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Perception

•Sensors give important feedback 
from the environment 
• Without them, robots are blind 

•Perception is all about what can 
be sensed and what we can do 
with that sensing
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Classification of Sensors
•Proprioceptive sensors 

• Measure values internally to the system (robot), 
• (motor speed, wheel load, heading of the robot, battery 

status) 

• Exteroceptive sensors 
• Information from the robots environment 

• (distances to objects, intensity of the ambient light, unique 
features.)  

• Passive sensors 
• Energy coming from the environment 

•Active sensors 
• Emit their own energy and measure the 

reaction 
• Better performance, but some influence on 

environment 
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Focus of today’s lecture; 

sensors that the robot 

uses to determine its state.



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Wheel Encoders
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•Measure position or speed of the wheels 
or steering. 
• Wheel movements can be integrated to get an 

estimate of the robot's position 
• Odometry 

•Optical encoders are proprioceptive 
sensors 
• Position estimate is only useful for short movements.  
• Typical resolutions: 2000 increments per revolution.  

•Count the changes from black to white: 
• Measure light passing through the encoder. 
• Bounce light off the encoder. 

•Simple encoder will give you count/speed. 

•Quadrature encoder will you direction also. 
• Look at phase of signals from the two bands on the 

encoder. 
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Wheel Encoders
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Wheeled Robots
•Wheels are a good solution for many 

applications 
• Three wheels are sufficient to guarantee stability 
• More than three wheels requires flexible suspension 

•Different configurations for drive and 
steering 

•Tracked robots use slip/skid steering 
• can be controlled with two wheels
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Steering and Movement
•Three main approaches to steering: 

• Steering wheels at front, with drive wheels at 
back 
• Similar to a car 

• Differential drive 
• Turning achieved by varying the individual velocity / speed of 

each wheel 

• Omidirectional drive 
• Can move in any direction, in any orientation 

• Check out this example of an holonomic robot 
• https://youtu.be/-ZdBowwPZas

9

Steering 
Wheels

Differential 
Drive

Omnidirectional Drive

https://youtu.be/-ZdBowwPZas
https://youtu.be/-ZdBowwPZas


Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Navigation through Pilots
• Distance information on its 

own permits a crude form 
of navigation: 
• Dead reckoning!!! 
• Calculate how far the robot has 

gone based on wheel rotations. 
• Our robot uses a slip/skid drive, 

which is similar to a differential 
drive, but with worse odometry. 

• LeJOS provides several 
Pilot classes to support 
different types of vehicle 
• Three main Pilot classes are 

currently provided by the 
lejos.robotics.navigation 
package 
• MovePilot - used instead of the 

depreciated DifferentialPilot class 
• OmniPilot - for use with holonomic robots 
• SteeringPilot - for use with Steering 

wheels
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Move Pilot
•Constructing a MovePilot 

• Based on the definition of a Chassis 
• Requires the definition of the two wheels, comprising: 

• The wheel diameter 
• Position from the center of the robot (i.e. half of the track width) 

• The track width is the distance between the left and right wheels 

• Motor port 
• Optional gear train between wheel and motor (not used with our robot) 

• Typically requires some trial and error!!!
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Wheel leftWheel = WheeledChassis.modelWheel(Motor.B, 3.3).offset(-10.0); 
Wheel rightWheel = WheeledChassis.modelWheel(Motor.C, 3.3).offset(10.0); 
Chassis myChassis = new WheeledChassis( 
	 	 	 new Wheel[]{leftWheel, rightWheel}, 
	 	 	 WheeledChassis.TYPE_DIFFERENTIAL); 
MovePilot pilot = new MovePilot(myChassis);
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MovePilot Methods
•Speed of motion (linear or 

rotation) 
• speed is in wheel-diameters-units 

per second (e.g. cm per second) 
• setLinearSpeed(double speed) 
• setAngularSpeed(double speed) 

• Also possible to get current speed  
• e.g. double getLinearSpeed() 

• and max possible speed 
• e.g. double getMaxLinearSpeed() 

• Also possible to set acceleration, etc 

•Move a certain amount 
• travel(double distance) 

• distance is in wheel-diameters-units (e.g. cm) 

•Rotate: 
• rotate(double angle) 

• rotate through specified angle (in degrees) in 
a zero-radius turn. 

