
COMP327
Mobile Computing
Session: 2011-2012

Lecture Set 2b - Operators and Control
Flow

1Tuesday, 27 September 11

In these Tutorial Slides...

• To cover in more depth most of the
aspects of C, including:

• Types, Operands, and Expressions

• Functions and Program Structure

• Control Flow

2Tuesday, 27 September 11

Recap
• In the previous Tutorial Slides we introduced C

• Considered its origins, strengths and weaknesses.

• Briefly considered the compilation process

• Looked at several code examples

• Introduced and discussed many elements of the language

• In this and the following Tutorial Slides

• We will look at language issues in much more depth

• This includes code fragments, tips, and insights

• As Objective-C is a superset of C, it is important to
master C first...

3Tuesday, 27 September 11

Variable Names
• Variables normally consist of numbers and letters

• Underscore (‘_’) is also permitted.

• However, don’t use underscores to start variable names

• By convention, they are used in this way by library routines

• Variables are case-specific

• Several naming conventions are used

• variables are lower case, or at least start lower case

• functions start with an upper case character

• symbolic constants are all upper case

• Other constraints exist due to legacy systems,

• at least the first 31 characters of a name are significant

• externs should be unique for the first six characters in a single case

4Tuesday, 27 September 11

Data Types
• Only a few basic data types:

• Quantifiers can also be used

• short int - often a smaller int (e.g. 16-bit vs 32-bit int)

• long int - at least 32-bits

• Often the token “int” is omitted as it is implied

• long double is an extended-precision floating point

• chars and ints can be signed or unsigned

• signed char has the value range -128..127

• unsigned char has the value range 0..255

• Data type sizes are machine dependent, but specified in the headers
<limits.h> and <float.h>

Type Description

char a single byte, capable of holding one character in the local character set

int an integer, typically reflecting the natural size of integers on the host machine

float single-precision floating point

double double-precision floating point

5Tuesday, 27 September 11

DataTypes
/* @(#)limits.h 8.3 (Berkeley) 1/4/94 */
...
#define SCHAR_MAX 127 /* min value for a signed char */
#define SCHAR_MIN (-128) /* max value for a signed char */

#define UCHAR_MAX 255 /* max value for an unsigned char */
#define CHAR_MAX 127 /* max value for a char */
#define CHAR_MIN (-128) /* min value for a char */

#define USHRT_MAX 65535 /* max value for an unsigned short */
#define SHRT_MAX 32767 /* max value for a short */
#define SHRT_MIN (-32768) /* min value for a short */

#define UINT_MAX 0xffffffff /* max value for an unsigned int */
#define INT_MAX 2147483647 /* max value for an int */
#define INT_MIN (-2147483647-1) /* min value for an int */

#ifdef __LP64__
#define ULONG_MAX 0xffffffffffffffffUL /* max unsigned long */
#define LONG_MAX 0x7fffffffffffffffL /* max signed long */
#define LONG_MIN (-0x7fffffffffffffffL-1) /* min signed long */
#else /* !__LP64__ */
...

6Tuesday, 27 September 11

Value Constants
• We’ve already seen that a number is an int

• unless it is followed by a decimal point (double)

• Other constant types can be specified

• 123456789L - the suffix l or L signifies a long

• the suffix ul or UL signifies an unsigned long

• doubles can also be given with exponents, eg. 1e-2

• a suffix of f or F indicates a float

• a suffix of l or L with a decimal indicates a long
double

• Number Bases

• a ‘0’ (zero) prefix indicates an octal value (31 == 037)

• an ‘0x’ prefix indicates a hexadecimal value (31 ==
0x1F)

• Both can be unsigned (suffix of u) or long (suffix of l)

Why do we care?

The type of a const affects how
expressions are evaluated.
We’ve seen that dividing an int
with an int generates an int,
which may not give the desired
value (5/9 = 0).

This is because the choice of
operator used depends on type -
integer division is *much* faster
than floating point division.

Also, a const in a function should
ideally match the function type
definition.

