COMP329
Robotics and
Autonomous Systems

Lecture 5: Perception and Odometry

Dr Terry R. Payne
Department of Computer Science

v

(General control architecture

; : Position .

Environment Model
Local Map

~ Perception

2 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Perception

® Sensors give important feedback Sensors
from the environment (Percepts)

e \Vithout them, robots are blind

O@

HJ

&

\r

fo

,%\,

, , ‘.
® Perception Is all about what can :;ecmr?mcﬁm)
pe sensed and what we can do
with that sensing

3 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Classification of Sensors

® Proprioceptive SeNnsors ® Passive Sensors
e Measure values internally to the system (robot), ® Energy coming from the environment
® (motor speed, wheel load, heading of the robot, battery
status)

® Exteroceptive sensors

. | ® Active sensors
® |nformation from the robots environment
e (distances to objects, intensity of the ambient light, unique ® Emit their own energy and measure the

features.) reaction

® Better performance, but some influence on
environment

4 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Classification of Sensors

® Proprioceptive SeNnsors ® Passive Sensors
e Measure values internally to the system (robot), ® Energy coming from the environment
® (motor speed, wheel load, heading of the robot, battery
status)

2

® Active sensors

® Emit their own energy and measure the
reaction

® Better performance, but some influence on
environment

5 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Wheel Encoders

® \easure position or speed of the wheels ® Simple encoder will give you count/speed.
or steering.

® \Wheel movements can be integrated to get an
estimate of the robot's position

e Odometry

® Optical encoders are proprioceptive

SENSOrs ® Quadrature encoder will you direction also.
® Position estimate is only useful for short movements. e Look at phase of signals from the two bands on the
® [ypical resolutions: 2000 increments per revolution. encoder.
® Count the changes from black to white: ‘ 9 A __I_—I__I'

)
-.B_I__I_I__I_

® Bounce light off the encoder. u ‘
Phase

2

@) Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

® Measure light passing through the encoder.

Wheel Encoders
5)

/qv\.
,

:-f"

S

11\

Unencoded Unencoded with Two Track Two Track Quad
Index Track Quadrature with Index Track

Absolute Position Absolute Position
Gray Code Binary Courtesy of Tom Lackamp

[/ Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

VWheeled Robots

®\\Vnheels are a good solution for many
applications

® [hree wheels are sufficient to guarantee stability

® \ore than three wheels requires flexible suspension

e Different configurations for drive and
steering

® [racked robots use slip/skid steering

® can be controlled with two wheels

8 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Steering and Movement

® Three main approaches to steering: ___E

e Steering wheels at front, with drive wheels at ’

pback
® Similar to a car »

e Differential drive Steering
e Turning achieved by varying the individual velocity / speed of Wheels
each wheel - -
. . . Differential
e Omidirectional drive Drive

e (Can move in any direction, in any orientation

)

- / Omnidirectional Drive

® (Check out this example of an holonomic robot
® Nhttps://youtu.be/-ZdBowwPZas

9 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

https://youtu.be/-ZdBowwPZas
https://youtu.be/-ZdBowwPZas

® Distance Information on Its
own permits a crude form

of navigation:

® [Dead reckoning!!!

e Calculate how far the robot has
gone based on wheel rotations.

® Qur robot uses a slip/skid drive,
lar to a differen

which IS sir

drive, but wi

th worse odormnr

tial
etry.

10

Navigation through Pilots

e | c¢JOS provides several
Pilot classes to support
different types of vehicle

® [hree main Plilot classes are
currently provided by the
lejos.robotics.navigation
package

MovePilot - used instead of the
depreciated DifferentialPilot class

OmniPilot - for use with holonomic robots

SteeringPilot - for use with Steering
wheels

iginal Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

\Viove PiI

® Constructing a MovePIilot

® Based on the definition of a Chassis

e Requires the definition of the two wheels, comprising:

® [he wheel diameter

® Position from the center of the robot (i.e. half of the track width)

® [he track width is the distance between the left and right wheels

® Motor port

e (ptional gear train between wheel and motor (not used with our robot)

e [ypically requires some trial and error!!!

