
COMP327
Mobile Computing
Session: 2011-2012

Lecture Set 2a - Introduction to C

1Tuesday, 27 September 11

In these Tutorial Slides...

• History of C

• How it relates to OOP

• Introduction to C

• K&R’s “Hello World!”

• Compiling C

• Walkthrough of the K&R Chapter 1
Tutorial

2Tuesday, 27 September 11

Overview of these
Tutorials

• Much of the material here has been sourced from a variety of places

• Mainly from K&R’s C (2nd Edition)

• The “C Bible” from the guys who wrote the language

• This is a *great* book from which to learn C

• Revised from the 1st edition and based on the ANSI C standard

• Aim is to provide not only an understanding of the language, but to
understand what is happening “under the hood”

• Invaluable for:

• Debugging code, and writing good, safe code

• Managing and manipulating memory

• Understanding why the language works as it does

• (and hence the same for Objective-C, Java, etc)

• Aim is also to provide the basis for understanding Objective-C, so
that you have the language skills to use the iPhone SDK

• NOTE: The content in these slides can be dense, but
they are meant also to act as a reference!

Published in 1988, 10 years
after the first edition

3Tuesday, 27 September 11

Brief History of C
• Developed in the 1970s by Dennis Ritchie at Bell Laboratories

• Language features derived from B (Ken Thompson, 1970), itself a stripped down
version of BCPL.

• Closely tied to the development of Unix (Ken Thompson, Dennis Ritchie, Brian
Kernighan, Douglas McIlroy, Joe Ossanna & Bell Labs), which was developed in 1969
and re-written in 1972 in C.

• Standardized in 1989 by ANSI (American National Standards Institute)
known as ANSI C

• International standard (ISO) in1990 which was adopted by ANSI and is known as C89

• The standard was also updated in 1995 (C95) and 1999 (C99)

• Extended with Object Oriented Programming support

• C++ extends C to include support for OOP and other features that facilitate large
software development projects

• C is not strictly a subset of C++, but it is possible to write “Clean C” that conforms to both the C++
and C standards.

• Objective-C is a strict superset of ANSI C that supports OOP

• Very different (and somewhat simpler) to C++; it inherits many principles from Smalltalk

T
h

e
 L

a
n

gu
a
ge

 “
C

”

L
a
n

gu
a
ge

s
e

vo
lv

e
d

fr
o

m
 “

C
”

4Tuesday, 27 September 11

Why use C?
• C is an imperative language (procedural)

• Designed with a straightforward syntax for simple compilation

• structured programming

• weakly typed with a static type system

• support for lexical variable scope

• Provides low-level access to memory

• including addressable objects such as device control registers

• Language constructs map efficiently to machine instructions

• Requires minimal run-time support

• Widely used to code applications previously written in assembly
language

• Originally used extensively for system level programming

• Subsequently employed for application programming

• Has provided the basis for more recent, higher level languages

• C++, Objective-C, Java, C#, etc

5Tuesday, 27 September 11

C, Operating Systems
and Embedded Systems
• When writing an OS kernel, efficiency is crucial

• This requires low-level access to the underlying hardware:

• e.g. programmer can leverage knowledge of how data is laid out in memory, to enable faster
data access

• Such requirements are still important for embedded systems

• e.g. small devices where memory and processor speed are limited, or real-time and safety-
critical systems

• Unix originally written in low-level assembly language – but there
were problems:

• No structured programming (e.g. encapsulating routines as “functions”,
“methods”, etc.) – code hard to maintain

• Code worked only for particular hardware – not portable

• Implementing Unix in C facilitated portability to other architectures

• only a small amount of assembly code was therefore required per machine

6Tuesday, 27 September 11

C’s characteristics

• C is one of the most popular programming languages of all time

• There are very few computer architectures for which a C compiler
does not exist.

• C takes a middle path between low-level assembly language…

• Direct access to memory layout through pointer manipulation

• Concise syntax, small set of keywords

• … and a high-level programming language like Java:

• Block structure

• Some encapsulation of code, via functions

• Type checking (pretty weak)

• Library support for SDKs and 3rd party code

7Tuesday, 27 September 11

C’s Dangers
• HOWEVER...

