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Abstract. The aim of the paper is to present a sound and strongly com-
plete temporal logic that can model reasoning about reaching political
consensus.

1 Introduction

The present paper introduces a formalism that can reason about reaching con-
sensus within a coalition and forming a government. We use a model of political
consensus introduced by Eklund et. al. in [2]. Since that model is dynamic (par-
ties can compromise in order to reach consensus), we developed propositional
logic with temporal features. For temporal logics we refer the reader to [3].

We proved that our logic is sound and strongly complete (every consistent
set of formulas has a model). From the technical point of view, we modified some
of our previously developed completion techniques presented in [1, 4, 5].

The rest of the paper is organized as follows. In Section 2 we present some
basic concepts concerning consensus reaching within a coalition. In Section 3
we introduce the propositional linear-time logic and define the class of models.
Section 4 contains an axiomatization, that is proved to be sound and complete
in Section 5.

2 Preliminaries

In this section we recall some basic notions and definitions from [2], that are
necessary for introducing our logic.

The coalition S = {1, . . . , n} is the set of parties with sufficient number of
seats in order to form a government (we assume that a government consists of a
coalition and a policy that is acceptable to all the parties in the coalition). We
denote by G∗S the set of governments acceptable to the coalition S (since our



aim is to formalize consensus reaching within a coalition, we identify G∗S with
the set of policies acceptable to S).

Each party evaluates governments with respect to the set of criteria Crit.
Formally, for i ∈ S we define the function αi : Crit→ [0, 1], such that∑

c∈Crit

αi(c) = 1.

Furthermore, each party evaluates each government with respect to the set
of criteria:

– fi : Crit×G∗S → [0, 1],
–

∑
g∈G∗S

fi(c, g) = 1, c ∈ Crit.

Next, for i ∈ S we define the functions βi : G∗S → [0, 1], the evaluation of the
governments by parties:

βj(gk) = αj(c1)fj(c1, gk) + . . .+ αj(cp)fj(cp, gk).

It is easy to see that
∑

g∈G∗S
βi(g) = 1.

A distance function d : {βi|i ∈ S}2 → [0, 1] is defined by

d(βi, βj) =

√√√√ 1
|G∗S |

∑
g∈G∗S

(βi(g)− βj(g))2.

A generalized consensus degree δS is defined by δS = 1− dS , where

dS = max{d(βi, βj)|i, j ∈ S}.

We say that coalition S reaches consensus if δS ≥ δ̃, where δ̃ ∈ (0, 1) is
required consensus degree.

If the consensus is not reached, the chairman (a person which is indifferent
between all the parties) decides which party will be advised to change the pref-
erences. If that party does not agree to adjust it’s preferences, the chairman
proposes another change to the same party, or chooses another party.

We suppose that parties are sufficiently willing to compromise, and the pro-
cedure finishes in reaching consensus. After S reaches consensus, the chairman
chooses the government g such that∑

j∈S

k(j)
k(1) + . . .+ k(n)

∑
c∈Crit

αj(wi)(c)Fj(wi)(c, g)

is maximal, where k(i) > 0 is the relative power of the party i(if there are two
such governments, the chairman chooses one of them).

Although the consensus is always reached in a finite time, we define a time
model as infinite sequence, since the time required for reaching consensus is not
bounded by a fixed positive integer. Nevertheless, we do not allow changes in a
model after the consensus is reached.



3 Syntax and semantics

Let S = {1, . . . , n}, G∗S = {g1, . . . , gm}, Crit = {c1, . . . , cp} and g0 6∈ G∗S .

Definition 1. The set Term of terms is defined recursively as follows:

– Term(0) = {αi(c)|c ∈ Crit, i ∈ S} ∪ {k(i)|i ∈ S} ∪ {βi(g)|g ∈ G∗S , i ∈
S} ∪ {fi(c, g)|c ∈ Crit, g ∈ G∗S , i ∈ S} ∪ {s | s ∈ Q},

– Term(n+ 1) = Term(n) ∪ {(f + g), (f · g), (−f)|f, g ∈ Term(n)},
– Term =

∞⋃
n=0

Term(n). �

We will denote terms by f, g and h, possibly with indices. Furthermore, we
introduce the usual abbreviations : f + g is (f + g), f + g + h is ((f + g) + h),
f · g is (f · g) and (f · g) · h = f · (g · h), −f is (−f), f− g is (f+ (−g)) and so on.

