
COMP327
Mobile Computing
Session: 2011-2012

Lecture Set 2c - Arrays, Pointers and
Memory Management

1Tuesday, 27 September 11

In these Tutorial Slides...

• We cover static and dynamic
memory management

• Arrays, and how they are stored

• Pointers, and pointer arithmetic

• Dynamic Memory Management

• Structs and Data Records

2Tuesday, 27 September 11

Arrays in C

• Arrays provide a way of storing several
associated homogeneous values

• Each element in the array is the same size

• Normally declared statically or dynamically

• Static allocation: number of elements is
explicitly defined

• Dynamic allocation: no size is initially stated,
but memory must be allocated later

• Elements can then be indexed

• First element is index 0, to index size -1

• However, bounds are not checked!!!

int array[10];
int b;

array[0] = 3;
array[9] = 4;
array[10] = 5;
array[-1] = 6;

All elements
are of the
same type

First element
(index 0)

Last element
(index 9)

Allowed, and will cause no
compiler or runtime error

BUT, may overwrite other
variables (e.g. b)

3Tuesday, 27 September 11

Computer Memory

• Data is stored in memory slots

• Each slot has a unique address

• Different architectures have
different size slots

• E.g. slots may be 16-bit, 32bit etc

• Therefore some data types may
span multiple slots, or use parts
of slots

• Normally, the size of memory
slots is unimportant from the
programmer’s perspective

Address ValueValueValue Content

0x1000 373737 int i = 37;

0x1001 0x10000x10000x1000 int *p = &i;

0x1002 38.88238.88238.882 float f = 38.882;

0x1003

0x1004 5656 short s = 56;

0x1005 609609609 int i[0] = 609;

0x1006 383838 int[1] = 38;

0x1007 ‘h’ char s[0] = ‘h’;

0x1008 ‘i’ char s[1] = ‘i’;

0x1009 ‘\0’ char s[2] = ‘\0’;

0x100A ? char s[3] = ???;

0x100B

Pointer to
an int

Float takes
multiple slots

Array of two
ints

Array of four
chars,

containing
the string

“hi”

short uses
half a slot

4Tuesday, 27 September 11

Memory Addresses

• Storage cells are typically viewed as being byte-sized

• Usually the smallest addressable unit of memory

• Few machines can directly access bits individually

• Such addresses are sometimes called byte-addresses

• Memory is often accessed as words

• Usually a word is the largest unit of memory access by a
single machine instruction

• A word-address is simply the byte-address of the word’s
first byte

5Tuesday, 27 September 11

Getting the size of an
object

• sizeof() returns the size of an object in bytes

• Can be used to find the size of a statically defined array (i.e.
number of elements), or of a typedef struct

• commonly used to get the size of a datatype for memory
allocation

/* pointer to type int, used to reference our allocated data */
int * pointer = malloc(sizeof(*pointer) * 10);

int main(int argc, char **argv)
{
 char buffer[10]; /* Array of 10 chars */

 strncpy(buffer, argv[1], sizeof(buffer) - sizeof(char));

 /* Set the last element of the buffer equal to null */
 buffer[sizeof(buffer) - 1] = '\0';
}

6Tuesday, 27 September 11

Computer Memory

• Altering the value of
a variable is
equivalent to
changing the content
of memory

• i=40;

• a[1]=207;

• s[0]=’s’;

Address ValueValueValue Content

0x1000 404040 int i = 40;

0x1001 0x10000x10000x1000 int *p = &i;

0x1002 38.88238.88238.882 float f = 38.882;

0x1003

0x1004 5656 short s = 56;

0x1005 609609609 int a[0] = 609;

0x1006 207207207 int a[1] = 207;

0x1007 ‘s’ char s[0] = ‘s’;

0x1008 ‘i’ char s[1] = ‘i’;

0x1009 ‘\0’ char s[2] = ‘\0’;

0x100A ? char s[3] = ???;

0x100B

Pointer to
an int

Float takes
multiple slots

Array of two
ints

Array of four
chars,

containing
the string

“si”

short uses
half a slot

7Tuesday, 27 September 11

Computer Memory

• A Pointer stores the
address of another entity

• It refers to a memory
location

Address ValueValueValue Content

0x1000 404040 int i = 40;

0x1001 0x10000x10000x1000 int *p = &i;

0x1002 38.88238.88238.882 float f = 38.882;