• C is not object oriented!

• Can’t “hide” data as “private” or “protected” fields

• You can follow standards to write C code that looks object-oriented, but you
have to be disciplined – will others working on your code also be disciplined?

• C has portability issues

• Low-level “tricks” may make your C code run well on one platform – but the
tricks might not work elsewhere

• Compiled executables are architecture dependent, unlike Java’s bytecode

• The compiler and runtime system will rarely stop your C
program from doing stupid/bad things

• Compile-time type checking is weak

• No run-time checks for array bounds errors, etc. like in Java

8Tuesday, 27 September 11

Java vs. C
• Many similarities with primitive data types

• char, short, int, long, float, and double

• size of these data types in C varies with destination architecture

• Java also introduces boolean and byte (8-bit integers)

• Java chars are 16-bit Unicode, whereas C chars are 8-bit

• Operators and Statements are similar in both languages

• if, else, switch, case, break, default, for, do, while, continue, and return.

• However:

• Java checks for errors or enforces error checking

• Java provides expandable arrays, container classes etc.

• Java arrays are separate objects; C arrays are just pointers to memory

• Java has string objects; C relies on C char array

• Java has a huge number of classes libraries and packages

• But C has better access to system calls and the OS

• Java replaces pointers, pointer arithmetic & memory
management with reference, subscription & garbage collection

Runtime /
Performance

Java compiles to
bytecode, which is then
run within a Java virtual
machine. The machine
provides many services
in the background, such
as thread management
and garbage collection.

The C environment is
simpler and runs native
executables. Therefore
performance is typically
faster - both due to the
lack of other services,
and because of the lack
of interpretation.

9Tuesday, 27 September 11

Getting Started
K&R’s Tutorial Intro

• Every first program should be to print the words
“hello, world”

• Create a file that ends in “.c”

• Compile it using cc or gcc

• gcc hello.c

• This generates an executable called a.out

• which can then be run from the command line

• the OS will then run this as native executable code

% ./a.out

hello, world

%

#include <stdio.h>

main() {

 printf(“hello, world\n”);

}

10Tuesday, 27 September 11

What is happening?

#include <stdio.h>

main() {

 printf(“hello, world\n”);

}

This tells the compiler to include info
about the standard input/output library

- necessary for the printf function. A function definition consists of a
name, a list of arguments and then

commands enclosed in braces.

The topmost function is “main”,
which must always be defined.

This definition assumes no
return value and no arguments.

A function definition consists
of a name, a list of arguments
and then commands enclosed

in braces.

printf is a library function followed by a
parenthesised list of arguments. It prints
a string to standard output (without any
inplicit terminating newline character).

A sequence of characters inside double
quotes is a string constant. The \n is

notation for a newline character.

11Tuesday, 27 September 11

Compilation and
Development Environment

• A C development environment includes

• System libraries and headers: a set of standard libraries and their header files.

• For example see /usr/include and glibc.

• Application Source: application source and header files

• C preprocessor (cpp): used to insert common definitions into source files

• Compiler: converts source to object code for a specific platform

• Linker: resolves external references and produces the executable module

• Header files (*.h) export interface definitions

• Function prototypes, data types, macros, inline functions and other common
declarations

• Do not place source code (i.e. definitions) in the header file with a few exceptions.

• inline’d code macro definitions

• class definitions

• constant definitions (i.e. #defines)

C Source
File

Header
File

12Tuesday, 27 September 11

Standard Header Files
• Several standard libraries available (though tiny compared to Java):

• stdio.h – file and console (also a file) IO: perror, printf, open, close, read, write, scanf,
etc.

• stdlib.h - common utility functions: malloc, calloc, strtol, atoi, etc

• string.h - string and byte manipulation: strlen, strcpy, strcat, memcpy, memset, etc.

• ctype.h – character types: isalnum, isprint, isupport, tolower, etc.

• errno.h – defines errno used for reporting system errors

• math.h – math functions: ceil, exp, floor, sqrt, etc.

