Robotics and Autonomous Systems

Lecture 19: AgentSpeak and Jason

Richard Williams

Department of Computer Science
University of Liverpool

&'d UNIVERSITY

v LIVERPOOL

In this lecture we will begin to look at the tools that you will use for the
second assignment:

o AgentSpeak
e Jason

AgentSpeak is a programming language.
Jason is an environment for building agents.
They can be combined with Java/LeJOS for building robot controllers.

AgentSpeak

AgentSpeak is a programming language for BDI agents

It is an “abstract” programming language aimed for academic
research to provide an operationalization of BDI theory
Presented in 1996 by A. Rao
¢ Rao, along with Mike Georgeff did a lot to popularise BDI within the Al
world.
It is based on:

o the PRS architecture
* BDI logics
e Logic Programming (Prolog)

Language of choice for the Multi-Agent Programming Contest

PRS

actions

e The Procedural Reasoning System.

BDI Logics

e Logics that represent intentional notions:

Beli(¢)
Des;(¢)
Intend;(¢)
e Logics that encode the properties of these notions:
Beli(¢) A Beli(¢ >) > Bel()
e Logics that encode the relationships between these notions:

Intend;(¢) > Des;(¢)
Intend;(a) o Beli(a)

e Programming language based on first order logic.
e PROgramming in LOGic
e Programs are statements in logic:
friend(X, Y) :- likes(X, Y).
likes(alice, bob).
e Queries are answered using logical inference:
friend(alice, bob).

Syntax of AgentSpeak

e There are three main language constructs in AgentSpeak:
o Beliefs
e Desires
e Plans
e The architecture of AgentSpeak has four main components:
o Belief Base
e Plan Library
o Set of Events
o Set of Intentions

Beliefs are simple Prolog programs.
Two kinds of statement.

e Facts
e Rules

Facts are statements about what the agent holds to be true.
Rules are statements about relationships between facts.
e Can think of them as allowing new facts to be created.

Example facts

e Atomic propositions
lecturer(richard)
teaches_comp329(richard)

¢ Propositions can be negated
~ young(richard)

e The symbol ~ should be read “not”.

Example rules

e Rules look a lot like rules in Prolog.
e child(X, Y) :- parent(Y, X).
e Readarulea :- bas“a,ifb”or“if b then a”.
e With facts, rules allow an agent to infer things.

e For example:
parent (bob, jane)
matches
parent (Y, X)
if Y = bob, X = jane

e The agent can infer
child(jane, bob)

10/40

Example rules

e Rules are allowed to be more complex than this.

e For example:
grandparent (X, Z) :- parent(X, Y)
& parent (Y, 7).
e The “&” represents conjunction, and is what we usually mean by
“and”.
e So, given:
parent(eric, bob)
parent (bob, jane)
the agent can infer:
grandparent(eric, jane)

11/40

Example rules

grandparent (X, Z) :- parent(X, Y)
& parent (Y, Z).

child(X, Y) :- parent(Y, X).
son(X, Y) :- child(X, Y) & male(X).
daughter(X, Y) :- child(X, Y) & female(X).
parent(eric, bob)
parent (bob, jane)
parent (bob, david)
female(jane)
male(david)
e What can the agent infer?

12/40

Goals

Goals represent states that the agent wants to bring about:

Achievement goals
!learn(lejos)

Goals represent things the agent wants to know:

Test goals
?teaches(richard,Module)
?bank_balance (BB)

Test goals are goals in Prolog.

Queries

13/40

e The teaches in:
?teaches(richard,Module)
is a predicate
e Expresses a relation, or a property.
lecturer(richard)
e The arguments of predicates are constants:
e lower case, bob
or variables:
e uppercase, Module, BB

14/40

e An agent reacts to events by executing plans.
e Events are changes in the:

e beliefs; or
e goals

of the agent

15/40

e AgentSpeak events are:

belief addition: +b

belief deletion: -b
achievement-goal addition: +!g
achievement-goal deletion: -!g
test-goal addition: +?g
test-goal deletion: -7g

16/40

Plans

e Plans are recipes for action.

e The context is a conjunction of special logical formulae defining when
the plan is applicable.

e The body is a sequence of actions and sub-goals to achieve.