• Lots of other methods 
defined in the API.
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Example Code - MovePilot
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public class SimplePilot { 
MovePilot pilot; 
GraphicsLCD lcd; 

	  
public void  drawSquare(float length){    

for(int i = 0; i<4 ; i++){ 
pilot.travel(length);       // Drive forward 
pilot.rotate(90);           // Turn 90 degrees 

} 
} 

public static void main(String[] args) { 
Wheel leftWheel = WheeledChassis.modelWheel(Motor.B, 3.3).offset(-10.0); 
Wheel rightWheel = WheeledChassis.modelWheel(Motor.C, 3.3).offset(10.0); 
Chassis myChassis = new WheeledChassis( 

new Wheel[]{leftWheel, rightWheel}, WheeledChassis.TYPE_DIFFERENTIAL); 
	 	  
        // Create a SimplePilot and instantiate its member pilot 
        SimplePilot sp = new SimplePilot(); 
        sp.pilot = new MovePilot(myChassis); 
        sp.lcd = LocalEV3.get().getGraphicsLCD(); 
         
        sp.pilot.setLinearSpeed(20); 	 // Set speed to 20cm per second 
        sp.drawSquare(40);         

} 
}

The MovePilot instance is created by generating 
two instances of the type wheel using the 
modeller method modelWheel.  The parameters 
here broadly represent the robot, but as we have 
a differential drive, the precise values may need 
calibrating.
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Example Code - MovePilot
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public class SimplePilot { 
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} 
} 

public static void main(String[] args) { 
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Wheel rightWheel = WheeledChassis.modelWheel(Motor.C, 3.3).offset(10.0); 
Chassis myChassis = new WheeledChassis( 

new Wheel[]{leftWheel, rightWheel}, WheeledChassis.TYPE_DIFFERENTIAL); 
	 	  
        // Create a SimplePilot and instantiate its member pilot 
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}

The drawSquare method draws the four sides 
of the square, by using pilot.travel(length) to 
move forward the length of a side, and rotating 
around 90 degrees at each corner by using 
pilot.rotate(90)

The speed of the pilot is defined using the 
method setLinearSpeed() to travel at 20cm per 
second.  A 40cm square is drawn using 
drawSquare(40)



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

MovePilot - Calibration
•Using the MovePilot and the wheeledChassis 

• You will find it doesn't do exactly what you ask it to right away. 

•With correct robot dimensions 
• Pretty good on distance. 
• Less good on rotation. 

•You will need to callibrate to get it to do what 
you want it to do. 

•You will need to keep on callibrating.
15
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Borenstein's experiment
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Odometry Pose Provider (OPP)
•When using the MovePilot 

• the control loop running the motors 
knows instantaneously how far the robot 
has moved. 

• That is what it uses to know when to 
stop the motors. 

• It is useful to be able to log this 
information in the control 
program. 
• The OdometryPoseProvider provides 

some of this ability. 

•Pose objects are manipulated 
by OdometryPoseProvider 
• Pose objects store a robot pose. 
• Turns out you need to do this a lot. Has 

no necessary relation to where the robot 
is. 

• Methods: 
• getX() 

• getY() 
• getHeading() 

• Just as you might/should expect. 
• Values returned are floats.
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Odometry Pose Provider (OPP)
•Getting and Setting the Pose 

• void SetPose(Pose aPose) 
• sets the Pose value in the OPP. 
• Note that this does not move the robot, just 

changes the value that is stored. 

• Pose GetPose() 
• returns a Pose. 
• This is the current pose stored by the OPP. 
• If used correctly, this Pose will tell you 

something useful. 

• A Pose maintains: 
• float _heading 

• Point _location 

•When you create an OPP, you 
link it to a Pilot object: 

OdometryPoseProvider opp = 
new OdometryPoseProvider(pilot); 

• where pilot is a MovePilot. 
• Then the Pose returned by the OPP is 

updated when the robot moves. 
• Of course, it is updated by the 

amount that the robot thinks it moves. 
• (Since the robot doesn't actually know how 

much it is moving.)
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Example Code - OPP
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        // Create a pose provider and link it to the move pilot 
        OdometryPoseProvider opp = new OdometryPoseProvider(pilot); 

        lcd.drawString("Pose (1): " + opp.getPose(), 10, 20, 0); 
        pilot.travel(30); 
        lcd.drawString("Pose (2): " + opp.getPose(), 10, 40, 0); 
        pilot.rotate(90); 
        lcd.drawString("Pose (3): " + opp.getPose(), 10, 60, 0); 
        pilot.travel(20); 
        lcd.drawString("Pose (4): " + opp.getPose(), 10, 70, 0); 
        pilot.rotate(90); 
        lcd.drawString("Pose (5): " + opp.getPose(), 10, 90, 0); 
        pilot.travel(30); 
        pilot.rotate(-180); 
        lcd.drawString("Pose (6): " + opp.getPose(), 10, 100, 0); 
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Heading Sensors
•Heading sensors can be: 

• proprioceptive (gyroscope, inclinometer); or  
• exteroceptive (compass). 

