
Home Latest News Publications Projects People Teaching Contact

Sample Run 1
Please input a string to be checked
a=44;
TRUE
b=5*3;
TRUE
c=a/23;
TRUE
a*b+(c-4);
FALSE
-4
FALSE
END

Symbol Table
============
Symbol iden 0 = a
Symbol iden 1 = b
Symbol iden 2 = c

Sample Run 2
Please input a string to be checked
f=3*(2+(435*9));
TRUE
h=g
FALSE
END

Symbol Table
============
Symbol iden 0 = f

For the second practical assignment you are asked to write a Java
program to implement a simple parser and symbol table.

In many programming languages, certain constructs can be combined at
will to arbitrary complexity. The rules defining how this may be done are
best stated recursively. The following BNF syntax shows how an
assignment and arithmetic expression might be defined:

<statement> ::= <iden><assign><expression><terminal> | END
<expression>::= <term> | <expression><addop><term>
<term> ::= <primary> | <term> <multop> <primary>
<primary> ::= <unsignednumber> | <iden> | (<expression>)
<unsignednumber> ::= <digit> | <unsignednumber> <digit>
<digit> ::= 0 | 1 | 2 | ... | 9
<iden> ::= <letter>
<letter> ::= a | b | c | ... | y | z
<multop> ::= * | /
<addop> ::= + | -
<assign> ::= =
<terminal> ::= ;

Items in angle brackets <> are constructs in the language. They are
defined in terms of themselves or other constructs. The symbol ::= means
'is defined as.' The symbol | means 'or.' The symbol END corresponds to
the string “END”.

Your task is to write a Java program which determines whether one or
more given character string is a legal expression according to the rules
above, by using a top-down recursive parsing approach. When a
statement includes an assignment (i.e. <iden>=<expression><terminal>)
then the <iden> should be added into the symbol table. Any <iden>
characters within an expression (i.e. to the right of an assignment symbol)
should already exist within the symbol table.

The symbol table can be a simple, fixed sized array that *only* stores the
idens that are defined. There is no need to store values, or to evaluate the
arithmetic expressions.

The program should be called Parse.java (spelt exactly as shown), and it
should take in multiple strings as input when it runs, for example:

a=44;
c=9*7;
b=32*(2+c);
d=a*b+(c-4);

For each statement, if the statement is legal, then the output from your
program should be the single uppercase word “TRUE”. If the statement is
illegal, then the output from your program should be the single uppercase
word “FALSE”. Input should continue until the string END is typed in, in
which case you should display the symbol table (see sample output
opposite).

You may assume the expression contains no spaces, and that all
operands are single lower-case characters.

Your program should consist of a set of mutually recursive methods
corresponding to the items in the grammar. To get you started, here is the

COMP204 - PRACTICAL ASSIGNMENT 2
(2011) 25/03/2011

Days Hours Mins

Deadline:
3pm, Fri 8th April ’11

Sample Output

A PDF (printable) version of the
assignment is also available

Teaching Announcements 2010/11
Next >< Previous

http://www.csc.liv.ac.uk/~trp/Home.html
http://www.csc.liv.ac.uk/~trp/Latest_News/Latest_News.html
http://www.csc.liv.ac.uk/~trp/Publications.html
http://www.csc.liv.ac.uk/~trp/Projects.html
http://www.csc.liv.ac.uk/~trp/People.html
http://www.csc.liv.ac.uk/~trp/Teaching/Teaching.html
http://www.csc.liv.ac.uk/~trp/Contact.html
http://www.csc.liv.ac.uk/people/trp/Teaching_Resources/COMP204/COMP204_ca2.pdf
http://www.csc.liv.ac.uk/~trp/Teaching/Archive.html
http://www.csc.liv.ac.uk/~trp/Teaching/Entries/2011/2/18_COMP204_-_Practical_Assignment_1_(2011).html

outline for an Expression method:

begin
 if term(string) then TRUE;
OTHERWISE
 for each <addop> in the string
 if expression(start of string up to addop) and term(string after addop)
 then TRUE;
OTHERWISE FALSE
end

Note how the structure of the method closely follows the recursive
language syntax. Your other methods should do likewise.

