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Abstract. In this paper, we investigate the relationship between the bilateral interactions and the overall effect from
the perspective of Nash equilibrium in non-cooperative games. We propose the concept of game composition and
decomposition for non-cooperative games, which allows the analysis of the Nash equilibrium of a global game to be
broken down into the analysis of the Nash equilibria of local bilateral games and how these local Nash equilibria can lead
to a global Nash equilibrium in a relationship which we call game incorporation. We seek composition methods that are
sound (i.e. the method ensures a composition of local Nash equilibria to be a global one) and complete (i.e. any global
Nash equilibrium can be constructed as a composition of local Nash equilibria). We consider two natural methods of
composition, additive and multiplicative. We show that they are not sound in general, but by imposing some constraints
which we call strictness conditions, we obtain much positive results.

1 Introduction

Existing game theory typically analyzes games (either big or small) in isolation, and is inadequate in explaining the
relationship between the small game (bilateral interactions) and the big game (overall effect) from the perspective of Nash
equilibrium.

In this paper, we propose the concept of game composition and decomposition for non-cooperative games. We seek
composition methods that are sound, in the sense that the big game, which we call composite game, preserves the respec-
tive Nash equilibria of the small games, which we call component games. In addition, we are interested in composition
methods that are (constructively) complete, in the sense that there is a procedure that, given an n-player game G and one
of its Nash equilibrium x∗, decomposes G into a set of component games, together with a Nash equilibrium for each, such
that x∗ is the composite of the component Nash equilibria. We consider two natural methods of composition, additive and
multiplicative. We show that they are not sound in general, but by imposing some constraints which we call strictness
conditions, we obtain much more positive results. We then introduce the concept of game incorporation and show how
game composition is used in analyzing situations in which players can find Nash equilibrium strategies without knowing
certain 2-player component games in full; the latter are called incorporated games.

The rest of the paper is organized as follows. We start by introducing the concept of composition of games in Section 3.
We then describe the concept of game incorporation in Section 4. We also compared our work with related work in
Section 5. Finally, we draw a conclusion in Section 6 and briefly discuss future research directions. Where proofs are
omitted, details can be found in the Appendix.

2 Definitions and terminology

In this section, we set up the standard definitions and terminology.

An (n-player) game1 is a triple G = 〈P, S, U 〉 whereby:

– P = { 1, · · · , n } is a set of n players. The size of G is |G| = |P | = n.
– Each player p ∈ P has a finite nonempty set Sp = { 1, · · · ,mp } of pure strategies, with typical element sp ∈ Sp. Let
S = S1 × · · ·× Sn be the set of possible combinations (or profiles) of (pure) strategies, with typical element s ∈ S.

– For each player p ∈ P , a payoff function up : S −→ R that gives p the payoff up(s1, · · · , sn) under each combination
of pure strategies. Let U = {up : p ∈ P } be the set of payoff functions of all players.

Convention. For convenience, we introduce the substitution notation (s−p; sp), with p ∈ P , to stand for (s1, · · · , sp, · · · , sn)
where s−p is the (n − 1)-tuple that is obtained from (s1, · · · , sn) by removing the component sp, and we write S−p

1 We focus on finite strategic-form non-cooperative game, and refer to it as game for convenience



for the set of all such (n − 1)-tuples. In the same vein, we use (s−pp′ ; sp; sp′), with 1 ≤ p (= p′ ≤ n, to stand for
(s1, · · · , sp, · · · , sp′ , · · · , sn) where s−pp′ is the (n− 2)-tuple obtained from (s1, · · · , sn) by removing the components
sp and sp′ , and we write S−pp′ for the set of all such (n − 2)-tuples. Unless otherwise indicated, symbols that appear as
superscripts denote sets. E.g. we shall write GP = 〈P, SP , UP 〉 to emphasize the player-set P . In case the superscript P
refers to a particular set (e.g. { 1, 2, 3 }), we shall omit the set braces for simplicity, writing G123 instead of G{ 1,2,3 }.

A mixed strategy xp for player p, with Sp = { 1, · · · ,mp }, is a probability distribution over Sp, i.e. xp = (xp(1), · · · , xp(mp))
such that xp(i) ≥ 0 for each 1 ≤ i ≤ mp and

∑mp

i=1 xp(i) = 1. Let Xp be the set of mixed strategies for player p. We
write X = X1 × · · · × Xn for the set of all possible combinations (or profiles) of mixed strategies. We call a mixed
strategy xp ∈ Xp pure if xp(i) = 1 for some i ∈ Sp, and xp(j) = 0 for j (= i. We denote such a pure strategy as πp,i.
Let x(s) =

∏n
p=1 xp(sp) be the probability of combination s = (s1, · · · , sn) ∈ S under mixed profile x. We also use

the substitution notation (x−p;πp,i) to stand for (x1, · · · , xp−1,πp,i, xp+1, · · · , xn). In a game G, the expected payoff of
player p under a mixed strategy profile x = (x1, · · · , xn) ∈ X is

∑
s∈S x(s) · up(s), which we will denote by up(x) by

abuse of notation (it should be clear from the context what is meant).

A Nash equilibrium, x∗ = (x∗
1, · · · , x∗

n), is a profile of mixed strategies in which no player can increase his payoff by
unilaterally changing his mixed strategies. A necessary and sufficient condition (e.g. [14]) for (x∗

1, · · · , x∗
n) to be a Nash

equilibrium is: for each p ∈ P , and for each 1 ≤ i (= j ≤ mp, we have

up(x
∗
−p;πp,i) > up(x

∗
−p;πp,j) =⇒ x∗

p(j) = 0 (1)

Two games G = 〈P, S, U 〉 and G′ = 〈P ′, S′, U ′ 〉 are said to be joinable2 if for each p ∈ P ∩ P ′ we have Sp = S′
p,

i.e. every player that is involved in both games has the same set of pure strategies for both. Let x∗ and y∗ be mixed-strategy
profiles for (joinable) G and G′ respectively. We say that they are joinable just if for each p ∈ P ∩ P ′ we have x∗

p = y∗p .
Generalizing the idea to any finite number of games, we say that a set G̃ = {GP1 , · · · , GPm } of games is pairwise
joinable just if Pi = Pj iff i = j, and for each 1 ≤ i (= j ≤ m, we have GPi and GPj are joinable. Further we say that
a set of mixed-strategy profiles, one for each GPi , is pairwise joinable just if for each 1 ≤ i (= j ≤ m, the respective
mixed-strategy profiles of GPi and GPj are joinable.

3 Game composition and decomposition

Given a pairwise joinable set G̃ = {GP1 , · · · , GPm } of games and a method of composition F (to be specified later), we
define the F -composite of G̃ to be the game !F G̃ = 〈P, SP , UP 〉 with P = P1 ∪ · · · ∪ Pm whereby for each p ∈ P ,
we have SP

p = SPi
p where i satisfies p ∈ Pi (note that the choice of i is immaterial); and for each p ∈ P , player p’s utility

function uP
p (in UP ) is defined in terms of the respective utility functions of the component games in which p is involved

(i.e. functions uPi
p ∈ UPi as i ranges over those satisfying p ∈ Pi), according to the method F .