17/40

Plans

e An AgentSpeak plan has the following general structure:
triggering_event : context <- body
where
o the triggering event denotes the events that the plan is meant to handle.

o the context represents the circumstances in which the plan can be
used.

o the body represents the actual plan to handle the event if the context is
believed true at the time a plan is being chosen
e When the trigger happens, test the context, and if it is true, then
execute the plan.

18/40

Example plans

e A plan that responds to a change in belief.

+green_patch(Rock)
: not battery_charge(low)
<- ?location(Rock,Coordinates);
lat (Coordinates);
lexamine (Rock) .

e When the belief green_patch(Rock) is added.
(When you realise that the rock has a green patch).

e |f battery charge is not low.
Find the location of the rock.
Go to that location
Examine the rock.

19/40

Example plans

A plan that responds to the addition of a goal.

+!at(Coordinates)
: not at(Coordinates)
& ~ unsafe_path(Coordinates)
<- move_towards(Coordinates);
lat(Coordinates).

To get to a set of coordinates.

If not at the coordinates, and there is not an unsafe path to the
coordinates

Move towards the coordinates
Reset the goal of being at the coordinates

The recursive setting of the goal allows for plans that partially achieve
the goal.

20/40

Plans

e So plans are a bit like STRIPS
actions:

e Preconditions
e What you do

but they also contain more than
one action

e Plans are also a bit like
STRIPS plans

e Sequence of things to do

but they also have precondi-
tions and subgoals.

21/40

e In logical languages, especially ones related to Prolog, it is common
to have two kinds of negation.

e Strong, ~
¢ Weak, not
e One way to think of this is

Syntax Meaning
0] ¢ is true
~ ¢ ¢ is false
not ¢ The agent does not believe that ¢ is true
not ~ ¢ The agent does not believe that ¢ is false

where:
o “is true/false” means “can be proved from its set of beliefs”
e “does not believe” means “cannot prove from its set of beliefs”.

22/40

e This is negation as failure (to prove).
¢ Related to the “closed world assumption” that we met before.
e “What | don't tell you is false.”

23/40

e Reconsider our previous program:

grandparent (X, Z) :- parent(X, Y)
& parent (Y, Z).

child(X, Y) :- parent(Y, X).

son(X, Y) :- child(X, Y) & male(X).
daughter(X, Y) :- child(X, Y) & female(X).
parent(eric, bob)

parent (bob, jane)

parent (bob, david)

female(jane)

male(david)

24/40

e These statements are true:
e son(david, bob)
not son(bob, brian)
not ~ son(bob, brian)
e These statements are not true:
~ male(david)
not female(jane)

25/40

e Actions in AgentSpeak are symbolic representations of the actual
actions the agent is supposed to do
e For our NXT robots:

setSpeed(10),
rotateRight (), or
goto (100, 200)

might be actions.

e The agent program will use these representations, while the
interpreter

e Jason in our case
will hook these symbolic representations to the actual actions.
e For us, these will be methods in Java/LeJOS.

26/40

¢ Note that actions in an AgentSpeak program are logical statements.
e Their position in a plan means the interpreter can recognise them.
e In:
+lat(Coordinates)
: not at(Coordinates)
& ~ unsafe_path(Coordinates)

<- move_towards(Coordinates);
lat(Coordinates).

the statement move_towards (Coordinates) means make the call
goTo(float x, float y)

27/40

e Some actions are internal and are prefixed by a “.

28/40

Environments

e When an agent program is executed, the agent needs to be
connected to an environment.

e Environment provides the percepts and allows for actions.

percepts

(;ironment SEnsors

\/ effectors

actions

¢ Often, the environment can be simulated before deployment.

