Robotics and Autonomous Systems

Lecture 21: The Jason Interpreter

Terry Payne

Department of Computer Science
University of Liverpool

%4 UNIVERSITY

- LIVERPOOL

1/1

e The previous couple of lectures have introduced the language and
environment that you will use for the second assignment:

e Jason
e AgentSpeak

e This lecture will look at Jason in more detail.

e Understanding how Jason works will help you to know how to write
AgentSpeak programs.

Programming in AgentSpeak

e Agent programs are written in AgentSpeak and consist of sets of
goals, plans and beliefs

e How these components of the program interact to determine the
actual behavior of the agent program is determined by

e Jason: the interpreter
e The interpreter runs the agent implementing a reasoning cycle
(= BDI decision loop)
e Understanding how the interpreter works, is key to programming
agents in Jason

Main loop

i
R
!
I{

Exteral Extemal
Eveses Evenes
Beliclsto Tatemal
SocAcc Add and Eveaty
Delete
3
Messages Messages
e — checkMail
Imtentions Intentions

e OK, so it is a bit more complex than the BDI cycle.
e Let's break it down a bit.

Main loop

i
R
!
0

e Rectangles: basic components. o

Main loop

Belief
l Beliels | Base
1) -
4.{ - —[
Estersal External ———
Events Evests | Events
Belicsto Tntemal
SocAce Addand Bty ———
Delete:

\

mingl|liniifsiE]

e Circles: fixed methods of the interpreter -

e Rounded boxes: customizable methods

e We will look at two bits of this in some detail:
o Belief update
e Event handling
e Event handling is basically everything you need to know about how
programs are executed.

Belief update

e Captures how the agent changes its view of the world.
e Three components:

e Perception
o Belief revision
¢ Incoming messages

o Will consider them in sequence.

Perception

i
0
i

Extersal Extemal
Evests Evests
Belicis o Tntemal
SocAce Add and ety
Delesz:
3
Messuges Messages
R —— checkMail
Intentions. Intentions

e Perception in Jason consists in the process of acquiring percepts
consisting of logical literals.

e These are symbolic representation of the state-of-affairs being
perceived

e They can be acquired via a simulated environment, or by interfacing
real-world devices like robots

e The Perceive method implements this process by obtaining a list of
literals (the percepts) from the environment

¢ To interface to the robot, you will have to supply this list of literals

Perception

e This involves translating sensor data into literals.

c
9
—

(&)

c

>
LL

()
—

@
©

o
)
o
2

O
m

Belief Update Function

e Once the list of percepts has been obtained, the belief base needs to
be updated

e BUF implements a default method for achieving that. Let P be the list
of percepts and B the current belief base.
e each literal in P but not in B is added to B
e each literal in B no longer in P is removed from B

e Each such change generates an event (which may trigger a plan!).

Belief Update Function

e This approach to belief update involves enumerating all the beliefs.
e Not very efficient!

Belief Update Function

e Example update:
(+colour(box1,red)[source(percept)]|, T)
e +colour(boxl,red) is the new belief
» [source(percept)] says it came from perception
e T says itis an external event.

Belief Update Function

e [f that box disappears:
(—colour(box1, red)[source(percept)], T)

is the update.

Messages from other agents

Messages from other agents

e Another source of information for agents are messages from other
agents

e The checkMail method obtains messages for the agent (that are
stored on the underlying multiagent system infrastructure)

e The messages may then be selected through a selection function
(which is user-defined) in order to impose priorities upon them

e The default implementation just selects the first message in the queue
e Messages also generate events (annotate beliefs):

(+colour(box1, red)[source(agentl)], T)

20/1

Socially acceptable messages

Socially acceptable messages

22/1

Socially acceptable messages

e The SocAcc method implements a social acceptance function which
further filters incoming messages after their selection

o filters according to criteria such as the “social structure” within a
multiagent system
e a sort of spam filter

¢ allows an agent, for example, to ignore messages from a specific
agent.

e This method is also typically customized by the user

23/1

Event handling

i
I
!
0
0

Intzrmal
SacAce Add and Evaty
Delete

i

24/1

Event handling

BDI agents operate by reacting to events (they trigger plans!)

In each reasoning cycle, only one pending event at the time can be
handled

This requires an event selection function operating on the set of
pending events.

o Intuitively, this selection function incorporates the “interests” of the
agent, what they consider relevant

The default implementation function handles events in a queue by a
first-in first-out principle

25/1

Retrieving all relevant plans

26/1

Retrieving all relevant plans

e Once an event has been selected, relevant plans
i.e., plans that can handle the event

need to be retrieved

e This is done through a procedure called unification consisting of
matching the “type” of the event.

27/1

Retrieving all relevant plans

e An example:

(+colour(box1,blue)[source(percept)]|, T
would match some of:

+positionObject,Coords) : .. < —....
+colourObject,Colour) : ... < —....
+colourObject,Colour) : ... < —....
+colourObject,red) : ... < —....
+colourObject, Colour)[source(self)] : .. < —...
+colourObject,blue)[source(percept)] : .. < —....

