs to L 2 and A is
in PNF.

• Suppose that φ = ¬ψ . Then, by induction hypothesis, ψ is equivalent to a formula in DNF, which implies that
φ is equivalent to a formula in CNF and, by the above discussion, is equivalent to a formula in DNF.

• If φ = ψ ∨χ then φ is equivalent to a disjunction of two formulas in DNF, i.e. is itself in DNF.

• If φ = Kψ then ψ is equivalent to a formula in CNF, and hence φ is equivalent to a formula of the following
form ∧

i

K

(
χi∨Lχ

′
i ∨
∨

j

Kχ
j

i

)
,

since K distributes over conjunctions. Now, since the formula K(φ ∨Kψ)↔ Kφ ∨Kψ is a theorem of S5, the
above formula is equivalent to ∧

i

(
Lχ
′
i ∨

(
Kχi∨

∨
j

Kχ
j

i

))
,

which is in CNF.

• If φ = 3ψ then, by induction hypothesis, φ is equivalent to a formula of the form

3
∨

i

(
χi∧Kχ

′
i ∧
∧

j

Lχ
j

i

)
.

Since 3 distributes over disjunctions in every normal system, the above formula is equivalent to

∨
i

3

(
χi∧Kχ

′
i ∧
∧

j

Lχ
j

i

)
.
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By repeated applications of Lemma 6.1, the above formula is equivalent to

∨
i

(
3χi∧3Kχ

′
i ∧
∧

j

3Lχ
j

i

)
. (1)

Observe that 3Kχ ′ is equivalent to 3>∧2Kχ ′ using Normality, Axioms 7, Lemma 6.2, and 8. Similarly,∧
j 3Lχ

j
i is equivalent to 3>∧

∧
j L3χ

j
i using Normality and Lemma 6. Therefore, (1) is equivalent to

∨
i

(
3χi∧3>∧K2χ

′
i ∧
∧

j

L3χ
j

i

)
, (2)

which is in DNF.

3 Canonical Model
The canonical model of SC is the structure

C =
(

S,{ a→,
L→},v

)
,

where
S = {s⊆L : s is SC-maximal consistent},
s a→t iff {φ ∈L : 2φ ∈ s} ⊆ t,

s L→ t iff {φ ∈L : Kφ ∈ s} ⊆ t,
v(A) = {s ∈ S : A ∈ S},

along with the usual satisfaction relation (defined inductively):

s |=C A iff s ∈ v(A)
s 6|=C ⊥
s |=C ¬φ iff s 6|=C φ

s |=C φ ∧ψ iff s |=C φ and s |=C ψ

s |=C 2φ iff for all t ∈ S, s a→t implies t |=C φ

s |=C Kφ iff for all t ∈ S, s L→ t implies t |=C φ .

We write C |= φ , if s |=C φ for all s ∈ S.
A canonical model exists for all consistent bimodal systems with the normal axiom scheme for each modality. We

have the following well known theorems (see [Che80], or [Gol87].)

Theorem 9 (Truth Theorem) For all s ∈ S and φ ∈L ,

s |=C φ iff φ ∈ s.

Theorem 10 (Completeness Theorem) For all φ ∈L ,

C |= φ iff `SC φ .

We shall now prove some properties of the members of C . We will make use of the following sets: for all s ∈ S

s2 = s∩L 2 sK = s∩L K
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and
S2 = {s2 : s ∈ S} SK = {sK : s ∈ S}.

The DNF theorem implies that every maximal consistent theory s of SC is determined by the formulas in L 2 and L K

it contains, i.e. by s2 and sK. Moreover, the set {Kφ ,Lφ : Kφ ,Lφ ∈ s} is determined by sK alone (this is the K-case of
the DNF theorem.)

The following definition is useful

Definition 11 Let P⊆L 2(L K). We say P is an L 2(L K)-theory if P is consistent and for all φ ∈L 2(L K) either
φ ∈ P or ¬φ ∈ P.

Hence, s2 is an L 2-theory and sK is an L K-theory. An L 2-theory and an L K-theory determine an SC maximal
consistent theory when their union is consistent because in this case there is a unique maximal extension. To test
consistency we have the following lemma.

Lemma 12 If P and S are an L 2- and L K-theory respectively then P∪S is consistent if and only if

if φ ∈ P then Lφ ∈ S.

Proof. Suppose that P∪S is not consistent then there exists φ ∈ P and {Lφi}n
i=1 ⊆ S such that

n∧
i=1

Lφi→¬φ ,

which implies, since K distributes over conjunctions,

n∧
i=1

Lφi→ K¬φ .

