
Robotics and Autonomous Systems
Lecture 13: Navigation in LeJOS

Terry Payne

Department of Computer Science
University of Liverpool

1 / 1



Today

• From navigation to motion control.

2 / 1



Navigation and path execution

• We started this course with three questions:

?

• Where am I ?
• Where am I going ?
• How do I get there ?

• Digging into the detail of how you do the last two.

3 / 1



Navigation and path execution

• Last time convered how to go from:
• Map
• Start point
• End point

to a sequence of waypoints that the robot has to traverse to get from
the start to the goal.

• Turns out LeJOS has quite a lot of support for this.

• LeJOS can also help with the business of following the waypoints.

4 / 1



Path following

• The planning methods we covered last time returned a sequence of
waypoints.

• Sequence of robot poses:
pxs , ys , θsq

px1, y1, θ1q

...
pxg, yg, θgq

• Robot then needs to know how to move between the points.

5 / 1



Path following

• Plan doesn’t restrict movement between waypoints.

6 / 1



Path following

α

β

γ

• Simplest route is to turn to face the next point, then drive straight.

7 / 1



Path following

• In this case we need to:
• Rotate α
• Drive
• Rotate β
• Drive
• Rotate γ

• Not trivial to figure out the rotations required.

• Distances are pretty easy using the Euclidian distance formula from
the previous lecture.

8 / 1



Navigator

• LeJOS supports this through the Navigator class.

9 / 1



LeJOS Navigator

• Provides all the functionality you need to have the robot follow a
sequence of waypoints.

• Controls the robot using our old friend:
• DifferentialPilot

with all the good and bad things that entails.
• Tracks where the robot is currently using:

• PoseProvider

• Default is OdometryPoseProvider

• But you can use MCLPoseProvider also

10 / 1



LeJOS Navigator

• The pilot allows it to control the robot

. . . by sending it rotations and translations.

• The pose provider allows it to keep track of where it is.

. . . so it can compute what movements are necessary.

11 / 1



LeJOS Navigator

• Navigator can be fed a sequence of waypoints.

• Or it can be fed a path.

12 / 1



Waypoint

• LeJOS has an object to represent waypoints.
• A waypoint can be a point:

• Point object
• x and y coordinate.

or it can be a pose:
• Pose object
• x and y coordinate, plus a heading.

• A waypoint that is a point has heading 0.

13 / 1



Waypoint

• API for waypoint includes the method:
boolean checkValidity(Pose p)

which checks if the pose is close enough to the waypoint to count as
having reached it.

• So, you can extend the class and override the function to create your
own waypoint that is reached approximately.

14 / 1



Path

• Path is an ordered sequence of Waypoints.

• Implemented as a Java ArrayList of Waypoints

• But you don’t need to manipulate it.

15 / 1



Navigator example

• Key functions are the following:

• Navigator(MoveController p)

Constructor, takes a pilot object as an argument.
The navigator then uses this to drive the robot.

• void addWayPoint(float x, float y)

void addWayPoint(float x, float y,

float heading)

Adds a waypoint to the path.

• void followPath()

Drive to each waypoint in the path, in turn.

16 / 1



Navigator example

• That’s all you need to use the Navigator

17 / 1



Navigator example

• My code (below) uses a couple of additional functions, mainly for
show.

• boolean pathCompleted()

Reports if the robot has completed the current path.

• Waypoint getWaypoint()

Returns the current waypoint, the one the robot is heading to.

18 / 1



Navigator example

public class PathFollower{

private DifferentialPilot pilot

= new DifferentialPilot(3.25, 19.8, Motor.C, Motor.B);

private Navigator navigator = new Navigator(pilot);

private Waypoint next;

public void newWaypoint(int x, int y){

navigator.addWaypoint(x, y);

}

public void navigate(){

while(!navigator.pathCompleted()){

navigator.followPath();

next = navigator.getWaypoint();

LCD.drawString("Moving to...", 0, 0);

LCD.drawString("(" + (int)next.getX() +

"," + (int)next.getY() + ")", 0, 1);

}

}

}

19 / 1



Navigator example

• Note the use of private members for the PathFollower class.

• These, naturally, need public access functions.

• IMHO, this is good Java (and OO) style.

20 / 1



Navigator example

• The navigator runs its own thread, so the while loop is really just for
driving the LCD display.

• Should work perfectly well as:
public void navigate(){

navigator.followPath();

while(!navigator.pathCompleted()){

next = navigator.getWaypoint();

LCD.drawString("Moving to...", 0, 0);

LCD.drawString("(" + (int)next.getX() +

"," + (int)next.getY() + ")", 0, 1);

}

(though I haven’t tested this version).