29/40

Jason

e Jason is an interpreter for a (richer) version of AgentSpeak
implemented in Java.

e Developed by Jomi Hibner and Rafael Bordini over the last ten years
or so.

e |t enables a platform for the development of agents and multi-agent
systems enabling hooks to call Java code

e http://jason.sourceforge.net/

30/40

actions

o Beliefs, desires and plans are all in AgentSpeak.
e Actions are calls to Java (and, in our case, LeJOS).

31/40

o Logo is Jason (of Js and the Argonauts”) from a painting by
Gustave Moreau.

32/40

FWILEY

programming
multi-agent systems

in AgentSpeak
using Jason Ae

e Jason comes with the editor jEdit
e There is also an Eclipse plugin

33/40

Jason

ea e
Fe®s 438 00408 A% :"

B robot.as (/Users/ jormi /i

)

1D A

/* Plans */

I“+!has(0wner.beer) ¢ available{beer,fridge) & not
iy <- lat{robot,fridge);

= apen(fridge);

a4 get(beer);

4 close(fridge);

& tat(robot,owner) ;
1 hand_in{beer);

A ?has(owner, beer) ;

‘Brobotasl | < supermarket.asl -

robotasl omesticAobat.mas2j | O owner.asl
5 ihasionnerbeer) Ty 1 belief e
o asmempis z.J' Initia be iefs and rules ;’
:_L,!:; y il Havailable(beer, fridge). E
=t 1 5m
§ +lattrobosP) i 1imi t (beer,10).
5 +latirobes, P} o }-(B)
5 +delveredibeer,Qt Laa. MU =
6 +unckibeer,0) i -date(YY,MM,DD) & .count(consumed(YY,MM,DD,_,_,_,B),QudB) &
§ +sickibeer M) : Timit(8, Lmnt) & QtdB > Limit.
§ +7ime(T} 1
i

too_much(beer)

abaut
0 Jason
Jasen chsade
ng DomesticRobot.mas2i
Pursing project file... parsed successfullyl
Parsing Agent Speak f\ie ' supermarket.asl’. ..

porsed successfully!

(3

1320Top

{as),none 150 BB5- 1) - - -

E-r X S

1 Project agents-

owner,
SupRTmarket

34/40

HelloWorld in Jason

e Create a Jason project “helloworld”, and you get:
MAS helloworld{

infrastructure: Centralised

agents:
agentl sample_agent;

aslSourcePath:
"src/asl";

35/40

Jason

e infrastructure: how the agent system is organised.

e agents: the list of agents that make up the system.
Here there is just one.

e aslSourcePath: path from the MAS file to the agent descriptions.

36/40

Jason

& o e fof
Fle Edt Nevgsie Search Prject (oOSNK RunWindow Help
P (B A a7 T e T e e e | Quick hcces
%8 lazon Navigator 37 =8 ample_agentasl 37 | 99 hellolszonmaz2) = O | 2 Outine &7
T - . 1e_agent in pre - u -tten
/* Tnitial betiets and rutes *
* Tnitial goals */
sstare
B sistart : true <o prin or1d.")
& jna I
ee——
ar Problems i3 ve=nB
2enors. 0 wamings. 0 othes
Description ' Resource Path Location Type.
40 Eros Qe
hellcsson Buidpsth BuldPath
Unkronn Java Pralem

i Projecthelloason’ is missing required brary: null

© The project canot be bl i build path erors ar reolved. helllszon

Witable Insert 21

Jason

e The agent looks like this:

/* Initial beliefs and rules */
/* Initial goals */

Istart.

/* Plans */

+!start : true <- .print("hello world.").

38/40

Jason

No initial beliefs or rules
Only goal is the achievement goal start.

The context/precondition for start is true.
The plan for start is to print “Hello World”.

39/40

e This lecture introduced the syntax of AgentSpeak and discussed its
main constructs:

o beliefs
e goals
e plans

e |t also introduced the Jason interpreter and produced a simple
HelloWorld program

e We will look at more complex Jason programs next time.

40/40