Take a set G̃ = {GP1 , · · · , GPm } of pairwise joinable games, and given a pairwise joinable set Eq = { (xPi)
∗
:

1 ≤ i ≤ m } of Nash equilibria, one for each component game GPi in G̃. Let P = P1 ∪ · · · ∪ Pm; we define the
join of the Nash-equilibrium set to be the |P |-tuple (xP )∗ such that for each p ∈ P , we have (xP )∗p = (xPi)∗p for
any Pi with p ∈ Pi (the choice of i is immaterial). For example, (x∗

1, x
∗
2, x

∗
3) is the join of the the Nash-equilibrium

set { (x∗
1, x

∗
2), (x

∗
1, x

∗
3), (x

∗
2, x

∗
3) }, where (x∗

1, x
∗
2), (x∗

1, x
∗
3), and (x∗

2, x
∗
3) are Nash equilibria for G12, G13, and G23

respectively.

We seek methods F of composition that preserve the given pairwise joinable set of Nash equilibria i.e. we require the
join of the Nash-equilibrium set, (xP )∗, to be a Nash equilibrium of the composite game !F G̃. We refer to this property
as soundness of the method F . In addition, we are interested in methods F that are complete in the sense that for every
n-player game G, and for every Nash equilibrium x∗ of G, there is a pairwise joinable set G̃ of component games and a
pairwise joinable set Eq of Nash equilibria, one for each component game, such that G = !F G̃ and x∗ is the join of Eq .
Further if a method is complete, it would be desirable to have an algorithm to construct such a decomposition. Thus, in
this sense, we are interested in the constructive completeness of composition methods.

Remark 1. In principle the component games in G̃ need not be of the same size, but for convenience in this paper, we shall
restrict component games to be 2-player games, and G̃ to be the largest such set (of 2-player games) i.e. for each pair p
and p′ of players in P , there is exactly one component game with player-set { p, p′ } in G̃, and so, G̃ has

(|P |
2

)
elements.

2 The concept of join here is analogous to the join operation in relational database model [2]



Henceforth we shall call such a pairwise joinable set G̃ of 2-player games a microscopic set w.r.t. the player-set P . For
example, the microscopic set w.r.t. P = { 1, 2, 3, 4 } is G̃ = {G12, G13, G14, G23, G24, G34 }.

In the following, we shall consider two such methods of composition, namely, additive and multiplicative.

3.1 Additive composition

In additive composition, the utilities of the composite game are just weighted sums of the (relevant) respective utilities of
the component games.

Definition 1. Let G̃ = {Gpq : 1 ≤ p (= q ≤ n } be a microscopic set of 2-player games w.r.t. the player-set P =
{ 1, · · · , n }. An additive composite of G̃, written !+G̃, is an n-player game GP = 〈P, SP , UP 〉 whose utility functions
uP
p (∈ UP ) are defined as follows: for each p ∈ P and each (profile of pure strategies) s ∈ SP

uP
p (s) =

∑

p %=p′

γpp′

p (s) · upp′

p (sp, sp′) (2)

where each γpp′

p (s) is a constant. We shall refer to the γpp′

p (s)’s as the weights3 of the composition. -.

Example 1. The first example of additive composites are those whose weights are uniformly 1. These are precisely the
polymatrix games of Yanovskaya [18]. Every joinable set of Nash equilibria of the component games is preserved by such
an additive composite. Consider the simple case of the 3-player setting with P = { 1, 2, 3 }. It is straightforward to check
that in the composite game, the expected payoff of player 1 satisfies

u123
1 (x∗

1, x
∗
2, x

∗
3) = u12

1 (x∗
1, x

∗
2) + u13

1 (x∗
1, x

∗
3) (3)

where x∗
i is a mixed-strategy profile of player i. Thus if x∗

1 is 1’s best response to x∗
2 in G12, and if it is also 1’s best

response to x∗
3 in G13, then it must be 1’s best response to (x∗

2, x
∗
3) in the composite game G123. This claim follows from

the necessary and sufficient condition (1). Indeed one could say that polymatrix games are strongly sound in the sense that
the composite preserves every joinable set of Nash equilibria of the component games. An example of polymatrix game
is shown in Table 1. In general, however, additive composition is not sound.

P1, P2 I II
I 2, 1 4, 9
II 4, 9 2, 3

P1, P3 I II
I 3, 6 0, 2
II 1, 1 1, 4

P2, P3 I II
I 4, 3 3, 4
II 2, 2 4, 1

P1, (P2 & P3) I & I I & II II & I II & II
I 5, 5, 9 2, 4, 6 7, 11, 8 4, 13, 3
II 5, 13, 4 5, 12, 8 3, 5, 3 3, 7, 5

Table 1. Sample additive composition (polymatrix game). (3/7, 4/7)(1/2, 1/2) is a Nash equilibrium for G12; (3/7, 4/7)(1/3, 2/3)
is a Nash equilibrium for G13; (1/2, 1/2)(1/3, 2/3) is a Nash equilibrium for G23; and (3/7, 4/7)(1/2, 1/2)(1/3, 2/3) is a Nash
equilibrium of the composite game G123.

Theorem 1. Additive composition is not sound.

Given a joinable set of Nash equilibria of the component games, is there a way by which we can so constrain the
weights that the component Nash equilibria are preserved by the additive composite? A major result of this paper is that
there are indeed such constraints. We shall see that they can be exploited to demonstrate the constructive completeness of
additive composition. The way to understand these constraints is that they control the weights γpp′

p (s) by another layer of
weights constpp

′
, which should be understood as the weight of the component game Gpp′

in the composite GP .
3 The weights can be used as a measure of the impact of a particular outcome in the component game on the composite game w.r.t a

particular player. In other words, in an additively-composed game, the payoff to a player p for any combination of pure strategies
(from all players) is a weighted sum of the corresponding two-player game payoffs with impact.



Using the same notation of microscopic set of 2-player games w.r.t. player-set P = { 1, · · · , n } , we note that any
joinable set of Nash equilibria for the component games can be specified by an n-tuple (x∗

1, · · · , x∗
n) such that for any

1 ≤ p (= p′ ≤ n, we have x∗
p is a Nash equilibrium of the component game Gpp′

.

Definition 2. Given a joinable set of Nash equilibria for the component games as specified by (x∗
1, · · · , x∗

n), we say that
an additive composite is strict for (x∗

1, · · · , x∗
n) just if:

– For each 1 ≤ p (= p′ ≤ n, there is a positive real constant constpp
′
.

– For each 1 ≤ p (= p′ ≤ n, and for each sp ∈ Sp and sp′ ∈ Sp′ , there is an equational constraint:

∑

s−pp′∈S−pp′



γpp′

p (s−pp′ ; sp; sp′) ·
∏

q∈P−pp′

x∗
q(sq)



 = constpp
′

(4)

where P−pp′
= P \ { p, p′ }. A sample 3-player strict additive composition is shown in Appendix 8.