• signal.h – signal handling facility: raise, signal, etc

• stdint.h – standard integer: intN_t, uintN_t, etc

• time.h – time related facility: asctime, clock, time_t, etc.

• More information available by using the Unix man command

• e.g. man 3 printf, or view the files in /usr/include

Full list can be viewed at http://en.wikipedia.org/wiki/C_library
13Tuesday, 27 September 11

Compiling C code
(from the Unix command line)
• To compile and link a C program that is contained entirely in one source file:

• % cc program.c

• The executable program is called a.out by default.

• If you don’t like this name, choose another using the –o option:

• % cc program.c –o exciting_executable

• To compile and link several C source files:

• % cc main.c extra.c more.c

• This will produce object (.o) files, that you can use in a later compilation:

• % cc main.o extra.o moreV2.c

• Here, only moreV2.c will be compiled – the main.o and extra.o files will be used for
linking.

• To produce object files, without linking, use -c:

• % cc –c main.c extra.c more.c

14Tuesday, 27 September 11

Object file
hello.o

Compiling C code
• A C program consists of

source code in one or
more files

• Each source file is run
through the preprocessor
and compiler, resulting in
a file containing object
code

• Object files are tied
together by the linker to
form a single executable
program

Source file
hello.c

Preprocessor

Compiler

Object file
other.o

Source file
other.c

Preprocessor

Compiler

Library
Files Linker Executable

file a.out

15Tuesday, 27 September 11

Separate Compilation
• Advantage: Quicker compilation

• When modifying a program, a programmer typically edits only a few
source code files at a time.

• With separate compilation, only the files that have been edited since the
last compilation need to be recompiled when re-building the program.

• For very large programs, this can save a lot of time.

• Various tools can be used to manage object compilation

• Makefile can be used to manage dependencies between object files,
ensuring that only modified source files necessary for an application are
recompiled.

• Often used in larger projects, where other tools are used, such as lex and yacc for parsers

• IDE’s such as Apple’s Xcode or Microsoft Visual Studio also do this...

16Tuesday, 27 September 11

Example Makefile

17Tuesday, 27 September 11

Fahrenheit-Celsius v1

#include <stdio.h>

/* print Fahrenheit-Celsius table
 for fahr = 0, 20, ..., 300 */

main() {
 int fahr, celsius;
 int lower, upper, step;

 lower = 0; /* lower limit of temperature scale */
 upper = 300; /* upper limit */
 step = 20; /* step size */

 fahr = lower;
 while (fahr <= upper) {
 celsius = 5 * (fahr-32) / 9;
 printf(“%d\t%d\n”, fahr, celsius);
 fahr = fahr + step;
 }
}

Comments are any strings between
/* and */ and can span multiple lines.
NOTE: comments can’t be nested.

Variables are declared before they are used,
normally before any executable statements.

They declare the properties of variables (and
consequently their memory requirements).

Note that these variables are
ints (i.e. no fractional part).

Computation starts with the
assignment statements.

Individual statements are
terminated with a semi-colon.

The while loop is then
responsible for the

main calculation, and
displaying the results.

18Tuesday, 27 September 11

Fahrenheit-Celsius v1

 ...
 fahr = lower;
 while (fahr <= upper) {
 celsius = 5 * (fahr-32) / 9;
 printf(“%d\t%d\n”, fahr, celsius);
 fahr = fahr + step;
 }
 ...

Check the condition in the parenthesis.
If true (i.e. fahr is less than or equal

to upper), then execute body.
Body can be a single statement

(terminated by a semicolon) or several
statements enclosed in braces.

Celsius temperature is
computed and assigned
to the variable celsius.

Note that we multiply by 5
and then divide by 9, instead

of multiplying by 5/9.
This is because the numbers 5

and 9 are integers, as are
celsius and fahr. Thus all

calculations are done as
integer calculations (and 5/9

would evaluate to 0)

printf takes as arguments a string of characters,
and optional variables (depending on the

formatting characters, denoted by %).
Thus, this line prints an integer, a tab (\t),

another integer, and the newline character (\n).