0x1003

0x1004 5656 short s = 56;

0x1005 609609609 int a[0] = 609;

0x1006 207207207 int a[1] = 207;

0x1007 ‘s’ char s[0] = ‘s’;

0x1008 ‘i’ char s[1] = ‘i’;

0x1009 ‘\0’ char s[2] = ‘\0’;

0x100A ? char s[3] = ???;

0x100B

Pointer to
an int

Float takes
multiple slots

Array of two
ints

Array of four
chars,

containing
the string

“si”

short uses
half a slot

int i=40; /* integer declaration */
int *p; /* declare a pointer */
p = &i; /* store address of i in p */

/* refer to value at address p */
printf(“Value at p is %d\n”, *p);

/* Display value of p */
printf(“Value of p: %d\n”, p);

Value at p is 40
Value of p: 0x1001Output

8Tuesday, 27 September 11

Pointers in C
• In C, every value is stored somewhere in memory

• Can therefore be identified with that address.

• Such addresses are called pointers.

• Because C is designed to allow programmers to control
data at the lowest level, pointers can be manipulated just
like any other kind of data.

• In particularly, you can assign one pointer value to another,
which means that the two pointers end up indicating the same
data value.

• Pointers are references to an object or element in
memory, not the object or element itself.

9Tuesday, 27 September 11

Declaring a Pointer
Variable in C

• Pointers are differentiated from regular variables by using
the “*” syntax

int x;

int *px;

• Declaring a variable allocates the memory for that
variable

• Declaring a pointer allocates the memory for the pointer

• Some other action is needed to create the memory for the
object the pointer ultimately points to

• This is similar to the issue of creating instances in JAVA.

10Tuesday, 27 September 11

Pointer Operators in C
• There are two main operators

• The address-of operator “&”

• This is written before a variable name (or any expression to which you could assign a
value) and returns the address of that variable.

• Thus, the expression &total gives the address of total in memory.

• The deference operator “*”

• This is written before a pointer expression and returns the actual value to which the
pointer points.

• Example:
double x = 2.5;

double *px = &x;

• Here, px points to the variable x, and *px contains the value 2.5

• If a pointer isn’t pointing to anything, it can be assigned to NULL

• Declared pointers may have arbitrary values, so when it is not pointing
to something meaningful, it is a good idea to set its value to NULL

11Tuesday, 27 September 11

Example of pointers

int x=1, y=2, z[10];
int *pp; /* pp is a pointer to int */
int *ip = &x; /* ip points to x */

y = *ip; /* y is now 1 */
ip = 3; / x is now 3 */
ip += 5; / x is now 8 */
ip = &z[0]; /* ip now points to z[0] */

The declarations of x, y, and z should be familiar.

A pointer is declared by specifying

type * variable;

As with normal variables, pointers can be declared and
defined simultaneously

The value of ip contains the
memory address (or location)
of the variable x

However, if we change the value of the
pointer itself, then it simply points to
another variable or location in memory

If we change the value of the dereferenced
pointer, that will also change the value of
the variable the pointer points to

Dereferenced pointers can
appear in any expression, and
act just as a normal variable

12Tuesday, 27 September 11

Pointers and Function
Arguments

• Pointers can be passed to functions
as arguments

• Provide a way of “side-affecting”
variables

• When a function is called, copies of the
arguments are passed to the function

• Changing the values of these copied
arguments does not affect their value in
the calling code

• By passing the addresses of variables, a copy of
the address is made

• However, they still point to the calling code’s
variables in memory, which can be changed

/* THIS WILL NOT WORK */
void swap (int x, int y) {
 int tmp;

 tmp = x;
 x = y;
 y = tmp;
}

swap(a,b); /* This fails */

/* THIS IS CORRECT */
void swap (int *px, int *py) {
 int tmp;

 tmp = *px;
 *px = *py;
 *py = tmp;
}

swap(&a,&b); /* This succeeds */

13Tuesday, 27 September 11

Pointers and Arrays
• In C, there is a strong relationship between pointers

and arrays

• Any operation that can be done by an array subscript can be
done with pointers

• Pointers are usually faster

• Consider the declaration int a[10];

• This defines an array of size 10

• i.e. a contiguous block of 10 ints in memory that can be accessed using
a[0], a[1], ..., a[9]

a:

a[0] a[1] a[9]