The constant constpp
′

should be viewed as the weight of the component game Gpp′
in the composite GP . Note that

there are
(n
2

)
constants of type constpp

′
;
∑

p

∑
p′ %=p mp · mp′ number of constraint equations where mp = |Sp|; and

2 ·
(n
2

)
·
∏

p mp number of constants of type γpp′

p (s). It is straightforward to verify that if for some constant k, we have
γpp′

p (s) = k = constqq
′

as p, p′, q, q′ and s vary, then (4) holds trivially. Indeed this is the case for polymatrix games with
the constant k = 1. Thus polymatrix games are additive composites that are strict for every joinable set of component
Nash equilibria.

Lemma 1. Strict additive composition is sound. I.e. Given any microscopic set G̃ = {Gpp′
: 1 ≤ p (= p′ ≤ n } w.r.t. the

player set P = { 1, · · · , n }, and given any joinable set of component Nash equilibria (i.e. for each 1 ≤ p (= p′ ≤ n
we have (x∗

p, x
∗
p′) is a Nash equilibrium of the component game Gpp′

), then (x∗
1, · · · , x∗

n) is a Nash equilibrium for the
strict-for-(x∗

1, · · · , x∗
n) additively composed game GP .

Lemma 2. Strict additive composition is constructively complete. I.e. there is a procedure that, given any n-player game
GP with player-set P = { 1, · · · , n } and given any Nash equilibrium (x∗

1, · · · , x∗
n) of GP , produces a microscopic set

G̃ w.r.t. P whose (strict) additive composite is GP , and such that for each 1 ≤ p (= p′ ≤ n, we have (x∗
p, x

∗
p′) is a Nash

equilibrium of Gpp′
.

Theorem 2. Strict additive composition is both sound and constructively complete.

Proof. Combining Lemma 1 and 2, the claim follows. -.

3.2 Multiplicative composition

In an multiplicatively-composed game, the payoff to a player p for any combination of pure strategies (from all players)
is the weighted product of the corresponding two-player game payoffs.

Definition 3. Let G̃ = {Gpq : 1 ≤ p (= q ≤ n } be a microscopic set of 2-player games w.r.t. the player-set P =
{ 1, · · · , n }. The multiplicative composite of G̃, written !∗G̃, is the game 〈P, S, U 〉 whose utility functions uP

p (∈ UP )

are defined as: for each p ∈ P , and each s ∈ S, uP
p (s) =

∏
q %=p γ

pp′

p (s) · upq
p (sp, sq). -.

Theorem 3. Multiplicative composition is not sound.

Similar to the additive composition case, we define the strictness condition for multiplicative composition.

Definition 4. An multiplicative composite is strict just if:

– For each 1 ≤ p ≤ n, and for each sp ∈ Sp, there is a positive real constant constspp .



– For each 1 ≤ p (= p′ ≤ n, and for each s−p ∈ S−p, there is an equational constraint:
∏

p′

γpp′

p (s−p; sp) = constspp (5)

where all γ’s are positive real numbers.

Note that, the constraint (5) is not w.r.t. a particular Nash equilibrium as in the additive case, thus it can be applied to
all Nash equilibria of a given n-player game, i.e. strongly sound. However, the tradeoff is that the payoffs in the n-player
game cannot be chosen arbitrarily, i.e. not complete.

Theorem 4. Strict multiplicative composition is strongly sound but not complete.

4 Game incorporation

By applying game composition, players can view a global game as a composition of smaller games. Consider a game with
3 players 1, 2, and 3, playing bilateral game with each other, i.e. G12, G13, and G23, assuming that the global game G123

is a composite (e.g. polymatrix game) of the three bilateral games, if (x∗
1, x

∗
2) and (x∗

1, x
∗
3) are Nash equilibria of G12 and

G13 respectively, but (x∗
2, x

∗
3) may not be a Nash equilibrium of G23, that is, the Nash equilibria for player 2 in G12 and

G23 may not be joinable, then

– How can player 2 ensures his strategy x∗
2 is a best response to player 1 and 3’s strategies x∗

1 and x∗
3.

– If the details of G23 are hidden from player 1, or the payoff matrix in G23 is perturbed, how can player 1 ensures that
(x∗

1, x
∗
2, x

∗
3) is a global Nash equilibrium?

To answer these questions, we introduce the concept of game incorporation. For simplicity, we use 3-player polyma-
trix game for illustration purpose, and the concept can be easily generalized to n-player case (details can be found in
Appendix 13), and to strict additive and strict multiplicative compositions as well.

Definition 5. Given any 3-player polymatrix game G123 and a microscopic set G̃ = {G12, G13, G23 } whose composite
!+G̃ is G123, and suppose (x∗

1, x
∗
2) is a Nash equilibrium of G12 and (x∗

1, x
∗
3) is a Nash equilibrium of G13, we say that

G12 !+ G13 incorporates G23 for player 2, written G12 !+ G13 <..........2 G23, just if for each 1 ≤ j (= ĵ ≤ m2

(u12
2 (x∗

1;π2,j)− u12
2 (x∗

1;π2,ĵ)) + (u23
2 (x∗

3;π2,j)− u23
2 (x∗

3;π2,ĵ)) > 0 =⇒ x∗
2(ĵ) = 0 (6)

Similarly for player 3. We say G12 !+ G13 incorporates G23, written G12 !+ G13 <.......... G23 (equivalently G23 is the
incorporated game of G12 !+ G13), just if G12 !+ G13 <..........2 G23 and G12 !+ G13 <..........3 G23. -.

Theorem 5. Given any 3-player game G123 and a microscopic set G̃ = {G12, G13, G23 } whose composite !+G̃ is
G123, and suppose (x∗

1, x
∗
2) is a Nash equilibrium of G12, and (x∗

1, x
∗
3) is a Nash equilibrium of G13, then (x∗

1, x
∗
2, x

∗
3) is

a Nash equilibrium of the composite game G123 if G12 !+ G13 <.......... G23. -.

Theorem 5 says that to verify that (x∗
1, x

∗
2, x

∗
3) is a Nash equilibrium of the composite game G123, the payoff matrix

of the component game G23 is not required be fully revealed to player 1 or unchangeable. Indeed we just need to check
the validity of (6) by regarding the differences, (u23

2 (x∗
3;π2,ĵ) − u23

2 (x∗
3;π2,j)), as suitable abstractions (instead of the

full details) of the component game G23.

5 Comparisons with related work

The notion of composition and decomposition was first proposed by von Neumann and Morgenstern [15] in the context
of cooperative games, as opposed to non-cooperative games in our case. Our notion is also different from the payoff
decomposition [8] and belief decomposition [7] for Bayesian games.

As mentioned earlier, polymatrix game [18] is a special case of our strict additive composition of games: in polymatrix
games, all payoffs in the component 2-player games are uniformly weighted 1 in the composite game. Recent work on the



r-Nash Problem [1, 3, 6, 5] is concerned with the complexity of computing Nash equilibrium, while our work focuses on
the issue of ensuring global Nash equilibrium with hidden information.