Finally, constants might be used
to mask logical bits, in which
case size (or matching up types)
is important!

7Tuesday, 27 September 11

Character and string
constants

• A character constant is an integer, but
represented as a character in single quotes

• char a = ‘2’ has the value 50 (in the ASCII
character set)

• Certain special characters are given as escape
sequences

• Characters can also be referred to using octal or
hex values from their character sets

• String constants are arrays of chars,
represented as characters in double quotes

• the end of string character is the null ‘\0’ sequence

• thus the array size is the number of characters+1

• Note the use of quotes

• ‘x’ (single quote) is not the same as “x” (double
quote)

• ‘x’ is an int; “x” is a two element char array

Character Sequence

Alert / Bell \a

Backspace \b

Form feed \f

Newline \n

Carriage Return \r

Horizontal tab \t

Vertical tab \v

Backslash \\

Question Mark \?

Single Quote \’

Double Quote \”

Octal Number \ooo
e.g. \013

Hexadecimal Number
\xhh

e.g. \x3a

8Tuesday, 27 September 11

ASCII Character Set
% man ascii
ASCII(7) BSD Miscellaneous Information Manual ASCII(7)

NAME
 ascii -- octal, hexadecimal and decimal ASCII character sets

DESCRIPTION
 The hexadecimal set:

 00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel
 08 bs 09 ht 0a nl 0b vt 0c np 0d cr 0e so 0f si
 10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
 18 can 19 em 1a sub 1b esc 1c fs 1d gs 1e rs 1f us
 20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 '
 28 (29) 2a * 2b + 2c , 2d - 2e . 2f /
 30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
 38 8 39 9 3a : 3b ; 3c < 3d = 3e > 3f ?
 40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
 48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f O
 50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
 58 X 59 Y 5a Z 5b [5c \ 5d] 5e ^ 5f _
 60 ` 61 a 62 b 63 c 64 d 65 e 66 f 67 g
 68 h 69 i 6a j 6b k 6c l 6d m 6e n 6f o
 70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
 78 x 79 y 7a z 7b { 7c | 7d } 7e ~ 7f del
...

9Tuesday, 27 September 11

Enumerated Types
• Enums are another way of defining constants that form some list or

progression:

• The first name has the value 0 by default

• Unspecified values continue the progression of the last specified value.

• Names must be unique, but values can be shared

• e.g. many enumerated types start with zero (0)

• However, in most cases, the code refers to the constant, not the value

• Provide a better way to create symbols than using #defines

enum boolean { NO, YES }; /* NO == 0, and YES == 1 */

enum days { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY };
 /* SUNDAY == 0; SATURDAY == 6; THURSDAY - MONDAY == 3; */

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };
 /* FEB = 2, MAR = 3, etc. */

10Tuesday, 27 September 11

Declarations
• All variables should be declared before use

• A declaration specifies the type, and a list of one or
more variables

• Initialisation can also be done as part of the declaration

• External and static variables are initialised to zero by
default, all others are undefined

• Variables can be declared within any braced body (i.e.
within ‘{‘ and ‘}’), not just within a function

• Can be used to hide variables within a local scope

• However, can lead to confusion

• If in doubt, always initialise your variable.

• The const qualifier

• can be applied to the declaration of any variable to
specify the value will not be changed.

• If violated, then the result is compiler specific

int lower, upper, step;
int i=0;
char c, line[1000];
char esc = '\\';
int!limit = MAXLINE+1;
float eps = 1.0e-5;

const double e = 2.71828182845905;
const char msg[] = "warning: ";

if (n> 0) {
 int i; /* declare new i */
 for i=0; i<n; i++)

}

11Tuesday, 27 September 11

Functions
• Functions are similar to methods in Java, except that they are not

class specific

• They perform some job, taking arguments, and returning values

• Variables/Data structures can also be side effected, depending on scope

• Not all elements need be defined

• This dummy function does nothing and returns nothing

• such functions are often useful as place-holders during development

• If no return value is stated, an int return value is assumed

• Functions can be declared in any order in the source file

• Function prototypes should be declared before a function is used

• However, if the function is defined earlier in the same source, no
prototype is needed

