
Home Latest News Publications Projects People Teaching Contact

For the first practical assignment you are asked to write a Java program to
implement the following producer-consumer situation with the use of
semaphores:

The manager of a company employs 3 secretaries who are of varying
ability, but who all work extremely fast. Secretary A is the most
experienced secretary and is capable of typing up a letter once every
second. Secretary B is less experienced and is capable of typing up a
letter once every 2 seconds. Secretary C is the junior secretary and is
capable of typing up a letter once every 4 seconds. When a secretary has
typed up a letter he leaves it in the manager’s tray for him to remove and
sign. The manager removes and signs a letter from the tray once every 2
seconds. The tray can hold a maximum of 5 letters at a time. The tray’s
limited capacity sometimes causes the various workers to be delayed. For
example, if the tray is full after a letter has been typed, the secretaries
must wait until the manager makes a space available before they can add
another letter to the tray. Similarly, the manager must wait for at least one
letter to appear in the tray before he can take it out and sign it.

In your program, make use of threads to represent each of the workers
(the 3 secretaries and the manager), so that they can work in parallel. You
will also need to declare a tray object, and ensure that all communication
is properly synchronised to avoid indeterminacy and deadlock. While an
office worker is busy typing a letter or signing it, you should send that
thread to sleep for the appropriate time period. This can be achieved with
a call to:

 Thread.sleep(m);

where m is the number of milliseconds for which the thread should

suspend. You should implement a simple binary semaphore to protect

the critical region - do not use the method type synchronization to
manage a lock, or the methods wait(), notify() or notifyAll().

The output from your program should take the form of a running
commentary on the activity taking place in the office. An extract from it
might look something like the output opposite, although it is up to you
how you word this.

Run your simulation until the secretaries have typed and filed 7 letters
each, and the manager has removed and signed all 21 letters.

The purpose of this exercise is to demonstrate that you know how to deal
with problems that can occur in parallel computing. Therefore you do not
need to hand in any design documentation but your code MUST be well
commented so that it explains each step of your program. You may make

COMP204 - PRACTICAL ASSIGNMENT 1
(2011) 18/02/2011

Days Hours Mins

Deadline:
3pm, Friday 4th Mar ’11

...
Secretary 1 has typed letter = 6
Secretary 3 has typed letter = 2
A letter has been removed from the tray. Tray =
4
...the Manager has taken a letter from the tray to
sign; and has signed = 4
The Manager is ready to sign a letter...
A letter has successfully been added to the tray.
Tray = 5
Secretary 2 has added letter 3 to the tray
Secretary 2 is ready to type a new letter
A letter has been removed from the tray. Tray =
5
A letter has successfully been added to the tray.
Tray = 5
...the Manager has taken a letter from the tray to
sign; and has signed = 5
The Manager is ready to sign a letter...
Secretary 2 has typed letter = 4
etc.
...

Sample Output

A PDF (printable) version of the
assignment is also available

Teaching Announcements 2010/11
Next >< Previous

http://www.csc.liv.ac.uk/people/trp/Home.html
http://www.csc.liv.ac.uk/people/trp/Latest_News/Latest_News.html
http://www.csc.liv.ac.uk/people/trp/Publications.html
http://www.csc.liv.ac.uk/people/trp/Projects.html
http://www.csc.liv.ac.uk/people/trp/People.html
http://www.csc.liv.ac.uk/people/trp/Teaching/Teaching.html
http://www.csc.liv.ac.uk/people/trp/Contact.html
http://www.csc.liv.ac.uk/people/trp/Teaching_Resources/COMP204/COMP204_ca1.pdf
http://www.csc.liv.ac.uk/people/trp/Teaching/Archive.html
http://www.csc.liv.ac.uk/people/trp/Teaching/Entries/2011/1/13_COMP327_-_Revision_Lecture_2010.html

use of the code presented to you in the Comp 204 lecture notes
concerning the producer-consumer problem.

SUBMISSION INSTRUCTIONS

Firstly, check that you have adhered to the following list:

1. All of your code is contained in a single file. Do NOT use more than
one file. The file's name MUST be 'Office.java' (capital O; lower-case
everything else). This means that the main class name must also be
'Office'.

2. Your program is written in Java, not some other language.
3. Your file is a simple text file; it must not be compressed or encoded in

any way.
4. Your program compiles and runs on the computer science

department’s Windows system. If you have developed your code
elsewhere (e.g. your home PC), port it to our system and perform a
compile/check test before submission. It is your responsibility to check
that you can log onto the department’s system well in advance of the
submission deadline.

5. Your program does not bear undue resemblance to anybody else's!
Electronic checks for code similarity will be performed on all
submissions and instances of plagiarism will be severely dealt with.
The rules on plagiarism and collusion are explicit: do not copy anything
from anyone else’s code, do not let anyone else copy from your code
and do not hand in 'jointly developed' solutions. The only code you
may make use of is that presented to you in the lecture notes
concerning the producer-consumer problem.

To submit your solution you must PRINT IT OUT AND SUBMIT IT

ELECTRONICALLY, and adhere to the following instructions:

Printout:
• The printouts required are the source code for your Java program and

the output it produces (i.e. no design documentation or test files are

required: I will test your program to see if it works)
• You must fill in a “Declaration on Plagiarism and Collusion Form”,

available from the One-Stop Student Shop, and attach this form to
your printouts. (Work will NOT be marked unless accompanied by this
form.)

• You must submit the above form and printouts of your work to the
One-Stop Student Shop, room G09 on the ground floor of the Ashton
Building before the deadline given above.

Electronic submission:
• Your code must be submitted to the departmental electronic

submission system at: http://cgi.csc.liv.ac.uk/cgi-bin/submit.pl?
module=comp204

• You need to login in to the above system and select ‘Practical 1’ from
the drop-down menu. You then locate the file containing your program
that you wish to submit, check the box stating that you have read and
understood the university’s policy on plagiarism and collusion, then
click the ‘Upload File’ button.

Work will be accepted only if it is submitted both electronically AND in the
form of a printout plus plagiarism declaration form, following the above

Lab Sessions

Labs have been arranged to allow for
students to work on the assignment, and to
request assistance from the Lab tutors.

Attendance is based on surname (as listed
below); please try to attend the sessions
allocated. If there are free terminals during
other sessions, then you are welcome to use
these, but do not prevent others from
attending their allocated labs.

Surnames L-Q
 Tuesday: 09.00 - 10.00 (H105, GH)
Surnames R-Z
 Tuesday: 10.00 - 11.00 (H105, GH)
Surnames A-F
 Thursday: 11.00 - 12.00 (H116, GH)
Surnames G-K
 Thursday: 12.00 - 13.00 (H116, GH)

MARKING SCHEME

Below is the breakdown of the mark scheme
for this assignment. Each category will be
judged on the correctness, efficiency and
modularity of the code, as well as whether or
not it compiles and produces the desired
output.

Implementation of secretaries = 15 marks
Implementation of manager = 15 marks
Implementation of tray = 15 marks
Implementation of semaphores = 15
marks
Implementation of overall Office class =
20 marks
Output = 10 marks
Comments and layout = 10 marks

This assignment contributes 10% to your
overall mark for COMP 204.

http://cgi.csc.liv.ac.uk/cgi-bin/submit.pl?module=comp204

instructions.

Finally, please remember that it is always better to hand in an incomplete
piece of work, which will result in some marks being awarded, as
opposed to handing in nothing, which will guarantee a mark of 0 being
awarded. Demonstrators will be on hand during the Comp 204 practical
sessions to provide assistance, should you need it.