The concept of graphical games was proposed by Kearns, Littman and Singh [11] as a compact graph-theoretic rep-
resentation for multi-player games. The game incorporation concept complements the graphical game model by allowing
the interactions (component games) between each player and the players outside his neighborhood to be treated as incor-
porated games.

Recent work by Daskalakis and Papadimitriou [4] considers polymatrix graphical games in which all the component
games are zero-sum games, and the authors showed that a Nash equilibrium of this class of games can be computed in
polynomial time.

6 Conclusion

We introduce two methods of composing games, additive and multiplicative, and analyze the extent to which each pre-
serves and reflects component Nash equilibria. We then introduce game incorporation, which provides suitable abstraction
of certain component games from the perspective of the composite game. As for further directions, the notion of complete-
ness for strict-additive composition here is with respect to a particular Nash equilibrium. An important question is: Can
additive composition be so constrained as to be universally complete, i.e. decomposable with respect to all Nash equilib-
ria? We also intend to relate our work with the work on partially-specified large games [10], nested potential games [13],
epistemic conditions for equilibrium concepts in games with a communication/interaction structure [17], and apply game
composition and incorporation to applications such as multi-agent systems [9] and e-commerce [16]. So far, our work is
motivated by the phenomena on the Internet, and an interesting question is: What implication our findings may have for
the existing game theory literature.
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7 Proof of Theorem 1: unsoundness of general additive composition

We construct a counter-example shown in Table 2. Since the weights in the additive composition are arbitrary, we can
choose γ12

1 (I, I, I) = γ12
2 (I, I, I) = γ13

1 (I, I, I) = γ13
3 (I, I, I) = γ23

2 (I, I, I) = γ23
3 (I, I, I) = 0, and the rest γ’s are

all 1. Thus, (1, 0)(1, 0) is a Nash equilibrium for G12; (1, 0)(1, 0) is a Nash equilibrium for G13; (1, 0)(1, 0) is a Nash
equilibrium for G23; but (1, 0)(1, 0)(1, 0) is not a Nash equilibrium of the additive composite game G123. -.

P1, P2 I II
I 100, 100 1, 1
II 1, 1 1, 1

P1, P3 I II
I 100, 100 1, 1
II 1, 1 1, 1

P2, P3 I II
I 100, 100 1, 1
II 1, 1 1, 1

P1, (P2 & P3) I & I I & II II & I II & II
I 0, 0, 0 101, 101, 2 101, 2, 101 101, 2, 2
II 2, 101, 101 2, 101, 2 2, 2, 101 2, 2, 2

Table 2. Sample counter-example to show additive composition is not sound.

8 Proof of Lemma 1: soundness of strict additive composition

We start with the 3-player case for illustration, and then generalize the proof to n-player games.

3-player strict additive composition – soundness

We begin with the simplest case of a 3-player setting. Let u123
p (i, j, k) be the payoff of player p in the strict-additively

composed game G123 with players 1, 2 and 3 playing pure strategies i, j and k respectively. We have: for each 1 ≤ i ≤
m1, 1 ≤ j ≤ m2, 1 ≤ k ≤ m3,

u123
1 (i, j, k) = γ12

1 (i, j, k) · u12
1 (i, j) + γ13

1 (i, j, k) · u13
1 (i, k) (7)

subject to the following constraints:

For each 1 ≤ i ≤ m1, 1 ≤ j ≤ m2,
m3∑

k=1

γ12
1 (i, j, k) · x∗

3(k) = const12 (8)

For each 1 ≤ i ≤ m1, 1 ≤ k ≤ m3,
m2∑

j=1

γ13
1 (i, j, k) · x∗

2(j) = const13 (9)

where both const12 and const13 are positive. Similarly for u123
2 and u123

3 .

Lemma 3. Strict additive composition is sound in the 3-player setting. I.e. for every joinable set of Nash equilibria for
the component games, say, (x∗

1, x
∗
2) for G12, (x∗

2, x
∗
3) for G23 and (x∗

1, x
∗
3) for G13, the mixed-strategy profile (x∗

1, x
∗
2, x

∗
3)

is a Nash equilibrium of any additive composite G123 that is strict-for-(x∗
1, x

∗
2, x

∗
3).

Proof. Suppose (x∗
1, x

∗
2), (x∗

1, x
∗
3) and (x∗

2, x
∗
3) are Nash equilibrium (mixed) strategies for G12, G13, and G23 respec-

tively, i.e. for each 1 ≤ i (= î ≤ m1

m2∑

j=1

u12
1 (i, j) · x∗

2(j)

︸ ︷︷ ︸
10.1

>
m2∑

j=1

u12
1 (̂i, j) · x∗

2(j)

︸ ︷︷ ︸
10.2

=⇒ x∗
1 (̂i) = 0 (10)

m3∑

k=1

u13
1 (i, k) · x∗

3(k)

︸ ︷︷ ︸
11.1

>
m3∑

k=1

u13
1 (̂i, k) · x∗

3(k)

︸ ︷︷ ︸
11.2

=⇒ x∗
1 (̂i) = 0 (11)



Similarly for players 2 and 3. We want to show (x∗
1, x

∗
2, x

∗
3) is a Nash equilibrium for the strict-additively composed game

G123, i.e. for each 1 ≤ i (= î ≤ m1

m2∑

j=1

m3∑

k=1

u123
1 (i, j, k) · x∗

2(j) · x∗
3(k)

︸ ︷︷ ︸
12.1

>
m2∑

j=1

m3∑

k=1

u123
1 (̂i, j, k) · x∗

2(j) · x∗
3(k)

︸ ︷︷ ︸
12.2

=⇒ x∗
1 (̂i) = 0 (12)

according to the constraints (8) and (9), we have

(12.1) =




m2∑

j=1

u12
1 (̂i, j)x∗

2(j) ·
m3∑

k=1

γ12
1 (i, j, k)x∗

3(k)



+




m3∑

k=1

u13
1 (̂i, k)x∗

3(k) ·
m2∑

j=1

γ13
1 (i, j, k)x∗

2(j)





= const12 · (10.1) + const13 · (11.1)

Similarly, we have (12.2) = const12 ·(10.2)+const13 ·(11.2). Thus, if (10) and (11) hold, then (12) must hold. Similarly
for players 2 and 3. The claim follows. -.

n-player strict additive composition – soundness

Without loss of generality, we look at player 1, and all other players are similar. We denote sp as the index of player
p’s pure strategies. Suppose (x∗

1, x
∗
p) (2 ≤ p ≤ n) is a Nash equilibrium (mixed) strategies for G1p, i.e. for each 1 ≤ s1 (=

ŝ1 ≤ m1

mp∑

sp=1

u1p
1 (s1, sp) · x∗

p(sp)

︸ ︷︷ ︸
13.1

>

mp∑

sp=1

u1p
1 (ŝ1, sp) · x∗

p(sp)

︸ ︷︷ ︸
13.2

=⇒ x∗
1(ŝ1) = 0 (13)