Functions

return-type function-name(argument declarations)

{

 declarations and statements

}

/* a function that
 * does nothing
 */
dummy() {}

12Tuesday, 27 September 11

Function
Prototypes
• Function declarations are necessary for determining how much memory

is needed when making a function call

• Used by the compiler to calculate the number of memory bits needed for
arguments

• Also, the number of bits needed for the return value

• Functions can be implicitly or explicitly declared

• Explicit declarations help to avoid mismatches between function definition and use

• and thus avoid bugs

• If a function has not been declared, then an implicit declaration will occur when it
is first used

• Based on the type of its arguments and whether or not a return value (and its type) is used.

• A function should be declared before use

• This includes its arguments and return type

• Not necessary if the function appears in the source code before use

Function Prototypes

return-type function-name(argument declarations);

/* Prototypes */
int getop(char []);
void push (double);
double pop (void);

13Tuesday, 27 September 11

External Variables

• Variables may be global in scope (i.e. external)

• Not declared in any function, hence can be used by all functions

• Long lived, as they are never deleted

• Need to be defined only once, but declared before use

• Not a problem when one source file is used, as declaration is implied by definition

• However, what happens when multiple source files are used?

• Declaration:

• Announces the properties of the variable, e.g. type

• Extern used to indicate that the variable has been defined

• Definition:

• Declares the variable and sets aside storage.

• Externs are used with multiple source files

• Often appear in Header Files, which are #included

/* Definition in file1.c */
int sp;
double val[MAXVAL];

/* Declaration in file2.c */
extern int sp;
extern double val[];

14Tuesday, 27 September 11

Static Variables
• Static declarations

• Similar to private variables in methods

• The static declaration is used to limit the scope of a
variable to the source file being compiled

• Good way of creating global variables that are shared
by some functions (defined in the same source file),
but hidden from others

• Initial value can be defined

• Can also be used to limit the scope of functions to a
single source file

• Internal Static Variables in functions

• Variables are normally deallocated (lost) once a
function finishes executing

• Static Variables are variables whose lifetime extends
across the entire run of the program

• Useful when a value should be shared between each
function call

/* Buffer for ungetch */
static char buf[BUFSIZE];

/* Next free position in buf */
static int bufp = 0;

/* Function that returns
 * the number of times it
 * is called, using an
 internal static variable
 */

int genval(double d) {
 static int count=0;
 ...
 /* do stuff */
 ...
 return (++count);
}

15Tuesday, 27 September 11

Arithmetic, Relational
and Logical Operators

• Arithmetic Operators

• Modulo x % y produces the remainder when x is
divided by y

• Modulo cannot be applied to a float or double

• Note that ^ is not a power operator, but a bitwise
exclusive OR operator (see later).

• Relational and Logical Operators

• The numeric value of a relational or logical expression is
1 if true, and 0 otherwise

• Logical AND and OR stop evaluation as soon as the
truth or falsehood of the expression is determined

• The unary negation operator converts a non-zero
operand into 0, and zero operand into 1

Operator Symbol

Addition +

Subtraction -

Multiplication *

Division /

Modulo %

Operator Symbol

Greater Than >

Greater Than or Equals >=

Less Than <

Less Than or Equals <=

Equals (equivalent) ==

Not Equals (equivalent) !=

Logical OR &&

Logical AND ||

Logical NOT !

if (!valid) if (valid == 0) is often used instead of

16Tuesday, 27 September 11

chars and ints

• chars are just ints, so char arithmetic is valid

• This allows a number of “tricks” when handling chars (see below)

• These can be character set specific

• However, most architectures are now ASCII based...