%./a.out
0! -17
20! -6
40! 4
60! 15
80! 26
100!37
120!48
140!60
160!71
180!82
200!93
220!104
240!115
260!126
280!137
300!148
%

%d signed decimal int %c character

%f float/double %s string (char array)

%e double (with exponent) %% itself

19Tuesday, 27 September 11

Fahrenheit-Celsius v2
#include <stdio.h>

/* print Fahrenheit-Celsius table
 for fahr = 0, 20, ..., 300 */

main() {
 float fahr, celsius;
 float lower, upper, step;

 lower = 0; /* lower limit of temperature scale */
 upper = 300; /* upper limit */
 step = 20; /* step size */

 fahr = lower;
 while (fahr <= upper) {
 celsius = (5.0/9.0) * (fahr-32.0);
 printf(“%3.0f\t%6.1f\n”, fahr, celsius);
 fahr = fahr + step;
 }
}

This version declares the
variables as floats, and performs

floating point arithmetic.

We calculate the
fraction 5.0/9.0 before

multiplying it with
fahr-32.0. Note that

the numbers have a
decimal point to

indicate that they are
floating point

operands.
If we used 5/9, this

would be evaluated as
integer division

(resulting in zero)
before then being
multiplied by the

float.

The printf statement displays values as floats. The first is at least
3 characters wide, but no characters after the decimal point.

The second is at least 6 characters wide, with 1 decimal point.

%./a.out
 0! -17.8
 20! -6.7
 40! 4.4
 60! 15.6
 80! 26.7
100! 37.8
120! 48.9
140! 60.0
160! 71.1
180! 82.2
200! 93.3
220! 104.4
240! 115.6
260! 126.7
280! 137.8
300! 148.9
%

20Tuesday, 27 September 11

Fahrenheit-Celsius v3

#include <stdio.h>

/* print Farenheit-Celsius table */

main() {
 int fahr;

 for (fahr = 0; fahr <= 300; fahr = fahr + 20)
! printf("%3d %6.1f\n", fahr, (5.0/9.0)*(fahr-32));
}

Now most of the variables have been eliminated, with the
upper and lower limits appearing as magic numbers in the
for loop, with the calculation appearing in the printf statement.

Note: as printf expects a
float, any expression that
generates a float can be
used. If an expression

produces another type, then
a cast is required (see later).

...
#define LOWER 0 /* lower limit of table */
#define UPPER 300 /* upper limit */
#define STEP!20 /* step size */
...
 for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)
...

To avoid magic numbers appearing,
symbolic constants can be
defined. Note that the convention
is to use UPPER case. These
symbols are replaced by their
values by the pre-processor.

21Tuesday, 27 September 11

Character I/O
#include <stdio.h>

/* copy input to output; 1st version */
main() {
 int c;
 c = getchar();
 while (c != EOF) {
 putchar(c);
 c = getchar();
 }
}

#include <stdio.h>

/* copy input to output; 2nd version */
main() {
 int c;
 while ((c = getchar()) != EOF)
 putchar(c);
}

In this first version we read a character from
the standard input (e.g. keyboard) and write it
to standard output (e.g. screen).

EOF is a value returned when the end of file
is reached. We therefore test for it to know
when to end. As EOF is an integer defined in
stdio.h, we use ints instead of chars.

An assignment returns the value of itself.
Thus, an assignment can also appear in an
expression. This is useful, as the assignment
from getchar() can appear within the
boolean test for the while loop, allowing a
more concise version of this code.

22Tuesday, 27 September 11

A note on precedence
Operators Associativity
() [] -> . left to right

! ~ ++ -- + - * (type) sizeof right to left
* / % left to right
+ - left to right

<< >> left to right
< <= > >= left to right

 == != left to right
& left to right
^ left to right
| left to right

&& left to right
|| left to right
?: right to left

 = += -= *= /= %= &= ^= |=
<<= >>=

right to left

, left to right

With the previous example, parentheses were required
as equality tests (== or !=) have a higher precedence
than assignments or assignment operators.
 c = getchar() != EOF
would be equivalent to
 c = (getchar() != EOF)
which would return 1 or 0, and not the character!