14Tuesday, 27 September 11

Pointers
and Arrays

• Subsequent array elements can be accessed by incrementing the value of a pointer,
pointing to an array

• This works regardless of the type or size of the array

• As long as the pointer type is the same as the array type

• Array names are also pointers

• a[i] is equivalent to *(a+i)

• a is equivalent to &a[0] (i.e. the address of the first element)

• However, pointers are variables, array names are special

• Cannot assign values to array names, or change their value

a:

a[0] a[1] a[9]

int a[10];
int *pa;

pa = &a[0]; /* points to first element in a */
x = *pa; /* x contains a copy of the element in a[0] */
y = *(pa+1); /* y contains a copy of the element in a[1] */

pa:

pa+1:
pa+2:

int a[10];
int *pa;

pa = a; /* legal */
pa++; /* legal */

a = pa; /* illegal */
a++; /* illegal */

15Tuesday, 27 September 11

Pointers, Arrays and
Functions

• When an array name is
passed to a function

• the address of the first element
is actually passed

• Empty arrays are just pointers

• char s[]; and char *s; are
equivalent

• However, char *s is more common

/* strlen: return length
 * of a string
 */
int strlen(char *s) {
 int n;
 for (n=0; *s != ‘\0’; s++)
 n++;
 return n;
}

char array[20];
char *ptr = &array[0];

strlen(“hello world”);
strlen(array);
strlen(ptr);
...

16Tuesday, 27 September 11

Advantages of C
pointers

• Pass values by reference

• When calling methods, if a variable is passed to a
method, a copy is made

• This takes up space on the stack

• The resulting value is immutable

• By passing a pointer

• Takes up less space if the pointer refers to a large object such as an
array or string

• Methods can side-effect external data

• The method can write to the memory pointed to by the pointer, which is
accessible by the calling function

• Useful if a number of values are to be returned

17Tuesday, 27 September 11

Pointer Arithmetic
• If p is a pointer to some element, p++ increments p to point to the

subsequent element

• This is regardless of the type of p

• The “value” added to p is equivalent to the size of the element p points to

• Therefore the programmer doesn’t have to worry about the size of type

• Arithmetic operators and expressions can be applied to pointers

• e.g. relations such as ==, <, >= etc can be used to compare pointers

• e.g. p < q is true if p points to an earlier member of some array than q

• Arithmetic is meaningful when referring to some allocated structure (e.g. an
array), but not to separate variables

/* strlen: return length of a string */
int strlen(char *s) {
 char *p = s;
 while (*p != ‘\0’)
 p++;
 return p-s;
}

The difference between
these pointers is equivalent
to the number of chars
between them...

... i.e. the string length!

18Tuesday, 27 September 11

Example of using char *
pointers

• These versions of
strcopy illustrate how
pointers and arrays are
used interchangeably

• Note that in the last
example, the end of
string character ‘\0’ is
equivalent to zero ,
thus the assignment
will return cause the
while loop to exit

/* strcpy: Copy t to s; array subscript version */
void strcpy(char *s, char *t) {
 int i = 0;
 while ((s[i] = t[i]) != ‘\0’)
 i++;
}

/* strcpy: Copy t to s; pointer version */
void strcpy(char *s, char *t) {
 while ((*s = *t) != ‘\0’) {
 s++; /* go to next character in s */
 t++; /* go to next character in t */
 }
}

/* strcpy: Copy t to s; advanced pointer version */
void strcpy(char *s, char *t) {
 while (*s++ = *t++)
 ;
}

19Tuesday, 27 September 11

Generic Pointers

• void * - a pointer to anything

• Loses all information about what
type of object is pointed to

• Reduces the effectiveness of type-
checking

• Can’t use pointer arithmetic

• However, valuable when
developing generic functions that
can manage pointers to different
types of objects

• e.g. container data structures such as
linked lists.

void *p;
int i;
char c;
...
p = &i;
p = &c;
putchar(*(char *)p);

Note that we cast the void *
pointer to another pointer type
(e.g. char *), so that the
compiler knows how to handle
this, i.e. (char *)p

We then reference the value and
pass it to putchar

20Tuesday, 27 September 11

Overview of Memory
Management

• Stack-allocated memory

• When a function is called, memory is
allocated for all of its parameters and local
variables.