We want to show (x∗
1, · · · , x∗

n) is a Nash equilibrium for the strict-additively composed game G1···n, i.e. for each 1 ≤
s1 (= ŝ1 ≤ m1

∑

s−1∈S−1

[
u1···n
1 (s−1; s1) ·

n∏

p=2

x∗
p(sp)

]

︸ ︷︷ ︸
14.1

>
∑

s−1∈S−1

[
u1···n
1 (s−1; ŝ1) ·

n∏

p=2

x∗
p(sp)

]

︸ ︷︷ ︸
14.2

=⇒ x∗
1(ŝ1) = 0 (14)

We observe that

(14.1) =
∑

s−1∈S−1

([
n∑

p=2

γ1p
1 (s−1; s1) · u1p

1 (s1, sp)

]
·
[

n∏

p=2

x∗
p(sp)

])

=
n∑

p=2

const1p ·
mp∑

sp=1

u1p
1 (s1, sp) · x∗

p(sp)

=
n∑

p=2

const1p · (13.1)

Similarly, we have

(14.2) =
n∑

p=2

const1p · (13.2)

So if (13) hold, then (14) must hold. Similarly for other players. Thus, the strict additive composition is sound in
preserving Nash equilibrium for 3-player games. -.



9 Proof of Lemma 2: completeness of strict additive composition

We start with the 3-player case for illustration, and then generalize the proof to n-player games.

3-player strict additive composition – completeness

Lemma 4. Strict additive composition is constructively complete in the 3-player setting. I.e. there is a procedure that,
for every 3-player game G123 and for every Nash equilibrium (x∗

1, x
∗
2, x

∗
3) of G123, produces a microscopic set G̃ =

{G12, G13, G23 } whose (strict) additive composite is G123, and such that (x∗
1, x

∗
2) is a Nash equilibrium of G12, (x∗

1, x
∗
3)

is a Nash equilibrium of G13, and (x∗
2, x

∗
3) is a Nash equilibrium of G23.

Proof. We establish the completeness by proving the existence of real roots to a system of linear equations. From the
strict additive composition rules, we have a system of linear equations (7) in matrix form

γ · X = B

where γ : γ12
1 (i, j, k), γ13

1 (i, j, k); X : u12
1 (i, j), u13

1 (i, k); B : u123
1 (i, j, k). There are (2m1 ·m2 ·m3) number of equations

with 3(m1 · m2 + m1 · m3 + m2 · m3) variables in X. Our task is to show that given B, we can configure γ, such that
there are real roots for X, subject to the constraints in (8) and (9). We will only look at player 1, because other players are
similar. Also, since the equations in (7) can be grouped into mutually independent sets according to different i’s, i.e. pure
strategies for player 1, we can focus on a subset of equations, γ ·Xi = Bi. There are (m2 ·m3) equations with (m2+m3)
variables in Xi. They can be solved in m2 steps, and in the 1st step (m3 + 1) number of variables are solved, and in the
rest of the steps, one variable is solved in each step, as shown in Table 3.

Step # Xi Bi

j u12
1 (i, 1) u12

1 (i, 2) · · · u12
1 (i,m2) u13

1 (i, 1) u13
1 (i, 2) · · · u13

1 (i,m3) u123
1 (i, j, k)

1

γ12
1 (i, 1, 1) γ13

1 (i, 1, 1) u123
1 (i, 1, 1)

γ12
1 (i, 1, 2) γ13

1 (i, 1, 2) u123
1 (i, 1, 2)

...
. . .

...
γ12
1 (i, 1,m3) γ13

1 (i, 1,m3) u123
1 (i, 1,m3)

2

γ12
1 (i, 2, 1) γ13

1 (i, 2, 1) u123
1 (i, 2, 1)

γ12
1 (i, 2, 2) γ13

1 (i, 2, 2) u123
1 (i, 2, 2)

...
. . .

...
γ12
1 (i, 2,m3) γ13

1 (i, 2,m3) u123
1 (i, 2,m3)

...
. . .

. . .
...

m2

γ12
1 (i,m2, 1) γ13

1 (i,m2, 1) u123
1 (i,m2, 1)

γ12
1 (i,m2, 2) γ13

1 (i,m2, 2) u123
1 (i,m2, 2)

...
. . .

...
γ12
1 (i,m2,m3) γ13

1 (i,m2,m3) u123
1 (i,m2,m3)

Table 3. System of equations for the 3-player game decomposition.

More specifically, the detailed algorithm is as follows:

– Step 1: for each 1 ≤ k ≤ m3, u123
1 (i, 1, k) are given in G123.

1. Arbitrarily choose u12
1 (i, 1) to be a positive real number such that

u12
1 (i, 1) · x∗

2(1) ≤ 1

2m2

∑

j

∑

k

u123
1 (i, j, k) · x∗

2(j) · x∗
3(k)

2. Arbitrarily choose u13
1 (i, 1), u13

1 (i, 2), · · ·u13
1 (i,m3) to be positive, such that (11.1) = 1/2 · (12.1).

3. Arbitrarily choose γ12
1 (i, 1, 1), γ12

1 (i, 1, 2), · · · γ12
1 (i, 1,m3) which satisfy the constraint in (8).

4. Solve for γ13
1 (i, 1, 1), γ13

1 (i, 1, 2), · · · , γ13
1 (i, 1,m3).

– Step 2: for each 1 ≤ k ≤ m3, u123
1 (i, 2, k) are given in G123 and for each 1 ≤ k ≤ m3, u13

1 (i, k) are given from step
1.



1. Arbitrarily choose u12
1 (i, 2) to be a positive real number such that

u12
1 (i, 2) · x∗

2(2) ≤ 1

2m2

∑

j

∑

k

u123
1 (i, j, k) · x∗

2(j) · x∗
3(k)

2. Arbitrarily choose γ12
1 (i, 2, 1), γ12

1 (i, 2, 2), · · · , γ12
1 (i, 2,m3) which satisfy the constraint (8).

3. Solve for γ13
1 (i, 2, 1), γ13

1 (i, 2, 2), · · · , γ13
1 (i, 2,m3).

– Step j (3 ≤ j ≤ m2 − 1): for each 1 ≤ k ≤ m3, u123
1 (i, j, k) are given in G123 and for each 1 ≤ k ≤ m3, u13

1 (i, k)
are given from step 1. Similar to step 2, we can compute γ13

1 (i, j, 1), γ13
1 (i, j, 2), · · · , γ13

1 (i, j,m3).
– Step m2: for each 1 ≤ k ≤ m3, u123

1 (i,m2, k) are given in G123 and for each 1 ≤ k ≤ m3, u13
1 (i, k) are given from

step 1. Also, for each 1 ≤ j ≤ m2 − 1, 1 ≤ k ≤ m3, γ13
1 (i, j, k) are given from previous (m2 − 1) steps.