Definition 2. The set For of formulas is defined recursively as the smallest set
that satisfies the following conditions:

– expressions of the form f > s, f ∈ Term and Gov(g), g ∈ G∗S ∪ {g0} are
formulas,

– if φ and ψ are formulas, then ¬φ, φ ∧ ψ, ©φ and φUψ are formulas. �

The intended meaning of Gov(gi) is that a government gi is chosen (if i = 0
then no government is formed). As in the propositional case, ¬ and ∧ are the
primitive connectives, while all of the other connectives are introduced in the
usual way. We introduce temporal operators F (sometimes) and G (always):

– Fφ is >Uφ.
– Gφ is ¬F¬φ.

To simplify notation, we define the following abbreviations:

– f 6 s is −f > s, f > s is ¬(f 6 s). Similarly are defined f < s, f = s and
f 6= s.

– f > g is f − g > 0. Similarly are defined f 6 g, f > g, f < g, f = g and
f 6= g.

Suppose that δ̃ ∈ (0, 1) ∩Q is the required consensus degree.
A model M is any tuple 〈S,K,G∗S , Crit, {α̂i|i ∈ S},W, {Fi|i ∈ S}, g̃, gfin〉

such that:

1. S = {1, . . . , n} is a nonempty set of parties,
2. K is a function K : S → R+,
3. G∗S = {g1, . . . , gm} is a nonempty set of governments,
4. Crit = {c1, . . . , cp} is a nonempty set of criteria,
5. for every i ∈ S, α̂i is a function defined by:

– α̂i : Crit→ [0, 1],
– α̂i(c1) + . . .+ α̂i(cp) = 1,



6. W = w0, w1, . . . is an ω-sequence of time instants,
7. for every i ∈ S, Fi associates to every wj ∈ W , a function which evaluates

the governments with respect to all the criteria, i.e.,
– Fi(wj) : Crit×G∗S → [0, 1],
– Fi(wj)(ck, g1) + . . .+ Fi(wj)(ck, gm) = 1, for all ck ∈ Crit

8. g̃ associates a government g̃(wi) ∈ G∗S ∪{g0} to a time instant wi, such that
– g̃(wi) = g0 iff

maxj,k

∑
g∈G∗S

(
∑

c∈Crit

αj(wi)(c)Fj(wi)(c, g)−
∑

c∈Crit

αk(wi)(c)Fk(wi)(c, g))2 > n(1−δ̃),

– otherwise, g̃(wi) = g ∈ G∗S such that the number∑
j∈S

K(j)
K(1) + . . .+K(n)

∑
c∈Crit

αj(wi)(c)Fj(wi)(c, g)

is maximal,
9. there exists i such that g̃(wi) 6= g0,

10. the sequence

ai = maxj,k

∑
g∈G∗S

(
∑

c∈Crit

αj(wi)(c)Fj(wi)(c, g)−
∑

c∈Crit

αk(wi)(c)Fk(wi)(c, g))2

is decreasing (so the consensus degree never decrease),
11. if g̃(wi) 6= g0, then Fj(wk) ≡ Fj(wi) and g̃(wk) = g̃(wi), for all j and all

k > i,
12. for each i there is at most one j such that Fj(wi) 6≡ Fj(wi+1),
13. gfin is the unique element from G∗S such that gfin = g̃(wi), for some i (it

represents the chosen government).

LetM be any model and i ∈ ω. For a term f define the interpretation fM,wi

as follows:

– sM,wi = s, s ∈ Q,
– k(i)M,wi = K(i), i ∈ S,
– αj(c)M,wi = α̂j(c), c ∈ Crit,
– fj(c, g)M,wi = Fj(wi)(c, g), c ∈ Crit, g ∈ G∗S ,
– βj(g)M,wi = αj(wi)(c1)Fj(wi)(c1, g)+ . . .+αj(wi)(cp)Fj(wi)(cp, g), g ∈ G∗S ,
– (f + g)M,wi = fM,wi + gM,wi ,
– (f · g)M,wi = fM,wi · gM,wi ,
– (−f)M,wi = −(fM,wi).