• Each active function call has memory on the
stack (with the current function call on top)

• When a function call terminates, the
memory is deallocated (“freed up”)

• For example, main() calls f(), which
then calls g() which calls itself...

main()

f()

g()

g()

21Tuesday, 27 September 11

Overview of Memory
Management

• Heap-allocated memory

• This is used for persistent data, that must survive beyond the
lifetime of a function call

• global variables

• dynamically allocated memory – C statements can create new heap data
(similar to new in Java/C++)

• Heap memory is allocated in a more complex way than
stack memory

• Like stack-allocated memory, the underlying system
determines where to get more memory

• the programmer doesn’t have to search for free memory space!

22Tuesday, 27 September 11

Allocating new heap
memory

• void *malloc(size_t size);

• Allocate a block of size bytes,

• return a pointer to the block

• (NULL if unable to allocate block)

• The returned pointer should be cast to the appropriate type

/* make a duplicate of s */
char *strdup(char *s) {
 char *p;

 /* Allocate space for the length
 * of the string +1 for '\0'
 */
 p = (char *) malloc((strlen(s)+1) * sizeof(char));
 if (p != NULL)
 strcpy(p, s);
 return p;
}

Note that the size allocated is n
times sizeof(char), where n is
the length of string s plus 1 for ‘\0’.

When allocating memory for char *
elements, the sizeof() is often
omitted, as sizeof(char) = 1

23Tuesday, 27 September 11

Allocating new heap
memory

• void *calloc(size_t num_elements, size_t
element_size);

• Allocate a block of num_elements * element_size bytes,

• initialise every byte to zero,

• return pointer to the block

• (NULL if unable to allocate block)

• Whilst this is similar to malloc, it is used less frequently

• Useful if the initialisation is necessary

• However, often there is no need to do any initialisation, as the new
object is defined after allocation

int *ip;

ip = (int *) calloc(n, sizeof(int));

24Tuesday, 27 September 11

Allocating new heap
memory

• void *realloc(void *ptr, size_t new_size);

• Given a previously allocated block starting at ptr,

• change the block size to new_size,

• return pointer to resized block

• If block size is increased, contents of old block may be copied to a completely different
region

• In this case, the pointer returned will be different from the ptr
argument, and ptr will no longer point to a valid memory region

• If ptr is NULL, realloc is identical to malloc

• Note: may need to cast return value of malloc/calloc/realloc:

• char *p = (char *) malloc(BUFFER_SIZE);

25Tuesday, 27 September 11

Deallocating heap
memory

• void free(void *pointer);

• Given a pointer to previously allocated memory,

• put the region back in the heap of unallocated memory

• Note: easy to forget to free memory when no longer
needed...

• especially if you’re used to a language with “garbage collection” like
Java

• This is the source of the notorious “memory leak” problem

• Difficult to trace – the program will run fine for some time, until
suddenly there is no more memory!

26Tuesday, 27 September 11

Common memory
errors

• There are several memory errors that can ause problems with
memory

• These can occur through sloppy programming

• Not always easy to spot, however

• Often occur with specific data scenario

• Or worse, simply because of the presence of other processes running concurrently!!!

• Problems can often be responsible for security holes

• e.g. when writing into other parts of memory due to stack overflow

• Problems include

• Using memory that you have not initialised

• Using memory that you do not own

• Using more memory than you have allocated

• Using faulty heap memory management

27Tuesday, 27 September 11

Using memory you’ve
not initialised

• Uninitialised memory read

• Uninitialised memory copy

• not necessarily critical – unless a memory read follows
void foo(int *pi) {
! int j;
! *pi = j;
! /* ERROR: j is uninitialised, copied into *pi */
}

void bar() {
! int i=10;
! foo(&i);
! printf("i = %d\n", i);
! /* ERROR: Using i, which is now junk value */
}

28Tuesday, 27 September 11

Using memory you don’t
own

• Null pointer read/write

• Zero page read/write
/* Define a new data structure */
typedef struct node {
! struct node* next;
! int val;
} Node;

int findLastNodeValue(Node* head) {
 /* Next line fails if the pointer is null */
! while (head->next != NULL) {
! ! head = head->next;
! }
! return head->val; /* Zero page access */
}

This creates a new structure,
and defines it as a variable type
with two sub elements, a pointer
to another instance of that
note, and a value (int)

Given a pointer to a struct, the
expression -> refers to the sub-
element in the structure

x->y is equivalent to (*x).y

What happens if head is NULL ???