In
cr

ea
si

ng
 p

re
ce

de
nc

e
Conditional expressions (?:) allow if-then tests to
appear within assignments, in the form:
 expr1 : expr2 ? expr3

For example: if (a > b)
 z = a;
else
 z = b;

z = (a > b) ? a : b;

is
equivalent

to

Other examples:

for (i = 0; i < n; i++)
 printf("%6d%c", a[i], (i%10==9 || i==n-1) ? '\n' : ' ');

printf("You have %d items%s.\n", n, n==1 ? "" : "s");

23Tuesday, 27 September 11

Counting Characters
#include <stdio.h>

/* count characters in input; 1st version */
main() {
 long nc;

 nc = 0;
 while (getchar() != EOF)
 ++nc;
 printf("%ld\n", nc);
}

#include <stdio.h>

/* count characters in input; 1st version */
main() {
 double nc;

 for (nc = 0; gechar() != EOF; ++nc)
;

 printf("%.0f\n", nc);
}

This version counts (in a long int) the number
of characters found in the input. If a long
were only 16 bits (on earlier architectures),
then a maximum of 32767 chars could be
read! The %ld in printf states the number is a
long int.

This variant uses a double float to count the
characters, as doubles are bigger than longs.

All the work is done by the for statement,
which has no body! The isolated semi-colon
is a null statement (i.e. do nothing).

Note in both cases, with empty input (i.e.
EOF is the first character,) then nothing is
counted, as test are done before executing
the for or while body.

24Tuesday, 27 September 11

Counting Lines
#include <stdio.h>

/* count lines in input */
main() {
 int c, nl;

 nl = 0;
 while ((c = getchar()) != EOF)
 if (c == '\n')
 ++nl;

 printf("%d\n", nl);
}

Equality Tests

The equality test == is used to check if the
character is a newline \n. This is different
to the = assignment operator.

Often, using the assignment operator
instead of the equality test generates no
error, but causes a bug. For example, the
bug...

if (c=5)

...is valid, as the expression c=5 also
returns 5, which is non-zero, and thus true.
To avoid this when testing a constant, put
the constant first. E.g.

 if (5 = c)

is invalid and will raise a compiler error, but

 if (5 == c) is valid!

Characters as ints

A character in single quotes (i.e. a character
constant) represents an integer value equal to the
numerical value of the character in the machine's
character set. E.g. ‘A’ is ascii value 65. The
newline character ‘\n’ is ascii value 10.

NOTE that although there are two characters
between the quotes, the backslash indicates that
the sequence is an escaped character.

25Tuesday, 27 September 11

Counting Words
#include <stdio.h>

#define IN! 1 /* inside a word */
#define OUT 0 /* outside a word */

/* count lines, words, and characters in input */
main() {
 int c, nl, nw, nc, state;

 state = OUT;
 nl = nw = nc = 0;
 while ((c = getchar()) != EOF) {
 ++nc;
 if (c == '\n')
 ++nl;
 if (c == ' ' || c == '\n' || c = '\t')
 state = OUT;
 else if (state == OUT) {
 state = IN;
 ++nw;
 }
 printf("%d %d %d\n", nl, nw, nc);
}

A basic implementation of “wc”

The integer state determines
whether we are in or out of a word.
The constants IN and OUT make the
code easier to read, than using 1 and 0.

This line assigns all the variables to 0.
Because the assignment operator
returns its assignment value, this is
equivalent to writing:

nl = (nw = (nc = 0));

The if-then-else specifies a true and an
(optional) false statement. The
statement can be a single statement
(ending in semicolon), or multiple
statements within braces.

26Tuesday, 27 September 11

Counting Words
 ...
 if (c == ' ' || c == '\n' || c = '\t')
 state = OUT;
 else if (state == OUT) {
 ...

Testing for word boundaries

The code tests for words by looking for
spaces (‘ ‘), newlines (‘\n’), or tab (‘\t’)
characters.

Logical AND and Logical OR

Tests can be combined by using logical
AND (&&) and logical OR (||). These
expressions are evaluated from left to
right. However, the evaluation stops as
soon as the truth or falsehood of the
result is known. Thus, not all the tests
in a logical expression may be called.