Definition 3. Let M = 〈S,G∗S , Crit,W, {α̂i|i ∈ S}, {Fi|i ∈ S}, g̃〉 be a model
and i ∈ ω. The satisfiability relation |= is inductively defined as follows:

– M, wi |= f > s if fM,wi > s,
– M, wi |= Gov(g) if g̃(wi) = g,



– M, wi |= ¬φ if M, wi 6|= φ,
– M, wi |= φ ∧ ψ if M, wi |= φ and M, wi |= ψ,
– M, wi |=©φ if M, wi+1 |= φ,
– M, wi |= φUψ if there is j ∈ ω such that M, wi+j |= ψ,and for every k ∈ ω

such that k < j, M, wi+k |= φ. �

A set of formulas T is satisfiable if there is if there is a model M and a time
instant wi in M such that for every formula φ ∈ T , M, wi |= φ. A formula φ is
satisfiable if the set {φ} is satisfiable. A formula is valid if it is satisfied in each
time instant in each model.

4 Axiomatization

Propositional axioms

A0. τ(φ1, . . . , φn), where τ(p1, . . . , pn) ∈ ForC is any propositional tautology.
A1. f = g→ (φ(. . . , f, . . .)→ φ(. . . , g, . . .))

Axioms about consensus

A3. k(i) > 0.
A4. αi(gj) > 0.
A5. αi(c1) + . . .+ αi(cp) = 1.
A6. fi(gj) > 0.
A7. fi(ck, g1) + . . .+ fi(ck, gm) = 1.
A8. βj(gk) = αj(c1)fj(c1, gk) + . . .+ αj(cp)fj(cp, gk).
A9. Gov(gi)→ ¬Gov(gj), i 6= j.

A10.
∨

i,j∈S(
∑

g∈G∗S
(βi(g)− βj(g))2 > n(1− δ̃))↔ Gov(g0).

A11. (¬Gov(g0) ∧
∧

g′∈G∗S

∑
i∈S k(i)βi(g) ≥

∑
i∈S k(i)βi(g′))→ Gov(g), g ∈ G∗S .

Axioms about commutative ordered rings

A11. 0 < 1.
A12. f + g = g + f.
A13. (f + g) + h = f + (g + h).
A14. f + 0 = f.
A15. f− f = 0.
A16. f · g = g · f.
A17. f · (g · h) = (f · g) · h.
A18. f · 1 = f.
A19. f · (g + h) = (f · g) + (f · h).
A20. f > f.
A21. f > g ∨ g > f.
A22. (f > g ∧ g > h)→ f > h.
A23. f > g → f + h > g + h.
A24. (f > g ∧ h > 0) → f · h > g · h.
A25. (f > g ∧ h < 0) → f · h 6 g · h.



A26. f = g→ (φ(. . . , f, . . .)→ φ(. . . , g, . . .)).

Temporal axioms

A27. ©(φ→ ψ)→ (©φ→©ψ).
A28. ¬© φ↔©¬φ.
A29. φUψ ↔ ψ ∨ (φ ∧©(φUψ)).
A30. φUψ → Fψ.
A31. F¬Gov(g0).
A32. f > r ↔©(f > r), if f does not contain an occurrence of fi and βj .
A33. (fi(c, g) ≥ r ↔©fi(c, g) ≥ r) ∨ (fj(c, g) ≥ r ↔©fj(c, g) ≥ r), i 6= j.
A34. ¬Gov(g0)→ (φ↔©φ).
A35. ©

∨
i,j∈S(

∑
g∈G∗S

(βi(g)−βj(g))2 ≥ r →
∨

i,j∈S(
∑

g∈G∗S
(βi(g)−βj(g))2 ≥ r.

Inference rules

R1. From φ and φ→ ψ infer ψ.
R2. From the set of premises {φ → ©mf > −n−1 | n = 1, 2, 3, . . .} infer

φ→©mf > 0 (for any m ∈ ω).
R3. From φ infer ©φ, if φ is a theorem.
R4. From the set of premises {φ →©nψ| n = 1, 2, 3, . . .} infer φ→ Gψ.