29Tuesday, 27 September 11

Using memory you don’t
own

• Beyond stack read/write
char *append(const char* s1, const char *s2) {
! const int MAXSIZE = 128;
! char result[128];

! int i=0, j=0;
! for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
! ! result[i] = s1[j];
! }
! for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
! ! result[i] = s2[j];
! }
! result[++i] = '\0';
! return result;
}

result is a local array name,
allocated on the stack

Function returns pointer to
stack memory. However,
this won’t be valid after the
function returns

30Tuesday, 27 September 11

Using memory you
haven’t allocated

• Array bound read/write

void genArrayBoundError() {
! const char *name = “Safety Critical";
! char *str = (char*) malloc(10*sizeof(char));

! strncpy(str, name, 10);
! str[11] = '\0'; /* Writing out of bounds */
! printf("%s\n", str); /* Error will occur */
}

Memory is allocated for 10
chars. However, if a string is
to be stored in this array, then
space should be made for the
end of string character.

We call strncpy which
copies n characters (in this
case 10) from one string to
another.

This will succeed.

However, there are two problems here.

1) if we want to write at the end of an array of size n, the last
element is in arr[n-1]

2) this line is writing beyond this.

Whilst this line will work, it is overwriting some other part of
memory. At best, the code will crash here...!

31Tuesday, 27 September 11

Faulty Heap Management

• Memory Leak

int *pi;
void foo() {
! pi = (int*) malloc(8*sizeof(int));
! /* Allocate memory for pi */
! /* Oops, leaked the old memory pointed to by pi */
! …
! free(pi); /* foo() is done with pi, so free it */
}
void main() {
! pi = (int*) malloc(4*sizeof(int));
! /* Expect MLK: foo leaks it */
! foo();
}

2) Memory is allocated for 8
ints. However, pi is a global,
and had previously been
pointing to other memory,
whose reference is now lost

1) We allocate memory to four ints, and store a
pointer to this memory in pi, which is global.

3) The newly allocated memory
is freed (returned to the heap),
but we still have no access to
the original leaked memory

32Tuesday, 27 September 11

Structures

• A compound data type, consisting of
different types

• grouped together by a single name

• analogous to data stored in a class within OOP
languages

• except that there are no accessor methods, just the data
structure

• Help to organise complex data, as the new
object can be manages as a single entity

33Tuesday, 27 September 11

Struct Syntax
• The keyword struct introduces the structure definition

• a list of variables, or members

• the names of these are local to the structure, and could
appear in other structures

• The struct declaration defines a type

• Declarations of variables of this type follow the close-brace

• Once defined, the struct can be used to declare other
variables

• The name of the struct is optional, but provides a way of
referring to the struct type

• Elements in the structure are accessed by the dot syntax

• sizeof() can be used to get the size of a struct for
memory allocation

struct name {

 variable list

} var;

struct point {
 int x;
 int y;
} a, b;

struct point c;

a.x = 5;
a.y = 8;
b = {3,4};

34Tuesday, 27 September 11

Structures and Functions

• When passing a structure to
a function, the whole
structure is copied

• just as with other variables

• structs can be returned
from functions

• values are again copied, so
receiving structure must be
memory allocated

• With large structs, it is more
efficient to pass a pointer!!!

struct point {
 int x;
 int y;
};

/* makepoint: make a point
 * from x and y components
 */
struct point makepoint(int x, int y) {
 struct point temp;
 temp.x = x;
 temp.y = y;
 return temp;
}

main() {
 struct point middle, llb, urt;
 llb = makepoint(0,0);
 urt = makepoint(XMAX, YMAX);

 middle = makepoint(
 (llb.x + urt.x)/2,
 (llb.y + urt.y)/2);
}

35Tuesday, 27 September 11

Pointers to Structures
• Pointers to structures are

like ordinary pointers

• Parentheses are needed to
access the struct elements

• this is due to precedence

• . is higher than *

• is illegal here as x is not a
pointer

struct point {
 int x;
 int y;
};