1. Solve for γ13
1 (i,m2, 1), γ13

1 (i,m2, 2), · · · , γ13
1 (i,m2,m3) using the constraint (9). Note that, without loss of

generality we assume x∗
2(m2) > 0, because there is at least a j, 1 ≤ j ≤ m2 such that x∗

2(j) > 0, in which case
we will solve the γ13

1 (i, j, 1), γ13
1 (i, j, 2), · · · , γ13

1 (i, j,m3) in the final step. Now, we are left with the following
system of equations: for each 1 ≤ k ≤ m3

γ12
1 (i,m2, k) · u12

1 (i,m2) = u123
1 (i,m2, k)− γ13

1 (i,m2, k) · u13
1 (i, k) (15)

2. According to constraint (8), we have

const12 · u12
1 (i,m2) =

m3∑

k=1

[u123
1 (i,m2, k)− γ13

1 (i,m2, k) · u13
1 (i, k)] · x∗

3(k)

To satisfy it, we only need to choose

u12
1 (i,m2) =

m3∑

k=1

[u123
1 (i,m2, k)− γ13

1 (i,m2, k) · u13
1 (i, k)] · x∗

3(k)/const
12

Then, for each 1 ≤ k ≤ m3, γ12
1 (i,m2, k) can be solved by substituting u12

1 (i,m2) back to (15).

Note that this algorithm computes all u12
1 (i, j) and u13

1 (i, k) by assigning γ12
1 (i, j, k) and γ13

1 (i, j, k) appropriate
values, without any restriction on u123

1 (i, j, k). Thus, real roots are guaranteed for X no matter what values B are. Also, by
the construction step 1, we have const13 · (11.1) = 1/2 · (12.1). Also, according to the composition rule and constraints,
we have (12.1) = const12 · (10.1) + const13 · (11.1). Then, const12 · (10.1) = 1/2 · (12.1). Similarly for (10.2), (11.2),
and (12.2). So, if (12) is satisfied, then (10) and (11) must also hold as well.

As a side note, we have chosen u12
1 (i, j) (1 ≤ j ≤ m2 − 1) such that

m2−1∑

j=1

u12
1 (i, j) · x∗

2(j) ≤ m2 − 1

2m2

∑

j

∑

k

u123
1 (i, j, k) · x∗

2(j) · x∗
3(k)

so we have

u12
1 (i,m2) · x∗

2(m2) ≥ 1

2m2

∑

j

∑

k

u123
1 (i, j, k) · x∗

2(j) · x∗
3(k) > 0

which implies u12
1 (i,m2) > 0.

So far, we have shown by construction that for each Nash equilibrium point (x∗
1, x

∗
2, x

∗
3) of G123, there is a strict

additive composition such that (x∗
1, x

∗
2), (x∗

1, x
∗
3), and (x∗

2, x
∗
3) are Nash equilibrium of G12, G13, and G23 respectively.

-.

n-player strict additive composition – completeness

Similar to the proof in the 3-player case, we show the completeness by proving the existence of real roots to a system
of linear equations. From the strict additive composition rules, we have a system of linear equations (2) in matrix form

γ · X = B



where for each 1 ≤ p (= p′ ≤ n, s ∈ S

γ : γpp′

p (s)

X : upp′

p (sp, sp′)

B : u1···n
p (s)

There are (n ·
∏n

p=1 mp) number of equations with (2 ·
∑

p %=p′ mp ·mp′) variables in X. Our task is to show that given B,
we can configure γ, such that there are real roots for X, subject to the constraints in (4). We only need to look at player 1,
because other players are similar. Also, since the equations in (2) can be grouped into mutually independent sets according
to different s1’s, i.e. pure strategies for player 1, we can focus on a subset of equations, that is

γ · Xs1 = Bs1 (16)

and there are (
∏n

p=2 mp) equations with (
∑n

p=2 m1 ·mp) variables in Xs1 . To solve them, we follow the same strategy in
the 3-player game decomposition case, in which we divide the whole computation into m2 steps. The intuition is that we
first choose u12

1 (s1, 1), · · ·u12
1 (s1,m2 − 1) and u1p

1 (s1, sp), 3 ≤ p ≤ n. Then we tune the γ’s to make the equations in
the first (m2 − 1) steps hold. In the last step, we choose a specific value of u12

1 (s1,m2) to make the rest of the equations
hold.

More specifically, the detailed algorithm is as follows:

– Step 1: ∀s−12 ∈ S−12, u1···n
1 (s−12; s1; 1) are given in G1···n.

1. Arbitrarily choose u12
1 (s1, 1) to be a positive real number such that

u12
1 (s1, 1) · x∗

2(1) ≤ 1

(n− 1) ·m2

∑

s−12∈S−12

(
u1···n
1 (s−12; s1; 1) ·

n∏

p=2

x∗
p(sp)

)

2. Arbitrarily choose ∀sp ∈ Sp, u1p
1 (s1, sp), 3 ≤ p ≤ n, to be positive, such that

const1p · (13.1) =
1

n− 1
· (14.1)

3. Arbitrarily choose ∀s−12 ∈ S−12, γ1p
1 (s−12; s1; 1), 2 ≤ p ≤ n− 1 which satisfy the constraint (4).

4. Solve for ∀s−12 ∈ S−12, γ1n
1 (s−12; s1; 1).

– Step 2: ∀s−12 ∈ S−12, u1···n
1 (s−12; s1; 2) are given in G1···n and ∀sp ∈ Sp, u1p

1 (s1, sp), 3 ≤ p ≤ n, are given from
step 1.
1. Arbitrarily choose u12

1 (s1, 2) to be a positive real number such that

u12
1 (s1, 2) · x∗

2(2) ≤ 1

(n− 1) ·m2

∑

s−12∈S−12

(
u1···n
1 (s−12; s1; 2) ·

n∏

p=2

x∗
p(sp)

)

2. Arbitrarily choose ∀s−12 ∈ S−12, γ1p
1 (s−12; s1; 2), 2 ≤ p ≤ n− 1 which satisfy the constraint (4).

3. Solve for ∀s−12 ∈ S−12, γ1n
1 (s−12; s1; 2).

– Step j (3 ≤ j ≤ m2 − 1): Similar to step 2, we can solve ∀s−12 ∈ S−12, γ1p
1 (s−12; s1; j), 3 ≤ p ≤ n.

– Step m2: ∀s−12 ∈ S−12, γ1p
1 (s−12; s1; j), 3 ≤ p ≤ n, 1 ≤ j ≤ m2 − 1, are given from previous (m2 − 1) steps.