•Used to determine the robot's orientation 
and/or inclination. 
• Allow, together with an appropriate velocity information, 

to integrate the movement to an position estimate. 

•A bit more sophisticated than just using 
odometry.
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Compass
•Used since before 2000 B.C. 

• Chinese suspended a piece of naturally magnetic magnetite 
from a silk thread and used it to guide a chariot over land.  

•Magnetic field on earth  
• Absolute measure for orientation.  

•Large variety of solutions to measure the 
earth's magnetic field 
• Mechanical magnetic compass 
• Direct measure of the magnetic field  

• (Hall-effect, magnetoresistive sensors)
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Compass
•Major drawback 

• Weakness of the earth field 
• Easily disturbed by magnetic objects or other 

sources 
• Not feasible for indoor environments in general. 

•Modern devices can give 3D 
orientation relative to Earth's 
magnetic field.
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Gyroscope
•Heading sensors, that keep the orientation to 

a fixed frame 
• Provide an absolute measure for the heading of a mobile 

system. 
• Unlike a compass doesn't measure the outside world. 

•Two categories, mechanical and optical 
gyroscopes 
• Mechanical Gyroscopes 

• Standard gyro 
• Rate gyro 

• Optical Gyroscopes 
• Rate gyro
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Mechanical Gyroscopes
•Concept: inertial properties of a fast spinning rotor 

• gyroscopic precession 

•Angular momentum associated with a spinning 
wheel keeps the axis of the gyroscope inertially 
stable. 
• No torque can be transmitted from the outer pivot to the wheel 

axis  
• Spinning axis will therefore be space-stable 
• Quality: 0.1 degrees in 6 hours 

•In rate gyros, gimbals are held by torsional springs. 
• Measuring force gives angular velocity.
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Optical Gyroscopes
•Use two monochromatic light (or laser) 

beams from the same source.  

•One beam travels clockwise in a cylinder 
around a fibre, the other→ counterclockwise. 
• The beam traveling in direction of rotation: 
• Slightly shorter path shows a higher frequency 
• Difference in frequency Δf of the two beams is 

proportional to the angular velocity Ω of the cylinder/fibre. 

•Newest optical gyros are solid state.
25
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Accelerometer
•Measure acceleration. 

• Mass on a spring. 
• Measure force in spring through the change in capacitance 
• Gives acceleration of mass. 

• Any heading or position sensor reading can be 
“differentiated” to give acceleration. 
• Difference between two values gives “velocity” 
• Difference between two “velocities” gives acceleration 

• Any velocity sensor reading can be handled 
similarly.
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Sensor Performance
•Dynamic Range 

• Spread between lower and upper limits of input 
values (as a ratio) 

•Resolution 
• Minimum difference between two sensor values 

•Sensitivity 
• Measure of the degree to which incremental 

change in target input changes output signal  
• Ratio of output change to input change 

• In real world environment, the sensor has very 
often high sensitivity to other environmental 
changes, e.g. illumination. 

•Cross-sensitivity 
• Sensitivity to environmental parameters that are 

orthogonal to the target parameters 

•Error / Accuracy 
• Difference between the sensor's output and the 

true value 

• where 
•  m = measured value and 
•  v = true value.

27

accuracy = 1� |m� v|
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error = m� v



Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Sensor Performance
•Systematic error → deterministic errors 

•  Caused by factors that can (in theory) be modelled 
• → prediction 

• e.g. distortion caused by the optics of a camera. 

•Random error → non-deterministic 
• No prediction possible 
• However, they can be described probabilistically  

• e.g. error in wheel odometry. 

•Precision 
• Reproducibility of sensor results 
• If a random error of a sensor is characterised by some mean σ and 

standard deviation, µ then the precision is the ratio of the sensors 
output range to s.d.
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Coping with Errors
•Compensate for systematic 

errors. 
• Build a probabilistic model of random 

errors. 
• Obtain a distribution of possible positions. 

•Know where we are on average. 
• Don't know where we are in particular. 
• Errors accumulate over time.
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Summary
•This lecture started to look at sensor data. 

• It concentrated on data that can be used in odometry. 
• Wheel encoders 

• and looked at LeJOS support for doing odometry. 
• Also looked at other kinds of related sensor data: 

• Compass 
• Gyroscope 

• Later in the module we will look at range sensor data 
and cameras as sensors. 

•In the next lecture, we will look at 
Behaviour Based Robots 
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