/* makepoint: make a point
 * from x and y components
 */
void makepoint(struct point *ppt,
 int x,
 int y) {
 (*ppt).x = x;
 (*ppt).y = y;
}

main() {
 struct point middle, llb, urt;

 makepoint(&llb, 0,0);
 makepoint(&urt, XMAX, YMAX);
 makepoint(&middle,
 (llb.x + urt.x)/2,
 (llb.y + urt.y)/2);
}

struct point *pp; /* ptr to struct */
struct point origin;

pp = &origin;
printf("origin: (%d,%d)\n", (*pp).x, (*pp).y);

pp.x / element x in pp is a pointer!!! */

36Tuesday, 27 September 11

Pointers to Structures
• Because pointers to

structures are so common,
an alternative notation
exists

• Again, precedence of this
notation is very high, so care is
needed

struct point {
 int x;
 int y;
};

/* makepoint: make a point
 * from x and y components
 */
void makepoint(struct point *ppt,
 int x,
 int y) {
 ppt->x = x;
 ppt->y = y;
}

...

p->member-of-structure

struct {
 int len;
 char *str;
} *p;
...
++p->len; /* increments len, not p) */
(++p)->len; /* increments p, not len */
p->str; / fetches what str points to */
(*p->str)++; /* increments what str points to */

37Tuesday, 27 September 11

Self-referential
Structures

• Many data models use a structure that is self referential

• i.e. the structure is a node within a linked list, tree, etc.

• This data may be held in some order, such as sorted alphabetically, or given
some count, etc.

• The number of nodes depends on the quantity of data being
processed

• However, how can a struct reference itself before it has
been declared?

• It is illegal for a struct to contain an instance of itself

• Pointers can be used to reference other nodes, as the pointer
is the address of another node, not the node itself

38Tuesday, 27 September 11

Example: Binary Tree

struct tnode { /* a node in a binary tree */
 char *word; /* points to the payload */
 int count; /* number of occurrences of word */
 struct tnode *left; /* left child */
 struct tnode *right; /* right child */
};

now

is

for

all

aid

the

time

to

men

good

come

of

theirparty

The data structure opposite represents a binary tree, with
strings (char *) organised so that at any node the left
subtree contains only words that are lexicographically less
than the word at the node, and the right subtree contains
only words that are greater.

This is the tree for the sentence “now is the time for all good
men to come to the aid of their party”, as built by inserting
each word as it is encountered.

The struct defined below can be used to represent each node in this structure. As each word is
encountered, a new node is filled in, and its address is inserted into the tree, by traversing the
tree lexically, until a leaf node is found (i.e. either left or right is null).

Note: this assumes
that each time a node is
created, it is initialised
so that the left and
right pointers are
defined as NULL.

39Tuesday, 27 September 11

Adding the word to the
binary tree

struct tnode *talloc(void); /* allocate memory for a node */
char *strdup(char *); /* allocate memory and copy string */

/* addtree: add a node with w, at or below p */
struct treenode *addtree(struct tnode *p, char *w) {
 int cond;

 if (p == NULL) {! /* a new word has arrived */
 p = talloc();! /* make a new node */
 p->word = strdup(w); /* copy the string */
 p->count = 1; /* initialise the count */
 p->left = p->right = NULL; /* set the pointers to NULL */
 } else if ((cond = strcmp(w, p->word)) == 0)
 p->count++;! /* repeated word */
 else
 if (cond < 0)! /* less than into left subtree */
 p->left = addtree(p->left, w);
 else! /* greater than into right subtree */
 p->right = addtree(p->right, w);
 return p;
}

40Tuesday, 27 September 11

Typedef
• The construct typedef is used for creating new data

type names

• Can be useful to create “meaningful” data types

• Note that the type being declared appears in the
position of the variable name, not after typedef

• Syntactically, it is like extern, static, etc.

• Often, typedefs have capitalised names

typedef int Length;
...
Length len, maxlen;
Length *lengths[];

typedef char *String;
...
String p, lineptr[MAXLINES], alloc(int);
int strcmp(String, String);
p = (String) malloc(100);

41Tuesday, 27 September 11

Typedefs and structs

typedef struct tnode { /* a node in a binary tree */
 char *word; /* points to the payload */
 int count; /* number of occurrences of word */
 struct tnode *left; /* left child */
 struct tnode *right; /* right child */
} Treenode;

/* Function to create new tree nodes from heap */
Treenode *talloc(void) {
 return (Treenode *) malloc(sizeof(Treenode));
}

We need the name of the
struct to be specified, as
pointers to this struct appear
in the struct definition

The name of the
typedef appears
after the struct
declaration

sizeof() returns the size of the new structure,
and can be used when allocating memory

This code fragment defines a structure of a node in a binary
tree that holds a payload, consisting of a char * (assuming the
string has been allocated elsewhere) and a frequency count.