• Several functions are also available within the <ctype.h> library

• return non-zero for true or 0 for false

/* naive atoi: convert s to integer */
int atoi(char s[]) {
 int i, n;
 n = 0;
 for (i = 0; s[i] >= '0' && s[i] <= '9'; ++i)
 n = 10 * n + (s[i] - '0');
 return n;
}

/* lower: convert single character
 * c to lower case; ASCII only */
int lower(int c) {
 if (c >= 'A' && c <= 'Z')
 return c + 'a' - 'A';
 else
 return c;
}

17Tuesday, 27 September 11

Type conversion

• When an operator has different types, they are
converted to a common type according to simple rules

• “lower” operands are promoted into “higher” types, e.g.

• If either operand is long double, convert the other to long double.

• Otherwise, if either operand is double, convert the other to double.

• Otherwise, if either operand is float, convert the other to float.

• Otherwise, convert char and short to int.

• Then, if either operand is long, convert the other to long.

• Note, that if floats are converted into ints, the fractional part
is truncated.

• Values on the right hand side of an assignment are converted
into the left type

• e.g int i=5.3; /* i has the value 5 */

18Tuesday, 27 September 11

Forcing a type conversion
through a cast

• Explicit type conversions can forced in any expression using a
cast

• (type name) expression

• This changes the type of the result of the expression to the
specified type (in parentheses).

• Useful if you want to call an expression on something of a different
type

• Casts become more important when using pointers

• A cast tells the compiler how to interpret a variable

• The type void * can be used to “anonymously” pass a pointer, but the
compiler cannot do anything until it is cast to another object type

19Tuesday, 27 September 11

Example of type
conversion

#include <stdio.h>
#include <limits.h>

int main() {
 short sm = SHRT_MAX;
 unsigned short um = USHRT_MAX;
 char c;

 short sr = sm + 1;
 short ur = um + 1;
 c = sm;

 printf("unsigned short um = %d; um + 1 = %d\n", um, ur);
 printf("short sm = %d; sm + 1 = %d\n", sm, sr);
 printf("char c = sm; c = %d\n", c);
 printf("(double) sm = %f\n", (double) sm);

 return 0;
}

% ./a.out
unsigned short um = 65535; um + 1 = 0
short sm = 32767; sm + 1 = -32768
char c = sm; c = -1
(double) sm = 32767.000000
%

20Tuesday, 27 September 11

Increment / Decrement
Operators

• Increment operator: adds 1 to the operand

• Decrement operator: subtracts 1 from the operand

• Both can be used as either prefix or postfix operators:

• ++n increments n before its value is used in the expression

• n++ increments n after its value is used in the expression

• In the example below, x = 5, whereas y = 7

 ...
 n = 5;
 x = n++; /* n now has the value 6 */
 y = ++n; /* n has the value 7 */
 ...

21Tuesday, 27 September 11

Example code using the
increment operator

/* squeeze: delete all c from s */
void squeeze(char s[], int c) {
 int i, j;
 for (i = j = 0; s[i] != '\0'; i++)
 if (s[i] != c)
 s[j++] = s[i]; /* copy the value of s[i] into s[j]
 * and then increment j
 */
 s[j] = '\0'; /* terminate the string */
}

The function takes a string (char array) s, and modifies
that array to remove all values of c found it s.

NOTE: that the array s is side-affected; no value is
returned from the function (i.e. its return value is void)

Traverse through s until the end of
string character is found. The index i is
used to check a character, whereas j
refers to the character that is modified.

We only copy characters we want to
copy (i.e. we ignore characters of
type c). j is only incremented when
we do this copying.

Finally we add the end of string character at position j.

NOTE that if characters have been deleted, then j < i.

22Tuesday, 27 September 11

Bitwise Operators

• Operators for bit manipulation

• Only applicable to certain primitive types

• char, short, int, long

• Often used for bit masking

• AND operator used to mask off defined
bits

• OR operator used to switch on bits

• Shift operators perform left/right shifts

• left shift fills vacated spaces with zeros

• right shift on unsigned will fill with zero

Operator Symbol
Bitwise AND &

Bitwise inclusive OR |
Bitwise exclusive OR ^

Left shift <<
Right shift >>

One’s complement (unary) ~

Applications

Bitwise operators are
commonly used in low-level
programming, such as device
drivers etc. System calls that
may take a lot of options
often use a bitwise parameter,
constructed by ORing a
number of constants; e.g.
setting file permissions