¢ Which would it match?

28/1

Substitution and Unification

e A substitution is a function from a finite set of variables to a finite set
of variables or constants. It can be viewed as a set of replacements:
o={Xi = x1,...,Xn = xn}
where X; are variables, and y; are variables or constants.

e Constraints:

e Xi =X, i#]j
°)(ii)(j,iij
e Example:

o = {X — comp329}
o(lecturer(X,Y)) = lecturer(comp329,Y)

29/1

Substitution and Unification

e A substitution for two formulae/predicates is a unifier iff the
substitution applied to the two formulae/predicates yield the same
result

o(lecturer(X,Y)) = o(lecturer(COMP329,Y))

30/1

|dentifying applicable plans

|dentifying applicable plans

After having selected the relevant plans, we have to identify, among
them, the applicable ones

Applicable plans are those whose contexts is a logical consequence
of the belief base

P is a logical consequence of Q iff there exist a (most general unifier)
o suchthat o(P) = Q

Let’s look at an example.

32/1

|dentifying applicable plans

e Belief base
shape (box1,box) [source(percept)].
position(box1,coord(9,9)) [source(percept)].
colour(box1,blue) [source(percept)].
shape (sphere2, sphere) [source(percept)].
position(sphere2,coord(7,7)) [source(bob)].
colour(sphere2,red) [source(john)].

e Plans
+colour_(Object,Colour):
shape(Object,box)
& not position(Object,coord(0,0)) <- ...
+colour_(Object,Colour)
colour(OtherObj,red) [source(S)]
& S/==percept &
shape (OtherObj, Shape) &
shape(Object,Shape) <- ...

33/1

|dentifying applicable plans

e In this example, “a plan is a logical consequence of the belief base”
just means that it is possible to coherently match (unify) elements of
the belief base with a plan.

e However “logical consequence” allows the match to not only be with a
fact in the belief base, but also with the result of applying a rule.

34/1

Selecting one plan and one intention

35/1

Selecting one plan and one intention

e Once the set of applicable plans has been determined, one among
them has to be selected

e This is done by an option selection function .
Its default setting works on a first-in first-out basis

e The selected plan is instantiated by the unification that determined it
as applicable, and added to an intention stack , representing a single
intention

e Several intentions (= stacks of partially instantiated plans) might be
awaiting processing

e Again, a selection function (intention selection function) determines
which intentions to process first
Default: first-in first-out

36/1

Execute one step of an intention

37/1

Execute one step of an intention

e Suppose the selected event is:

<t+b , T>
e Then the selected plan:
[+b : true <- !g ; al | ... 1]

is pushed onto the intention stack
e The interpreter then does intention selection. Let’'s assume that this
pulls this same intention from the stack.
e The interpreter selects the first formula in the plan body:
'g
and pushes the rest of the intention back onto the stack.

38/1

Execute one step of an intention

e lgisagoal
e Handling a goal involves creating the following event:
<+!g, [+b : true <- lg ; al]>

e Which then needs a plan.

39/1

Execute one step of an intention

e The system then repeats the previous couple of steps, selecting a
plan for +!g and stacking the plan on the intention stack.
e Let’s say that this plan:
[+!'g : true <- a2 | +b : true <- !g ; al | ... 1]
is the one selected.
e Again it is pushed onto the intention stack, and a new intention
selected.

40/1

Execute one step of an intention

Assume this intention is:
[+!'g : true <- a2 | +b : true <- !g ; al | ... 1]

This time the first step is an action a2.

The agent just does this.

The rest of the intention is pushed back onto the stack.

41/1

Execute one step of an intention

o Note that there are two different things happening.

e Executing goals removes one step from an existing intention,but
pushes a new intention onto the stack.
Stack grows.

e Executing an action removes one step from an existing intention
Stack shrinks.

e With a LIFO intention stack we handle intentions in a recursive
manner.

e (The book says “FIFO”, but | am pretty convinced it is a LIFO structure)

e A custom intention stack might prioritize intentions, for example by
expected utility.

42/1

Plan failure

e Plans may fail for the following reasons:
e The set of applicable plans turns out to be empty
¢ An action fails
i.e., no feedback reaches the agent about the successful execution of
the action
o Atest goal fails
e If a plan for handling a goal achievement fails, Jason generates a
goal-deletion event (and possibly drop the intention):
- I g
e This event can be used by the programmer to specify further plans to
handle the failure

e These can be as simple as:
-1g : true <- lg

43/1

e This lecture focused on the structure of the Jason interpreter.

e |t looked at the interpreter as a (sophisticated) model of a deliberation
cycle.

e And it explained, in quite a lot of detail, all the main steps of the
interpreter.

44/1