This could be used in a sorted binary tree, thus improving
lookup time.

The return type of this function
is a pointer to a Treenode

42Tuesday, 27 September 11

Unions
• A union is a variable that may hold (at different times) objects

of different types and sizes

• Can provide flexible storage

• Definition is similar to a struct, but only one variable can
be used at a time

• The size of the union is equivalent to the largest variable

• Can be challenging to use, however

• programmer is responsible for knowing what the type of the stored
value is

• no automatic way of checking

• Access to a union is similar to that of a struct

• union-name.member

• union-pointer->member

union u_tag {
 int ival;
 float fval;
 char *sval;
} u;

u.ival = 6;
u.sval = “hello”;

43Tuesday, 27 September 11

Example of a union

struct {
 char *name;
 int flags;
 int utype;
 union {
 int ival;
 float fval;
 char *sval;
 } u;
} symtab[NSYM];

...
if (utype == INT)
 printf("%d\n", u.ival);
if (utype == FLOAT)
 printf("%f\n", u.fval);
if (utype == STRING)
 printf("%s\n", u.sval);
else
 printf("bad type %d in utype\n", utype);

A union element is
defined, that stores one
value at a time. As float
is the biggest data type,
this union will be the
size of a float.

This code fragment defines a symbol
table which consists of an array of
structs. Each struct contains several
variables, including one that is used to
track the type of the union variable.

The advantage of using this union, is that
it reduces storage requirements, rather
than maintaining space for three
separate data types

utype is used to track the union type. Three
symbolic constants have been defined, INT, FLOAT,
STRING. An enum could also have been used.

utype is checked to determine the type of
value in the union, before deciding how this
will be used. Remember, only one data
element can be stored at any one time.

44Tuesday, 27 September 11

To Summarise

• In this Tutorial Set we covered

• Memory, arrays, and how data is stored

• Memory allocation (static vs dynamic)

• Problems with bad memory management

• Pointers, their relationship with arrays

• Pointer arithmetic

• Structs, Typedefs and Unions

• Self referential data structures

45Tuesday, 27 September 11

Exercises
• Exercise 5-4. Write the function strend(s,t), which returns 1 if the string t

occurs at the end of the string s, and zero otherwise.

• Exercise 5-5. Write versions of the library functions strncpy, strncat, and
strncmp, which operate on at most the first n characters of their
argument strings. For example, strncpy(s,t,n) copies at most n characters
of t to s.

• Exercise 5-13. Write the program tail, which prints the last 10 lines of its
input. The program should behave rationally no matter how
unreasonable the input. Write the program so it makes the best use of
available storage; lines should be stored in a sorted way (e.g. a tree or
linked list), not in a two-dimensional array of fixed size.

• Exercise 6-4. Write a program that prints the distinct words in its input
sorted into decreasing order of frequency of occurrence. Precede each
word by its count.

46Tuesday, 27 September 11

Epilogue
• If you want to look at how code written in C can be abused,

then check out the The International Obfuscated C Code Contest

• http://www.ioccc.org/

• The Goals:

• To write the most Obscure/Obfuscated C program under the rules below.

• To show the importance of programming style, in an ironic way.

• To stress C compilers with unusual code.

• To illustrate some of the subtleties of the C language.

• To provide a safe forum for poor C code. :-)

 extern int
 errno
 ;char
 grrr
 ;main(r,
 argv, argc) int argc ,
 r ; char *argv[];{int P();
#define x int i, j,cc[4];printf(" choo choo\n") ;
x ;if (P(! i) | cc[! j]
& P(j)>2 ? j : i){* argv[i++ +!-i]
; for (i= 0;; i++);
_exit(argv[argc- 2 / cc[1*argc]|-1<<4]) ;printf("%d",P(""));}}
 P (a) char a ; { a ; while(a > " B "
 /* - by E ricM arsh all- */); }