1. Solve ∀s−12 ∈ S−12, γ1p
1 (s−12; s1;m2), 3 ≤ p ≤ n, using the constraint (4). Note that, without loss of generality

we assume x∗
2(m2) > 0, because there is at least some j, 1 ≤ j ≤ m2 such that x∗

2(j) > 0, in which case we will
solve the γ1p

1 (s−12; s1; j), 3 ≤ p ≤ n, in the final step. Now, we are left with the following system of equations:
∀s−12 ∈ S−12, 3 ≤ p ≤ n

γ12
1 (s−12; s1;m2) · u12

1 (s1,m2) = u1···n
1 (s−12; s1;m2)−

n∑

p=3

γ1p
1 (s−12; s1;m2) · u1p

1 (s1, sp) (17)

2. According to constraint (4), we have

∑

s−12∈S−12

([
u1···n
1 (s−12; s1;m2)−

n∑

p=3

γ1p
1 (s−12; s1;m2) · u1p

1 (s1, sp)

]
·

n∏

p=3

x∗
p(sp)

)

= const12 · u12
1 (s1,m2)



To satisfy it, we only need to choose u12
1 (s1,m2) to be

∑

s−12∈S−12

(
u1···n
1 (s−12; s1;m2)−

∑n
p=3 γ

1p
1 (s−12; s1;m2) · u1p

1 (s1, sp)

const12
·

n∏

p=3

x∗
p(sp)

)

Then, ∀s−12 ∈ S−12, γ12
1 (s−12; s1;m2) can be solved by substituting u12

1 (s1,m2) back to (17).

Thus real roots are guaranteed for X no matter what values B are. Also, by the construction step 1, we have for each
3 ≤ p ≤ n

const1p · (13.1) =
1

n− 1
· (14.1)

Also, according to the decomposition rule and constraints, we have

const1n · (13.1) = (14.1)−
n∑

p=3

const1p · (13.1)

=
1

n− 1
· (14.1)

Similarly for (13.2) and (14.2). So, if (14) is satisfied, then for each 2 ≤ p ≤ n, (13) must also hold as well.

As a side note, it can be verified that u12
1 (s1,m2) > 0, because we have chosen u12

1 (s1, s2) (1 ≤ s2 ≤ m2 − 1) such
that

u12
1 (s1,m2) · x∗

2(m2) =
1

n− 1
· u1···n

1 (s) ·
n∏

p=2

x∗
p(sp)−

m2−1∑

s2=1

u12
1 (s1, s2) · x∗

2(s2)

≥ 1

m2 · (n− 1)
· u1···n

1 (s) ·
n∏

p=2

x∗
p(sp) > 0

So far, we have shown by construction that for each Nash equilibrium point (x∗
1, · · · , x∗

n) of G1···n, there is a strict
additive composition such that for each 1 ≤ p (= p′ ≤ n, (x∗

p, x
∗
p′) is Nash equilibrium of Gpp′

. -.

10 Proof of Theorem 3: unsoundness of general multiplicative composition

We construct a counter-example shown in Table 4. Since the weights in the multiplicative composition are arbitrary, we
can choose γ12

1 (I, I, I) = γ12
2 (I, I, I) = γ13

1 (I, I, I) = γ13
3 (I, I, I) = γ23

2 (I, I, I) = γ23
3 (I, I, I) = 0, and the rest γ’s

are all 1. Thus, (1, 0)(1, 0) is a Nash equilibrium for G12; (1, 0)(1, 0) is a Nash equilibrium for G13; (1, 0)(1, 0) is a Nash
equilibrium for G23; but (1, 0)(1, 0)(1, 0) is not a Nash equilibrium of the multiplicative composite game G123. -.

P1, P2 I II
I 100, 100 1, 1
II 1, 1 1, 1

P1, P3 I II
I 100, 100 1, 1
II 1, 1 1, 1

P2, P3 I II
I 100, 100 1, 1
II 1, 1 1, 1

P1, (P2 & P3) I & I I & II II & I II & II
I 0, 0, 0 100, 100, 1 100, 1, 100 100, 1, 1
II 1, 100, 100 1, 100, 1 1, 1, 100 1, 1, 1

Table 4. Sample counter-example to show multiplicative composition is not sound.

11 Proof of Theorem 4: soundness and non-completeness of strict multiplicative composition

For the soundness part, we start with the 3-player case for illustration, and then generalize the proof to n-player games;
we show the non-completeness by giving a counter-example.



3-player strict multiplicative composition – soundness

We begin with the simplest case of strict multiplicative-decomposing a 3-player game into three 2-player games. The
rule for 3-player strict multiplicative game composition is defined as follows: for each 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, 1 ≤
k ≤ m3,

u123
1 (i, j, k) = γ12

1 (i, j, k) · u12
1 (i, j) · γ13

1 (i, j, k) · u13
1 (i, k)

subject to the following constraints:

For each 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, 1 ≤ k ≤ m3, γ12
1 (i, j, k) · γ13

1 (i, j, k) = const i1 (18)

where const i1 is a positive real number. Similarly for player 2 and 3.

Lemma 5. Strict multiplicative composition is strongly sound. For any G123 and its microscopic set G̃ = {G12, G13, G23 },
if (x∗

1, x
∗
2) is a Nash equilibrium of G12, (x∗

1, x
∗
3) is a Nash equilibrium of G13, and (x∗

2, x
∗
3) is a Nash equilibrium of

G23, then (x∗
1, x

∗
2, x

∗
3) is Nash equilibrium of G123.

Proof. Suppose (x∗
1, x

∗
2), (x∗

1, x
∗
3) and (x∗

2, x
∗
3) are Nash equilibria for G12, G13, and G23 respectively, i.e. for each

1 ≤ i (= î ≤ m1

m2∑

j=1

u12
1 (i, j) · x∗

2(j)

︸ ︷︷ ︸
19.1

>
m2∑

j=1

u12
1 (̂i, j) · x∗

2(j)

︸ ︷︷ ︸
19.2

=⇒ x∗
1 (̂i) = 0 (19)

m3∑

k=1

u13
1 (i, k) · x∗

3(k)

︸ ︷︷ ︸
20.1

>
m3∑

k=1

u13
1 (̂i, k) · x∗

3(k)

︸ ︷︷ ︸
20.2

=⇒ x∗
1 (̂i) = 0 (20)

(Similarly for players 2 and 3.) We want to show (x∗
1, x

∗
2, x

∗
3) is a Nash equilibrium for the composite game G123, i.e. for

each 1 ≤ i (= î ≤ m1

m2∑

j=1

m3∑

k=1

u123
1 (i, j, k) · x∗

2(j) · x∗
3(k)

︸ ︷︷ ︸
21.1

>
m2∑

j=1

m3∑

k=1

u123
1 (̂i, j, k) · x∗

2(j) · x∗
3(k)

︸ ︷︷ ︸
21.2

=⇒ x∗
1 (̂i) = 0 (21)

We observe that

(21.1) =
m2∑

j=1

m3∑

k=1

γ12
1 (i, j, k) · u12

1 (i, j) · γ13
1 (i, j, k) · u13

1 (i, k) · x∗
2(j) · x∗

3(k)

= const i1 ·
m2∑

j=1

m3∑

k=1

u12
1 (i, j) · u13

1 (i, k) · x∗
2(j) · x∗

3(k)

= const i1 · (19.1) · (20.1)

Similarly, we have (21.2) = const i1 · (19.2) · (20.2). Note that, we can safely assume that the payoffs are positive, so if
(19) and (20) hold, then (21) must hold, and it holds for all Nash equilibria of the composite game G123. Similarly for
players 2 and 3. Thus, the claim follows. -.

n-player strict multiplicative composition – soundness

Lemma 6. Strict multiplicative composition is strongly sound. I.e. Given any microscopic set G̃ = {Gpp′
: 1 ≤ p (=

p′ ≤ n } w.r.t. the player set P = { 1, · · · , n }, and given any joinable set of component Nash equilibria (i.e. for each
1 ≤ p (= p′ ≤ n we have (x∗

p, x
∗
p′) is a Nash equilibrium of the component game Gpp′

), then (x∗
1, · · · , x∗

n) is a Nash
equilibrium for the strict multiplicatively composed game GP .