This can be used to create conditional
sub-expressions, by including tests
before performing actions in an
expression. If the test fails in an AND
expression (or succeeds in an OR
expression), then the remainder of the
logical expression will not be evaluated.

for (i=0; i < lim-1 &&
 (c=getchar()) != '\n'
 && c != EOF; ++i)
 s[i] = c;

The code fragment (below) is taken from a program
to store characters (read from stdin) into an array s
of size lim, where i characters have been counted.

Before reading the new character, we should check
there is space in the array. If the test i < lim-1
fails, then we do not go on to read another
character. Likewise, we only test that c != EOF
after the character has been read.

27Tuesday, 27 September 11

Counting using Arrays
#include <stdio.h>

/* count digits, white space, others */
main() {
 int c, i, nwhite, nother;
 int ndigit[10];

 nwhite = nother;
 for (i = 0; i < 10; ++i)
 ndigit[i] = 0;

 while ((c = getchar()) != EOF)
 if (c >= '0' && c <= '9')
 ++ndigit[c-'0'];
 else if (c == ' ' || c == '\n' || c == '\t')
 ++nwhite;
 else
 ++nother;

 printf("digits =");
 for (i = 0; i < 10; ++i)
 printf(" %d", ndigit[i]);
 printf(", white space = %d, other = %d\n",
 nwhite, nother);
}

A simple program to count the
occurrence of digits, whitespace
and other characters.

This declares an array of 10 digits
(with an array subscript of 0..9).
Array declarations only allocate
static memory, so their values
need to be initialised (this goes for
all variables). Note, there is no
bounds checking in C, so testing
or setting values beyond the array
will not generate a compiler error.

As chars are actually small (8-bit)
ints, they can be used in integer
arithmetic. Given that all
character sets (ascii etc) store
digits sequentially, testing chars to
see if they are digits (and
retrieving that number) is simple.

28Tuesday, 27 September 11

Character Arrays
#include <stdio.h>

#define MAXLINE 1000!/* maximum input line length */

int getline(char line[], int maxline);
void copy(char to[], char from[]);

/* print the longest input line */
main() {
 int len; /* current line length */
 int max; /* maximum length seen so far */
 char line[MAXLINE]; /* current input line */
 char longest[MAXLINE]; /* longest line saved here */

 max = 0;
 while ((len = getline(line, MAXLINE)) > 0)
 if (len > max) {
! max = len;
! copy(longest, line);
! }
 if (max > 0) /* there was a line */
 printf("%s", longest);
 return 0;
}

A simple program (split over
two slides) to read text and
print the longest input line.

The algorithm consists of
main, a function to get a new
line from the input, and a
function to save the line if it is
the longest encountered.
These two functions are
declared before being used.

getline returns the length of
the current line. Blank lines
consist of at least one
character (newline); so a zero
is returned to signify the end of
the file.

29Tuesday, 27 September 11

Character Arrays
There is no “string” data type in C. Instead, strings
are represented as char arrays, with a null character
‘\0’ (whose value is zero) at the end of the string in
the array.

If the string constant “hello\n” appears, it is
stored in a seven element char array (six elements
for the characters, and one for the null character).

/* getline: read a line into s, and return length */
int getline(char s[], int lim) {
 int c, i;

 for (i=0; i < lim-1 && (c=getchar())!=EOF && c!= '\n'; ++i)
! s[i] = c;
 if (c == '\n')
! s[i++] = c; /* If c is a newline char, then add this */
 s[i] = '\0';
 return i;
}

/* copy: copy 'from' into 'to';
 * assume 'to' is big enough
 */
 void copy(char to[], char from[]) {
 int i;

 i = 0;
 while ((to[i] = from[i]) != '\0')
 i++;
}

h e l l o \n \0

As getline cannot know
how big an input line can
be, it checks for overflow
(i.e. it checks for the size
of the array, minus 1 char
for the null character).

30Tuesday, 27 September 11

Passing Arrays to functions

int getline(char line[], int maxline);
void copy(char to[], char from[]);
...
 char line[MAXLINE]; /* current input line */
 char longest[MAXLINE]; /* longest line saved here */
 ...
 while ((len = getline(line, MAXLINE)) > 0)

Function declarations that take arrays
should specify that the variable is an array
of a given type. This is treated as a pointer
(see later).