SUBMISSION INSTRUCTIONS

Firstly, check that you have adhered to the following list:

1. All of your code is contained in a single file. Do NOT use more than
one file. The file's name MUST be 'Parse.java' (capital P; lower-case
everything else). This means that the main class name must also be
'Parse'.

2. Your program is written in Java, not some other language.
3. Your file is a simple text file; it must not be compressed or encoded in

any way.
4. The code for your expression method is based on the algorithm given

above, your other methods follow a similar structure and you have
thoroughly tested your program with both legal and illegal expressions.

5. Your program compiles and runs on the computer science
department’s Windows system. If you have developed your code
elsewhere (e.g. your home PC), port it to our system and perform a
compile/check test before submission. It is your responsibility to check
that you can log onto the department’s system well in advance of the
submission deadline.

6. Your program does not bear undue resemblance to anybody else's!
Electronic checks for code similarity will be performed on all
submissions and instances of plagiarism will be severely dealt with.
The rules on plagiarism and collusion are explicit: do not copy anything
from anyone else’s code, do not let anyone else copy from your code
and do not hand in 'jointly developed' solutions.

To submit your solution you must PRINT IT OUT AND SUBMIT IT

ELECTRONICALLY, and adhere to the following instructions:

Printout:
• The printouts required are the source code for your Java program and

the output it produces (i.e. no design documentation or test files are

required: I will test your program to see if it works)
• You must fill in a “Declaration on Plagiarism and Collusion Form”,

available from the One-Stop Student Shop, and attach this form to
your printouts. (Work will NOT be marked unless accompanied by this
form.)

• You must submit the above form and printouts of your work to the
One-Stop Student Shop, room G09 on the ground floor of the Ashton
Building before the deadline given above.

Electronic submission:
• Your code must be submitted to the departmental electronic

submission system at: http://cgi.csc.liv.ac.uk/cgi-bin/submit.pl?
module=comp204

• You need to login in to the above system and select ‘Practical 2’ from
the drop-down menu. You then locate the file containing your program
that you wish to submit, check the box stating that you have read and
understood the university’s policy on plagiarism and collusion, then
click the ‘Upload File’ button.

Work will be accepted only if it is submitted both electronically AND in the
form of a printout plus plagiarism declaration form, following the above

Lab Sessions

Labs have been arranged to allow for
students to work on the assignment, and to
request assistance from the Lab tutors.

Attendance is based on surname (as listed
below); please try to attend the sessions
allocated. If there are free terminals during
other sessions, then you are welcome to use
these, but do not prevent others from
attending their allocated labs.

Surnames A-F
 Tuesday: 09.00 - 10.00 (H105, GH)
Surnames G-K
 Tuesday: 10.00 - 11.00 (H105, GH)
Surnames L-Q
 Thursday: 11.00 - 12.00 (H116, GH)
Surnames R-Z
 Thursday: 12.00 - 13.00 (H116, GH)

MARKING SCHEME

Below is the breakdown of the mark scheme
for this assignment. Each category will be
judged on the correctness, efficiency and
modularity of the code, as well as whether or
not it compiles and produces the desired
output.

Implementation:
 statement method = 10 marks
 expression & term method = 10 marks
 primary method = 10 marks
 unsignednumber method = 10 marks
 addop, multop, letter, iden and
 digit methods = 15 marks
 symbol table class = 25 marks

Execution and Output = 10 marks
Comments and layout = 10 marks

This assignment contributes 10% to your
overall mark for Comp 204.

http://cgi.csc.liv.ac.uk/cgi-bin/submit.pl?module=comp204

instructions.

Finally, please remember that it is always better to hand in an incomplete
piece of work, which will result in some marks being awarded, as
opposed to handing in nothing, which will guarantee a mark of 0 being
awarded. Demonstrators will be on hand during the Comp 204 practical
sessions to provide assistance, should you need it.