Let us briefly discuss the axioms and rules listed above. The axioms. Propo-
sitional axioms provide syntactical verification of tautology instances and sub-
stitution of provably equal terms in formulas. Axioms about consensus describe
properties of the evaluation functions and the choice of the government de-
pending on those functions. Axioms about commutative ordered rings formally
provide the usual manipulations with terms (commutativity, associativity etc).
Temporal axioms can be divided into two parts. The axioms A27–A30 are usual
axioms for temporal logics, while the axioms A31–A35 describe changing of the
system over time. In particular, A31 states that a government will be chosen in
some time instant, A32 states that formulas that only the evaluations of gov-
ernments by the parties and choosing a government are not time-independent,
A33 provides that at most one party may change preferences in a time instance,
while A34 provides that after reaching required consensus degree any change is
impossible. Finally, A35 states that the consensus degree can not decrease over
time. The rules R1 and R3 are Modus Ponens and Necessitation, respectively.
The rule R2 intuitively says that if value of a term is arbitrary closed to 0, then
it is at least 0, while R4 characterizes the always operator.

Definition 4. A formula φ is deducible from a set T of sentences (T ` φ) if
there is an at most countable sequence of formulas φ0, φ1, . . . , φ, such that every
φi is an axiom or a formula from the set T , or it is derived from the preceding
formulas by an inference rule. A formula φ is a theorem (` φ) if it is deducible
from the empty set. A set T of formulas is consistent if there is at least one
formula from For that is not deducible from T , otherwise T is inconsistent.

A consistent set T of sentences is said to be maximally consistent if for every
φ ∈ For, either φ ∈ T or ¬φ ∈ T . A set T is deductively closed if for every
φ ∈ For, if T ` φ, then φ ∈ T . �



Note that the length of inference may be any successor ordinal lesser than
the first uncountable ordinal ω1.

5 Completeness

Using a straightforward induction on the length of the inference, one can easily
prove that the above axiomatization is sound with respect to the class of models.

In this section, we will give the proof of Completeness theorem.

Lemma 5 (Deduction theorem). Suppose that T is an arbitrary set of for-
mulas and that φ, ψ ∈ For. Then, T ∪ {φ} ` ψ implies T ` φ→ ψ.

Proof. We can prove the statement using the transfinite induction on the length
of the inference. Suppose that T∪{φ} ` ψ. If ψ is a theorem,the claim is obviously
true.

Note that the form of the inference rules R2 is modified in order to allow
proving this theorem. Namely, if ψ is obtained by R2, then ψ = θ →©mf > 0.
Moreover, T ∪ {φ} ` θ → ©mf > −n−1, for all n ∈ ω, hence T ` φ → (θ →
©mf > −n−1) (the induction hypothesis). Consequently, T ` (φ∧θ)→©mf >
−n−1, so, by R2, T ` (φ ∧ θ) → ©mf > 0, or, equivalently, T ` φ → (θ →
©mf > 0).

The case when ψ is obtained by application of R2, while the cases when we
apply inference rule R1 and R3 are standard. �

Theorem 6 (Strong completeness theorem). Every consistent set T of for-
mulas is satisfiable.

Proof. Let T be a consistent set of formulas and let For = {φi | i = 0, 1, 2, 3, . . .}.
We define a theory T ∗0 as follows:

– T0 = T .
– If Ti ∪ {φi} is consistent , then Ti+1 = Ti ∪ {φi}.
– If Ti ∪ {φi} is inconsistent , then:

1. If φi = ψ → Gθ, then

Ti+1 = Ti ∪ {ψ → ¬©n1 θ},

where n1 is a positive integer such that Ti+1 is consistent.
2. Otherwise, if φi = ψ →©mf > 0, then

Ti+1 = Ti ∪ {ψ →©mf < −n−1
2 },

where n2 is a positive integer such that Ti+1 is consistent.
3. Otherwise, Ti+1 = Ti.

– T ∗0 =
⋃

n∈ω Tn.