Therefore ¬Lφ ∈ S and Lφ 6∈ S. The other direction is straightforward because φ → Lφ .

It is expected that since L 2- and L K-theories determine SC maximal consistent sets they will determine their
accessibility relations, as well.

Corollary 13 Let T,T ′ be subsets of L . Then,

1. T is a maximal consistent subset of L 2 iff T ∈ S2.

2. T is a maximal consistent subset of L K iff T ∈ SK.

3. If T ∈ S2, T ′ ∈ SK, then T ∪T ′ is consistent iff there exists a unique s ∈ S such that T = s2 and T ′ = sK.

Lemma 14 Given T ∈ SK, if the set

T R = {Kφ : K2φ ∈ T}∪{Lψ : L3ψ ∈ T}

is consistent then T R ∈ SK.

Proof. We need to show maximality so suppose that there exists φ ∈ L 2 such that Kφ 6∈ T R but T R ∪ {Kφ} is
consistent. We have that K2φ 6∈ T so L3¬φ ∈ T and so L¬φ ∈ T R, a contradiction. This shows that T R is maximal.

Lemma 15 Let T1,T2 ∈ S2 and T ′1 ∈ SK. If T1
a→T2 and T1∪T ′1 is consistent then T2∪ (T ′1)

R is consistent.
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Proof. Suppose T2∪ (T ′1)
R is inconsistent. Then there exist φ ∈ T2, Kψ,Lχ i ∈ (T ′1)

R such that

φ ∧Kψ ∧
∧

i

Lχi ` ⊥

which implies
2(Kψ ∧

∧
i

Lχi) `2¬φ

so
K2ψ ∧

∧
i

L3χi `2¬φ ,

by Axiom 8. Notice that the right side belongs to T ′1 and 3φ ∈ T1 which implies that T1 ∪ T ′1 is inconsistent, a
contradiction.

Proposition 16 For all s, t ∈ S,
a. s a→t if and only if i. s2 a→t2,

ii. (sK)R = tK.

b. s L→ t if and only if sK = tK.

Proof. For (a), right to left, let φ ∈ t then, by the DNF Theorem, φ has the form

∨
i

(
χi∧Kχ

′
i ∧
∧

j

Lχ
j

i

)
,

where χ,χ ′,χ
j

k ∈L 2. Then 3φ has the form

3
∨

i

(
χi∧Kχ

′
i ∧
∧

j

Lχ
j

i

)
,

which is equivalent to ∨
i

(
3χi∧K2χ

′
i ∧
∧

j

L3χ
j

i

)
,

as in the proof of the DNF Theorem. Observe here that, in case φ ∈L 2, if χi,Kχ ′i ,Lχ
j

i ∈ t then 3χi,K2χ ′i ,L3χ
j

i ∈ s,
by a(i) and a(ii). Therefore, s a→t.

For the other direction, a(i) is straightforward and for a(ii), use Axioms 7 and 8.
For (b), right to left, we proceed as above. Let Kφ ∈ t, then, by the DNF Theorem, it has the following form

∧
i

(
Lχ
′
i ∨
∨

j

Kχ
j

i

)
,

where χ ′i ,χ
j

i ∈L 2. Thus Kφ ∈ s.

The other direction is straightforward by the definition of L→.

We will define a subset frame model which is equivalent to the canonical model.
Let S2×̇SK be the subset of S2×SK containing all pairs (T,T ′) such that T ∪T ′ is consistent. Let f be a map from

S to S2×̇SK defined by f (s) = (s2,sK). It is straightforward to show that the map f is 1-1 and onto. Therefore, f has
an inverse defined by f−1(T,T ′) = s(T,T ′), where s(T,T ′) ∈ S is the unique maximal consistent extension of T ∪T ′

from Corollary 13.3. Therefore, the worlds of the canonical model maybe split in two components that will be used to
construct a point and a subset in the following definition.
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The standard subset model is defined with
(X ,O,R,v),

where
X = {xT : T ∈ S2},

O = {UT : T ∈ SK},

where UT = {xT ′ : T ∪T ′ consistent},
xT RxT ′ iff T a→T ′,

and
v(A) = {xT : A ∈ T}.

We have the following

Lemma 17 For all UT ∈ O , we have
UR

T = UT R .

Proof. First we show that UR
T ⊆UT R . Suppose xT ′ ∈UR

T and xT ′′RxT ′ with xT ′′ ∈UT . We must show that xT ′ ∈UT R .
It is enough to show that T ′′∪T R is consistent. This follows from Lemma 15.