23Tuesday, 27 September 11

Assignment Operators
• Assignment expressions that

modify variables by a factor of
themselves can be shortened
using assignment operators

• e.g. i = i + 2 can be rewritten
as i += 2;

• If expr1 and expr2 are
expressions

• expr1 op= expr2

• Is equivalent to:

• expr1 = (expr1) op (expr2)

Operator Description Example (x=6)

+= Addition x += 4; /* x == 10 */

-= Subtraction x -= 2; /* x == 4 */

*= Multiplication x *= 3; /* x == 18 */

/= Division x /= 3; /* x == 2 */

%= Modulo x %= 5; /* x == 1 */

<<= Bitwise Shift Left x <<= 2; /* x == 24 */

>>= Bitwise Shift Right x >>= 1; /* x == 3 */

&= Bitwise AND x &= 3; /* x == 2 */

^= Bitwise Exclusive OR x ^= 11; /* x == 15 */

|= Bitwise Inclusive OR x |= 11; /* x == 13 */

24Tuesday, 27 September 11

Control Flow
• Almost all of the control flow constructs used in Java are

based on the ones in C

• These include:

• Conditional Constructs

• If-Else, Else-If, Switch

• Looping Constructs

• while, for, do-while

• Flow constructs

• break, continue, return, goto and labels

• These constructs operate over:

• A single statement terminated by a semicolon - ;

• A block of code surround by left and right braces - { }

25Tuesday, 27 September 11

If-Else and Else-If

• These are used to express
decisions, based on the truth
value of the expression

• The first statement is executed if
the expression is true

• The else part is optional, but is
executed if the expression is false

• Further If statements can follow
the else part (see Else-IF)

If-Else

if (expression)

 statement1
else

 statement2

Else-IF

if (expression)

 statement1
else if (expression)

 statement2
else if (expression)

 statement3
else

 statement4

26Tuesday, 27 September 11

If-Else Ambiguity
• Because the else part is optional, ambiguities can occur when

nesting if statements

• The else statement is associated with the closest (inner) if
statement.

• This is indicated by the indentation in the above example

• Blocks can be used to change this behaviour

if (n > 0)
 if (a > b)
 z = a;
 else
 z = n;

if (n > 0) {
 if (a > b)
 z = a;
} else
 z = n;

27Tuesday, 27 September 11

switch

• Used for multiway decision tests

• Each case is labelled by a constant expression (const-expr)

• The switch expression is then compared with each const-expr

• When one is found, the following code is then executed

• An optional default case can be used when no other
expressions are matched.

• Cases and defaults can occur in any order

switch
switch (expression) {

 case const-expr: statements

 case const-expr: statements

 default: statements

}

28Tuesday, 27 September 11

while & do-while

• Loop, until expression is true

• They differ only in when the expression is tested

• While

• Evaluate the expression. If true, then execute the statement/body

• Once complete, return to the expression and repeat...

• Do-While

• Execute the statement/body. Then evaluate the expression

• If true, then repeat the execution of the statement/body...

• While is used more than do-while

• However, do-while is invaluable when the body must be
executed at least once.

while
while (expression)

 statement

do-while
do

 statement

while (expression)

29Tuesday, 27 September 11

for

• For loops are similar to while
loops, but more compact.

• Three expressions:

• for (expr1; expr2; expr3)

• expr1 is executed once before the loop

• expr2 is the condition that is evaluated
prior to executing the statement

• expr3 is executed after the statement,
prior to re-evaluating the condition expr2

• Any of the expressions can be omitted

• An expression may consist of multiple
expressions, separated by a comma

for
for (expr1; expr2; expr3)

 statement

for (expr1; expr2; expr3)
 statement

...is equivalent to...

expr1;
while (expr2){
 statement
 expr3
}

30Tuesday, 27 September 11

Example of using
commas in for loops

#include <string.h>

/* reverse: reverse string s in place */
void reverse(char s[]) {
 int c, i, j;

 for (i=0, j=strlen(s)-1; i<j; i++, j--) {
 c = s[i];
 s[i] = s[j];
 s[j];
 }
}

The function takes a string (char array) s, and reverses the order of characters in the string.