The array declaration states the elements’
type (in this case, char), and the size of the
array. All arrays defined in this way are
static (there memory is allocated in the
function definition), and are not resizable.

Call by Value

In C, all values are passed to functions by value. When a
function is called, a copy of the values passed as
arguments are used by the function. If the function then
changes these values, the changes are only local to the
function, and do not side-affect the calling function.

Sometimes, it is desirable for a function to modify the
calling function’s data. This is done by passing the
address of the variable (i.e. a pointer), discussed later.

Arrays as a special case?
When the name of an array is
used as an argument, the value
passed to the function is the
location or address of the
beginning of the array - there is
no copying of array elements.

When the name of the array is passed to getline, a copy of this location (i.e. its memory
address) is made, just as passing any variable. However, the array values can be modified!

31Tuesday, 27 September 11

External Variables
#include <stdio.h>

#define MAXLINE 1000!/* maximum input line length */

int max; /* maximum length seen so far */
char line[MAXLINE]; /* current input line */
char longest[MAXLINE]; /* longest line saved here */

int getline(void);
void copy(void);

/* print the longest input line */
main() {
 int len; /* current line length */
 extern int max;
 extern char longest[];

 max = 0;
 while ((len = getline()) > 0)

This variant of the previous application uses external variables, rather than passing local variables.

An external variable must be
defined only once (outside a
function) so that memory can be
allocated to it.

A external variable must be
declared (as extern) in each
function that wants to access it.
This ensures that the compiler can
check the type, but prevents any
additional memory from being
allocated.

Extern declarations (and function
prototypes) are not always
necessary - e.g. if their definitions
appear before their use.

Avoid using external (global) variables whenever possible
32Tuesday, 27 September 11

To Summarise
• We’ve now covered the conventional core of the language.

• Basic structure of main and functions

• The notion of libraries, header files, declaration of extern variables and
symbolic constants

• Basic variable types, their declaration and definition

• The main syntax of the language

• Character Arrays (for managing strings), and exploiting char arithmetic

• Expressions, precedence, logical operators, conditionals, loops

• Passing values by value, and arrays as memory references

• We’ve also looked at a brief history of C, and why it is still
significant as a programming language,

• The next slide set will explore other language features in detail

33Tuesday, 27 September 11

Simple Exercises
• Exercise 1-9. Write a program to copy its input to its output, replacing

each string of one or more spaces by a single space.

• Exercise 1-13. Write a program to print a histogram of the lengths of
words in its input. It is easy to draw the histogram with the bars
horizontal; a vertical orientation is more challenging.

• Exercise 1-14. Write a program to print a histogram of the frequencies
of different characters in its input.

• Exercise 1.15. Rewrite the Fahrenheit-Celsius v3 temperature conversion
program to use a function for conversion.

• Exercise 1-18. Write a program to remove trailing spaces and tabs from
each line of input, and to delete entirely blank lines.

• Exercise 1-19. Write a function reverse(s) that reverses the character
string s. Use it to write a program that reverses its input a line at a time.

34Tuesday, 27 September 11

Challenging Exercises
• Exercise 1-20. Write a program detab that replaces tabs in the input with the

proper number of spaces to space-out to the next tab stop. Assume a fixed
set of tab stops, say every n columns. Should n be a variable or a symbolic
parameter?

• Exercise 1-21. Write a program entab that replaces strings of spaces by the
minimum number of tabs and spaces to achieve the same spacing. Use the
same tab stops as for detab. When either a tab or a single space would suffice
to reach a tab stop, which should be given preference?

• Exercise 1-22. Write a program to “fold” long input lines into two or more
shorter lines after the last non-blank character that occurs before the n-th
column of input. Make sure your program does something intelligent with
very long lines, and if there are no spaces or tabs before the specified column.

• Exercise 1-23. Write a program to remove all comments from a C program.
Don't forget to handle quoted strings and character constants properly. C
comments don't nest.

35Tuesday, 27 September 11