For the other direction suppose xT ′ ∈UT R . We must find xT ′′ ∈UT with xT ′′RxT ′ . To this end, let

A = {3φ : φ ∈ T ′}∪T.

The set A is consistent. For if not, there exist φ ∈ T ′ and Kψ,Lχ i ∈ T where ψ,χi ∈L 2, such that

3φ ∧Kψ ∧
∧

i

Lχ
i ` ⊥.

So
Kψ ∧

∧
i

Lχ
i `2¬φ .

The above implies
Kψ ∧

∧
i

Lχ
i ` K2¬φ .

The right side belongs to T and so does the left side, because T is a maximal consistent subset of L K and K2¬φ ∈L K.
By the definition of T R, we have that K¬φ ∈ T R and therefore T ′∪T R is inconsistent, a contradiction. Extend A to a
maximal consistent subset s of L . We have xs2RxT ′ and sK = T so s2 is consistent with T and therefore xs2 ∈UT .

As a corollary, O is R-closed and so the canonical subset model is well defined. It remains to prove completeness:

Theorem 18 For all (xT ,UT ′) ∈ X×̇O , we have

xT ,UT ′ |= φ iff φ ∈ s(T,T ′).

Proof. By structural induction on φ .

• If φ is A, where A is atomic then

xT ,UT ′ |= A iff A ∈ T iff A ∈ T ∪T ′ iff A ∈ s(T,T ′).

• The boolean cases are straightforward.
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• Suppose φ is of the form 2ψ .

Assume that xT ,UT ′ |= A, then for all T ′′ such that T a→T ′′ we have xT ′′ ,UT ′R |= ψ . Now, suppose s(T,T ′) a→s.
We need to show that ψ ∈ s. We have by Proposition 16 that T a→s2 so xT Rxs2 , and T ′R = sK so UT ′R = UsK .
Therefore, xs2 ,UsK |= ψ by our assumption, and so ψ ∈ s by the induction hypothesis.

For the other direction, suppose 2ψ ∈ s(T,T ′). We must show that xT ,UT ′ |= 2φ . To this end, let xT RxT ′′ . We
have T a→T ′′. By Lemma 15 we have that T ′′ ∪ (T ′)R is consistent and so s(T,T ′) a→s(T ′′,(T ′)R), by Proposi-
tion 16. Therefore xT ′′ ,U(T ′)R |= ψ , by the induction hypothesis.

• Suppose φ is of the form Kψ .

Assume that Kψ ∈ s(T,T ′). We need to show that xT ,UT ′ |= Kψ . Let xT1 ∈UT ′ . By Proposition 16, we have

s(T1,T ′)
L→ s(T,T ′). Therefore, ψ ∈ s(T1,T ′) so xT1 ,UT ′ |= ψ by the induction hypothesis.

Now assume that xT ,UT ′ |= Kψ . We must show Kψ ∈ s(T,T ′). Let s(T,T ′) L→ s. By Proposition 16, T ′ = sK so
xs2 ,UT ′ |= ψ by our assumption. The latter implies ψ ∈ s(s2,T ′) = s by the induction hypothesis.

4 Decidability
At this section, we will show that the logic SC is decidable by showing that it possesses the finite model property: if a
formula is satisfiable then it is satisfiable in a finite subset model, i.e., a subset model that has a finite number of points
and therefore a finite number of subsets.

The proof relies upon both the normal form theorem of the previous section as well as a filtration.
To this end, let φ be a formula and (X ,O,R, i) a subset model in which φ is satisfied, that is, there exist x ∈ X and

U ∈ O such that x,U |= φ . The Normal form theorem allow us to assume that φ is in DNF, i.e. a has the form

∨
i

(
χi∧Kχ

′
i ∧
∧

j

Lχ
j

i

)
,

where χ,χ ′,χ
j

k ∈L 2. Denote the set {χi,χ ′i ,χ
j

i : i = 1, . . . ,n} with L 2
φ

and {Lχ
j

i : i = 1, . . . ,n} with L K
φ

.
We will now define a filtration on (X ,O, i) as follows. Let ∼φ be an equivalence relation on X defined by x∼φ y,

for x,y ∈ X , when x,U |= χ iff y,U |= χ for all χ ∈L 2
φ

and some U ∈ O . Note here that a straightforward induction
shows that the satisfaction of a formula χ in L 2 is independent of the subset, that is, x,V |= χ for some V ∈ X iff
y,U |= χ for all U ∈ X . Denote the equivalence class of x under ∼φ with xφ , the set {xφ : x ∈U} with Uφ , and the
set of all equivalence classes with Xφ . Now consider the subset model (Xφ ,P(Xφ ),Rφ , iφ ), where, for all atomic A in
L 2

φ
,

iφ (A) = {xφ : x ∈ i(A)}

and, for all 2b ∈L 2
φ

and some U,V ∈ O ,

xφ Rφ yφ iff x,U |= 2b then y,V |= b.