21 / 1



Navigator example

• The main() is in another class, which creates a Pathfinder object,
and sets up the waypoints.

public class RunNavigator{

public static void main(String[] args)

throws Exception{

PathFollower pFollow = new PathFollower();

pFollow.newWaypoint(40, 0);

pFollow.newWaypoint(40, 40);

pFollow.newWaypoint(0, 40);

pFollow.newWaypoint(0, 0);

pFollow.navigate();

}

}

22 / 1



Navigator example

• This is another version of the “drive in a square” program.

23 / 1



Navigator example

• Both these classes are available from the module website.

24 / 1



Path finding

• What we have so far is a program that will work when it already knows
what the waypoints are.

• Not much use if you don’t don’t them.

• But LeJOS can help with this too.

25 / 1



LineMap

• To do any pathfinding, we need a map, and LeJOS gives us the
LineMap class.

• We set up a LineMap like this:
Line[] lines = new Line[3];

lines[0] = new Line(50, 100, 100, 100);

lines[1] = new Line(100, 100, 100, 50);

lines[2] = new Line(50, 100, 100, 50);

Rectangle bounds = new Rectangle(-50, -50, 200, 200);

LineMap map = new LineMap(lines, bounds);

26 / 1



LineMap

• A LineMap is an array of lines and a bounding box.
• A bounding box is just a rectangle, specified by the:

• bottom left
(smallest x and y coordinates)

• top right
(largest x and y coordinates)

• Each line is defined by two pairs of coordinates that mark the end
points of the line.

27 / 1



LineMap

(200, 50)

(200, 100)

(200, 200)
(50, 200)

(100, −50)(−50, −50)

28 / 1



PathFinder

• Then all we have to do is:

Pose start = new Pose(0, 0, 270);

Waypoint goal = new Waypoint(125, 150);

ShortestPathFinder finder

= new ShortestPathFinder(map);

finder.lengthenLines(5);

PathFollower pFollow = new PathFollower();

pFollow.newPose(start);

Path path = finder.findRoute(start, goal);

pFollow.newPath(path);

pFollow.navigate();

29 / 1



PathFinder

• Set up start and end points.
For some reason they are different types of object.

• Create a path finder object and give it the map.
• ShortestPathFinder
• DijkstraPathFinder

Not clear what the difference is between these.

• Create clearance for the robot
Basic path finder only works for infinitely small robots/points.

• Create an instance of our PathFollower class.

• Call the PathFinder on the start and goal points, and get a path back.

• Pass the path to the PathFollower and let it use its navigator to
follow it.

30 / 1



PathFinder

(200, 50)

(200, 100)

(200, 200)
(50, 200)

(100, −50)(−50, −50)

S

G

31 / 1



Other forms of navigation

• Having seen how LeJOS can implement path finding in a map, let’s
look at a couple of other forms of navigation that we might implement
on the NXT.

• Simpler in some ways.

• Not necessarily as good at getting to the goal.

32 / 1



Potential field

• Robot is treated as a point under the influence of an artificial potential
field.

• The goal attracts it and obstacles repel it.

33 / 1



Potential field

• If you know your location and the goal, can compute the “force” on the
robot.

• Navigator will make direct the robot towards the goal point.
• Just make it the next waypoint.

• Obstacle avoidance provides the “repulsion” from obstacles.
• Steer a path that is a combination of repulsion from obstacle and

heading to goal.
• This will require taking control back from the Navigator.

• ‘Don’t need a map.

34 / 1



Potential field

35 / 1



Bug algorithms

• The bug algorithms assume localization but no map.

• Here we see the first such algorithm, bug 1, working.

36 / 1



Bug algorithms

• When you meet an obstacle you follow around the edge.

• Leave the obstacle at the point closest to the goal.

• Circle the obstacle to be sure that you know where this point is.

37 / 1



Bug algorithms

• Here’s the second bug algorithm in action.

• Improves on the performance of bug 1

38 / 1



Bug algorithms

• Follow the obstacle always on the left or right side.

• Leave the obstacle if you cross the direct (line of sight) connection
between start and goal.

39 / 1



Summary

• Today we looked more at navigation.
• Primarily we looked at the support LeJOS provides for navigation:

• Path following
• Path finding

which make it possible to carry out the kind of navigation discussed in
Lecture 12.

• We also looked at a couple of additional navigation techniques.

40 / 1