Proof. Without loss of generality, we look at player 1, and all other players are similar. We denote sp as the index of
player p’s pure strategies. Suppose (x∗

1, x
∗
p) (2 ≤ p ≤ n) is a Nash equilibrium (mixed) strategies for G1p, i.e. for each

1 ≤ s1 (= ŝ1 ≤ m1

mp∑

sp=1

u1p
1 (s1, sp) · x∗

p(sp)

︸ ︷︷ ︸
22.1

>

mp∑

sp=1

u1p
1 (ŝ1, sp) · x∗

p(sp)

︸ ︷︷ ︸
22.2

=⇒ x∗
1(ŝ1) = 0 (22)

We want to show (x∗
1, · · · , x∗

n) is a Nash equilibrium for the strict-multiplicatively composed game G1···n, i.e. for each
1 ≤ s1 (= ŝ1 ≤ m1

∑

s−1∈S−1

[
u1···n
1 (s−1; s1) ·

n∏

p=2

x∗
p(sp)

]

︸ ︷︷ ︸
23.1

>
∑

s−1∈S−1

[
u1···n
1 (s−1; ŝ1) ·

n∏

p=2

x∗
p(sp)

]

︸ ︷︷ ︸
23.2

=⇒ x∗
1(ŝ1) = 0 (23)

We observe that

(23.1) =
∑

s−1∈S−1

([
n∏

p=2

γ1p
1 (s−1; s1) · u1p

1 (s1, sp)

]
·
[

n∏

p=2

x∗
p(sp)

])

= consts11 ·
n∏

p=2

mp∑

sp=1

u1p
1 (s1, sp) · x∗

p(sp)

= consts11 ·
n∏

p=2

·(22.1)

Similarly, we have

(23.2) = consts11 ·
n∏

p=2

·(22.2)

Note that, we can safely assume that the payoffs are positive, so if (22) hold, then (23) must hold, and it holds for
all Nash equilibria of the composite game GP . Similarly for other players. Thus, the strict multiplicative composition is
strongly sound in preserving Nash equilibrium. -.

Strict multiplicative composition – non-completeness

Lemma 7. Strict multiplicative composition is not complete.

Proof. We construct a strict multiplicative decomposition of a 3-player game as a counter-example: each player has two
strategies { 1, 2 },

T 123
1 (1, 1, 1) = γ12

1 (1, 1, 1) · T 12
1 (1, 1) · γ13

1 (1, 1, 1) · T 13
1 (1, 1)

T 123
1 (1, 1, 2) = γ12

1 (1, 1, 2) · T 12
1 (1, 1) · γ13

1 (1, 1, 2) · T 13
1 (1, 2)

T 123
1 (1, 2, 1) = γ12

1 (1, 2, 1) · T 12
1 (1, 2) · γ13

1 (1, 2, 1) · T 13
1 (1, 1)

T 123
1 (1, 2, 2) = γ12

1 (1, 2, 2) · T 12
1 (1, 2) · γ13

1 (1, 2, 2) · T 13
1 (1, 2)

and given that

γ12
1 (1, 1, 1) · γ13

1 (1, 1, 1) = γ12
1 (1, 1, 2) · γ13

1 (1, 1, 2)

= γ12
1 (1, 2, 1) · γ13

1 (1, 2, 1)

= γ12
1 (1, 2, 2) · γ13

1 (1, 2, 2)

= const11



let all of the T s be positive, then we have

T 123
1 (1, 2, 2) =

T 123
1 (1, 1, 2) · T 123

1 (1, 2, 1)

T 123
1 (1, 1, 1)

Thus, T 123
1 (1, 2, 2) cannot be an arbitrary real number. In other words, strict multiplicative composition is not complete.

-.

12 Proof of Theorem 5: 3-player game incorporation

Proof. By rearranging the terms in (6), we have the necessary and sufficient condition for Nash equilibrium:

u12
2 (x∗

1;π2,j) + u23
2 (x∗

3;π2,j) > u12
2 (x∗

1;π2,ĵ) + u23
2 (x∗

3;π2,ĵ) =⇒ x∗
2(ĵ) = 0

Thus the claim follows. -.

13 n-player game incorporation

Definition 6. Given any GP (P = { 1, · · · , n }) and a microscopic set G̃ = {Gpp′
: 1 ≤ p (= p′ ≤ n } whose composite

!+ G̃ is GP , and suppose for each 2 ≤ q ≤ n − 1, (x∗
1, x

∗
q) is a Nash equilibrium of G1q , and (x∗

q , x
∗
n) is a Nash

equilibrium of Gqn, let G̃′ = {G1q : 2 ≤ q ≤ n− 1 } ∪ {Gnq : 2 ≤ q ≤ n− 1 }, we say that !+ G̃′ incorporates G1n

for player 1, written !+ G̃′ <..........1 G1n, just if for each 1 ≤ s1 (= ŝ1 ≤ m1

n∑

p=2

(u1p
1 (x∗

p;π1,s1)− u1p
1 (x∗

p;π1,ŝ1)) > 0 =⇒ x∗
1(ŝ1) = 0 (24)

Similarly for player n. We say !+ G̃′ incorporates G1n, written !+ G̃′ <.......... G1n, if !+ G̃′ <..........1 G1n and !+ G̃′ <..........n G1n.
-.

Theorem 6. Given any GP (P = { 1, · · · , n }) and a microscopic set G̃ = {Gpp′
: 1 ≤ p (= p′ ≤ n } whose composite

!+ G̃ is GP , and suppose for each 2 ≤ q ≤ n − 1, (x∗
1, x

∗
q) is a Nash equilibrium of G1q , and (x∗

q , x
∗
n) is a Nash

equilibrium of Gqn, then (x∗
1, · · · , x∗

n) is a Nash equilibrium of G1···n if !+ G̃′ <.......... G1n, where G̃′ = {G1q : 2 ≤ q ≤
n− 1 } ∪ {Gnq : 2 ≤ q ≤ n− 1 }. -.

Proof. By rearranging the terms in (24), we have the necessary and sufficient condition for Nash equilibrium:

n∑

p=2

u1p
1 (x∗

p;π1,s1) >
n∑

p=2

u1p
1 (x∗

p;π1,ŝ1) =⇒ x∗
1(ŝ1) = 0

Thus the claim follows. -.

The result shows that the payoff matrix of a component game can be hidden or even perturbed; so long as the game
incorporation ratios remain unchanged, Nash equilibrium is preserved by the composite game.