Observe that the powerset P(Xφ ) is Rφ -closed.
We have the following

Lemma 19 For all ψ ∈L 2
φ

, we have
x,U |= ψ iff xφ ,Uφ |= ψ.
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Proof. The atomic case follows from the definition of iφ . The boolean cases are straightforward. Now, suppose ψ

is of the form 2χ . Let x,U |= 2χ . To show that xφ ,Uφ |= 2χ . Let xφ Rφ yφ . By definition of Rφ , we have y,V |= χ

for some V ∈ O . By induction hypothesis, we have yφ ,Vφ |= χ . As mentioned above yφ ,W |= χ for all W ⊆ Xφ since

χ ∈L 2
φ

. In particular, yφ ,U
Rφ

φ
|= χ . For the other direction, suppose xφ ,Uφ |= 2χ and let xRy. We have xφ Rφ yφ ,

and so yφ ,U
Rφ

φ
|= χ . As χ ∈L 2

φ
, we have yφ ,(UR)φ |= χ (yφ ∈ (UR)φ because y ∈UR). By induction hypothesis,

y,UR |= χ .

This extends to all subformulas of φ by the following

Lemma 20 For all ψ , where ψ is a subformula of φ , we have

x,U |= ψ iff xφ ,Uφ |= ψ.

Proof. If ψ ∈ L 2
φ

, the lemma follows from the previous lemma. The boolean cases are straightforward. Now,
suppose ψ belongs to L K

φ
, i.e. is of the form Lχ where χ ∈L 2

φ
. Let x,U |= Lχ . To show that xφ ,Uφ |= Lχ . There

exists y ∈U such that y,U |= χ . By induction hypothesis we have yφ ,Uφ |= χ , so xφ ,Uφ |= Lχ . For the other direction,
suppose xφ ,Uφ |= Lχ . There exists yφ ∈Uφ such that yφ ,Uφ |= χ . By the definition of Uφ there exists z ∈U such that
zφ = yφ . We have zφ ,Uφ |= χ , so, by induction hypothesis, z,U |= χ and therefore x,U |= Lχ .

As a consequence, the logic SC satisfies the finite model property with respect to the class of SC-models. The
main result of this section follows.

Corollary 21 The logic SC is decidable.

5 Conclusion
We have presented a variant of the Moss-Parikh Subset Logic that handles arbitrary changes along with a completeness
and decidability result. Our presentation has made use of a single modality but extending the language, semantics, and
subsequent results to a multi-modal setting is straightforward. For the sake of completeness we will briefly mention
how this can be done but we will omit all details.

First, the language will be augmented with a set Act of symbols corresponding to sorts of changes. A change
can be a result of an action but not necessarily so (for example, time passing). As a result, we need to include in the
language formulas of the form [a]φ . On the semantics side, models will be equipped with the set {Ra : a ∈ Act} of
binary relations on X . For each U ∈ O and a ∈ Act, let URa be the set of the elements accessible from U , that is, the
set {y : (x,y) ∈ Ra,x ∈U}. The set O will be called Ra-closed if whenever U ∈ O then URa ∈ O . If O is Ra-closed
for each a ∈ Act, then the triple 〈X ,{Ra}a∈Act,O〉 will be called a action subset frame and proceed similarly for the
definition of the model. Satisfaction now will include the case

x,U |=M [a]φ if for all y ∈ X such that (x,y) ∈ Ra, y,URa |=M φ .

Now, all results including decidability and the normal form theorem lift to the extended language in a straight-
forward way as actions do not interact with each other. This extended language allow us to express the original
Moss-Parikh restriction modality using a modality [U ] for each U ∈ O , whose semantics are given by the relation

RU = {(x,x) : x ∈U}.

The update operator is an interesting addition to the already extensive arsenal of subset logic. We believe that such an
addition is very useful as a building block to an epistemic logic that handles change in various forms. As an example,
update can be combined with the public announcement operator of dynamic epistemic logic.

The combination of propositional dynamic logic with a logic of knowledge (PDL + K5) has been extensively
studied in [ST08]. These results do not carry over in our system because of the interaction axiom

〈a〉Kφ → K[a]φ

which is stronger than the ones (NL and CR) considered in [ST08]. Adding a calculus of action in the manner of
dynamic logic, or interpreting the modalities in a temporal context is perhaps the most promising extension of this
logic.
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