Note that existence of the positive integers n1 and n2 (in 1. and 2.) is provided
by Lemma 5. Using Lemma 5 and the fact that each Ti is consistent, it is easy to
prove that for each φ, either φ ∈ T ∗0 or ¬φ ∈ T ∗0 . Moreover, T ∗0 is consistent, since
it is deductively closed (if T ∗0 is inconsistent, then, by deductive closeness, ⊥ ∈
T ∗0 , so Ti would be inconsistent, for some i). We will prove only that T ∗0 is closed
under the inference rule R2, i.e., that A = {φ → ©mf > −n−1|n ∈ ω} ⊆ T ∗0
implies φ → ©mf > 0 ∈ T ∗0 . Suppose that A ⊆ T ∗0 and φ → ©mf > 0 /∈ T ∗0 .
Since T ∗0 is maximal, ¬(φ → ©mf > 0) ∈ T ∗0 , so there is i ∈ ω such that
¬(φ →©mf > 0) ∈ Ti; it follows that Ti ` φ. Since φ →©mf < −m−1 ∈ Tj+1,
for some m ∈ ω, for sufficiently large k we have Tk ` φ, Tk ` ©mf < −m−1 and
Tk ` ©mf > −m−1; a contradiction.

Thus, we proved that T ∗0 is maximally consistent. Now we define a sequence
T ∗0 , T ∗1 , T ∗2 . . . such that T ∗i+1 = {φ| © φ ∈ T ∗i }. It follows from the axioms
A27–A30 (and the fact that T ∗0 is maximally consistent) that T ∗i is maximally
consistent for every i.

We define a model M = 〈S,K,G∗S , Crit, {α̂i|i ∈ S},W, {Fi|i ∈ S}, g̃, gfin〉
as follows:

– K(i) = sup{r ∈ Q|T ∗0 ` k(i) ≥ r},
– α̂i(c) = sup{r ∈ Q|T ∗0 ` αi(c) ≥ r},
– Fi(wj)(c, g) = sup{r ∈ Q|T ∗j ` fi(c, g) ≥ r},
– g̃(wi) = g if T ∗i ` Gov(g)
– gfin is the unique element from G∗S such that T ∗0 ` FGov(g)

The proof that M is a model is straightforward.
For example, K(i) > 0 follows from A0.
Let us prove that α̂i(c1) + . . .+ α̂i(cp) = 1 (for a fixed i).
Using the fact that Q is dense in R, for every k ≤ p we may chose increasing

sequence ak
0 < ak

1 < ak
2 < · · · and decreasing sequence ak

0 > ak
1 > ak

2 > · · · in Q
such that lim ak

n = lim ak
n = α̂i(ck). By the definition of α̂i and completeness of

T ∗0 , we obtain
T ∗0 ` αi(ck) > ak

n ∧ αi(ck) < ak
n

for all n.
Using axioms about commutative ordered rings, we have

T ∗0 `
∑
k≤p

αi(ck) >
∑
k≤p

ak
n ∧

∑
k≤p

αi(ck) <
∑
k≤p

ak
n

for all n. Using A4 we obtain that

T ∗0 ` 1 >
∑
k≤p

ak
n ∧ 1 <

∑
k≤p

ak
n

for all n.



Now α̂i(c1) + . . .+ α̂i(cp) = 1 follows from

lim
∑
k≤p

ak
n = lim

∑
k≤p

ak
n =

∑
k≤p

α̂i(ck).

We can use same technique to prove that

Fi(wj)(ck, g1) + . . .+ Fi(wj)(ck, gm) = 1

holds for all j.
The other properties of the model (items 8.–12. from the definition of a

model) follows from the axioms A8–A10, A31–A33 and A35.

It remains to prove thatM, wi |= φ iff φ ∈ T ∗i holds for every formula φ. That
can be proved using the induction on the complexity of formulas. We will prove
the most interesting case, when φ = f ≥ r. If f > r ∈ T ∗i . We can use the axioms
for ordered commutative rings to prove that that ` f = r1g1 + . . . + rnf

gnf
,,

for some nf ∈ ω, where each gi is of the form gi = h1 · · · hni
, for some hj ∈

Term(0) \ Q. Since ` gi > 0 and hM,wi

i = sup{r ∈ [0, 1] ∩ Q | T ∗i ` hi > r},
using the technique with increasing and decreasing sequences of rational numbers
as above, we can prove that gM,wi

j = sup{r ∈ Q | T ∗i ` gj > r}.
Once again, using the monotone sequences of rational numbers we can show

that fM,wi = sup{r ∈ Q | T ∗i ` f > r}, so fM,wi > r.
For the other direction, we can use the contraposition, the fact that T ∗i is

maximally consistent and the proven direction.
For the cases when the formula is of the form ©φ or of the form φUψ, we

refer the reader to [4].
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