47Tuesday, 27 September 11

Epilogue
#include! ! <stdio.h>
#include! ! <malloc.h>
#define! ! ! ext(a) (exit(a),0)
#define I! ! " .:\';+<?F7RQ&%#*"
#define a! ! ! "%s?\n"
#define n! ! ! "0?\n"
#define C! ! ! double!
#define o! ! ! char
#define l! ! ! long
#define L! ! ! sscanf
#define i! ! ! stderr
#define e! ! ! stdout
#define r! ! ext (1)
#define s(O,B)! L(++J,O,&B)!=1&&c>++q&&L(v[q],O,&B)!=1&&--q
#define F(U,S,C,A) t=0,*++J&&(t=L(J,U,&C,&A)),(!t&&c>++q&&!(t=L(v[q],U,\
! ! &C,&A)))?--q:(t<2&&c>++q&&!(t=L(v[q],S,&A))&&--q
#define T(E)! ! (s("%d",E),E||(fputs(n,i),r))
#define d(C,c)! ! (F("%lg,%lg","%lg",C,c)))
#define O! (F("%d,%d","%d",N,U),(N&&U)||(fputs(n,i),r)))
#define D! ! (s("%lg",f))
#define E! ! ! putc
! ! ! ! ! C
! ! ! ! ! ! G=0,
! ! ! ! ! ! R
! ! ! ! ! =0,Q,H
! ! ! ! ! ,M,P,z,S
! ! ! ! ! =0,x=0
! ! ! ! , f=0;l b,j=0,! k
! ! ! ! =128,K=1,V,B=0,Y,m=128,p=0,N
! ! ! ! =768,U=768,h[]={0x59A66A95,256
! ! ! ,192,1,6912,1,0,0},t,A=0,W=0,Z=63,X=23
! ! ! ;o*J,_;main(c,v)l c;o**v;{l q=1;for(;;q<
! ! c! ?(((J=v[q])[0]&&J[0]<48&&J++,((_= *J)<99||
! ! _/2==! '2'||(_-1)/3=='\"'||_==107||_/05*2==','||_
! >0x074)?(fprintf(i,a,v[q]),r):_>0152?(_/4>27?(_&1?(
! O,Z=N,X=U): (W++,N=Z,U=X)):_&1?T(K):T(k)):_>103?(d(G,
! R),j=1):_&1? d(S,x):D,q++),q--,main(c-q,v+q)):A==0?(A=
 1,f||(f=N/4.),b=(((N-1)&017)<8),q=(((N+7)>>3)+b)*U,(J=malloc(q)
)||(perror("malloc"),r),S-=(N/2)/f,x+=(U/2)/f):A==1?(B<U?(A=2,V
! = 0,Q=x-B/f,j ||(R=Q),W&&E('\n',e),E(46,i)):(W&&E('\n',
! e),E('\n',i),h[1]=N,h[2]=U,h[4]=q,W||(fwrite(h,1,32,
! e),fwrite (J,1,q,e)),free(J),ext(0))):A==2?(V<N?(j?
! ! (H=V/f! +S,M=Q):(G=V/f+S,H=M=0),Y=0,A=03):((m&0x80
! !)! ||(m=0x80,p++),b&&(J[p++]=0),A=1,B++)):((Y
! ! ! <k&&(P=H*H)+(z=M*M)<4.)?(M=2*H*M+R,H=P-z
! ! ! +G,Y++):(W&&E(I[0x0f*(Y&K)/K],e),Y&K?J
! ! ! [p]&=~m:(J[p]|=m),(m>>=1)||/*/
! ! ! ! (m=128,u--),A==6?ext(1):B<u
! ! ! ! .! e=3,l=2*c*/(m
! ! ! ! ! =0x80,
! ! ! ! ! p++),V++
! ! ! ! ! ,A=0x2
! ! ! ! ! !)
! ! ! ! ! !));
! ! ! ! ! }

./a.out -text

.** ************ ** * * * **** * ***** **

.** *********** *** ** * ***** **** **

.* ********** **** * * ** ***** *

.* ********* ****** * * **** *

.******** ** ** ** * ***** *

.***** * * ** *** ** ***** *

. ** ** ** * *** ** *****

.** ***** ** ** *****

.* ****** * * * *****

. * * * * * * *****

. * ** **** * *****

. * * *****

. * ** **** * *****

. * * * * * * *****

.* ****** * * * *****

.** ***** ** ** *****

. ** ** ** * *** ** *****

.***** * * ** *** ** ***** *

.******** ** ** ** * ***** *

.* ********* ****** * * **** *

.* ********** **** * * ** ***** *

.** *********** *** ** * ***** **** **

.** ************ ** * * * **** * ***** **

48Tuesday, 27 September 11