NOTE: that the array s is side-affected; no value is returned from the function (i.e. its return
value is void)

The integers i and j are used to count
from each end of the array.

• i is initialised to the first character
(at position 0)

• j is initialised to the last character
(at strlen(s)-1)

NOTE: strlen(s) returns the length of a
string in a char array, by counting the
number of characters before the null
(end of string) character.

The first and last character are swapped, followed by the first+1 and last -1, etc.
This continues until they meet in the middle.

31Tuesday, 27 September 11

Break and Continue
• Sometimes it is convenient to exit from a loop without

evaluating the condition

• Continue suspends the current iteration of a loop, forcing the
condition evaluation and (if true) starting the next loop iteration

• Break exits the loop immediately

/* trim: remover trailing blanks, tabs, newlines */
int trim(char s[]) {
 int n;
 for (n=strlen(s)-1; n>=0; n--)
 if (s[n] != ‘ ‘ && s[n] != ‘\t‘ && s[n] != ‘\n‘)
 break;
 s[n+1] = ‘\0’;
 return n; /* return the length of the trimmed string */
}

for (i=0; i<n; i++)
 if (a[i] < 0) /* skip negative elements */
 continue;
 ... /* do positive elements */

32Tuesday, 27 September 11

Goto and labels
• Goto allows the process to jump to a label in the

code

• Typically makes code hard to understand and maintain

• Rarely used, and considered bad practice

• Whilst formally not necessary, they sometimes
make code easier to manage, especially for error
handling with nested structures, when break
cannot be used

for (i=0; i<n; i++)
 for (j=0; j<m; j++)
 if (a[i] == b[j])
 goto found;
...
/* code to execute if no common element is found in both a[] and b[] */
...
found:
 /* got one! a[i] == b[j] */
 ...

for (...)
 for (...) {
 if (disaster)
 goto error;
 }
 ...
error:
 /* clean up the mess */

33Tuesday, 27 September 11

Return
• The return statement is used for returning a value from the

called function

• May appear anywhere in the function, but will terminate the function’s
execution.

• return can also be used to terminate the function without specifying a
return value

• However, the calling function can ignore the returned value!

• If no return statement is used, execution will terminate, and no
value will be returned

• If a return-type is specified, but no value is returned, then garbage
will be returned

• Although this is not illegal, a compiler warning will probably be generated.

Return

return expression;

 if (y > x)
 return y;
 ...
 return x+1;
}

34Tuesday, 27 September 11

To Summarise
• We’ve now covered the basics of the language.

• Variables, constants, externs and statics

• Data types and enumerated types

• Declarations and definitions

• Functions and function prototypes

• Operators

• Type conversion

• Conditional, flow, and looping constructs

• The next slide set will explore pointers, arrays,
memory management and data structures

35Tuesday, 27 September 11

Exercises
• Exercise 2-3. Write a function htoi(s), which converts a string of hexadecimal

digits (including an optional 0x or 0X) into its equivalent integer value. The
allowable digits are 0 through 9, a through f, and A through F.

• Exercise 2-4. Write an alternative version of squeeze(s1,s2) that deletes each
character in s1 that matches any character in the string s2.

• Exercise 3-2. Write a function escape(s,t) that converts characters like
newline and tab into visible escape sequences like \n and \t as it copies the
string t to s. Use a switch. Write a function for the other direction as well,
converting escape sequences into the real characters.

• Exercise 3-3. Write a function expand(s1,s2) that expands shorthand
notations like a-z in the string s1 into the equivalent complete list abc...xyz
in s2. Allow for letters of either case and digits, and be prepared to handle
cases like a-b-c and a-z0-9 and -a-z. Arrange that a leading or trailing - is
taken literally.

36Tuesday, 27 September 11