Wheel leftWheel = WheeledChassis.modelWheel(Motor.B, 3.3).o0ffset(-10.0);

Wheel rigshtWheel = WheeledChassis.modelWheel(Motor.C, 3.3).o0ffset(10.0);
Chassis myChasssis = new WheeledChassis(

new Wheel[]{leftWheel, rishtWheel},
WheeledChassis. TYPE_DIFFERENTIAL);
MovePilot pilot = new MovePilot(myChassis);

11 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

MovePllot Methods

® Speed of motion (linear or
rotation)

® speed Is In wheel-diameters-units
per second (e.g. cm per second)

e setLinearSpeed(double speed)
e setAngularSpeed(double speed)

® Also possible to get current speed
® c.g. double getLinearSpeed()

® and max possible speed
® c.g. double getMaxLinearSpeed()

® Also possible to set acceleration, etc

12

® \ove a certain amount

e travel(double distance)

® distance is In wheel-diameters-units (e.g. cm)

® Rotate:

e rotate(double angle)

® rotate through specified angle (in degrees) in
a zero-radius turn.

® | ots of other methods
defined In the API.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Example Code - MovePIlot

public class SimplePilot {
MovePilot pilot;
GraphicsLLCD lcd;

public void drawSquare(float length){
for(inti=0; i<4 ; i++){
pilot.travel(length); // Drive forward
pilot.rotate(90); // Turn 90 degrees
}
}

public static void main(String[] args) {

: : : : Wheel leftWheel = WheeledChassis.modelWheel(Motor.B, 3.3).0ffset(-10.0);

The MovePﬂOt nstance s Createq by generating Wheel rightWheel = WheeledChassis.modelWheel(Motor.C, &.3).0ffset(10.0);

two instances of the type wheel using the Chassis myChassis = new WheeledChassis(

modeller method modelWheel. The parameters new Wheel[] {leftWheel, rigshtWheel}, WheeledChassis.TYPE_DIFFERENTIAL);
here broadly represent the robot, but as we have // Create a SimplePilot and instantiate its member pilot

a differential drive, the precise values may need SimplePilot sp = new SimplePilot():

calibrating. sp.pilot = new MovePilot(myChassis);

sp.led = LocalEVa.get().getGrapiicsLCD (;

sp.pilot.setLinearSpeed(20); // Set speed to 0cm per second
sp.drawSquare(40);

13 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Example Code - MovePIlot

public class SimplePilot {

MovePilot pilot;
GraphicsLLCD lcd;
The drawSquare method draws the four sides public void drawSquare(float length){
- . for(inti=0; i<4 ; i++)({
of the square, by using pllot.trl’avel(lengthl) to pilot.travel(length); // Drive forward
move forward the length of a side, and rotating pilot.rotate(90): // Turn 90 degrees
around 90 degrees at each corner by using }
pilot.rotate(90) }

public static void main(String[] args) {
Wheel leftWheel = WheeledChassis.modelWheel(Motor.B, 3.3).0ffset(-10.0);

Wheel rigshtWheel = WheeledChassis.modelWheel(Motor.C, 3.3).0ffset(10.0);
Chassis myChassis = new WheeledCha.ssis(

new Wheel[]{leftWheel, rishtWheel}, WheeledChassis.TYPE_DIFFERENTIAL);

// Create a SimplePilot and instantiate its member pilot
SimplePilot sp = new SimplePilot();
sp.pilot = new MovePilot(myChassis);

, , , , sp.led = LocalEV3.get().8etGraphicsLCD();
The speed of the pilot is defined using the

method setLinearSpeed() to travel at 20cm per sp.pilot.setLinearSpeed(L0); // Set speed to &0cm per second
second. A 40cm square is drawn using sp.drawSquare(20);
drawSquare(40)

14 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

MovePllot - Calibration

® Using the MovePilot and the wheeledChassis

® You will find it doesn't do exactly what you ask it to right away.

® \/\/ith correct robot dimensions

® Pretty good on distance.

® | ess good on rotation.

® You Wwill need to callibrate to get it to do what
you want it to do.

® You will need to keep on callibrating.

15 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Borenstein’'s experiment

Reterence Wall

oo s St
ﬁ (X0, Yo, Bo)
/ v ‘w
/ .
78"
7] ol
1\
Znr
Preprogrammed Forward
square path
Ax4dm

End
(Xo+8x, Yo+E€y, 90+£e)

-

J

10

87° turn Instead of a
90° turn (due to the

Reterence Wall uncertainty about the
POP ISP IS effective wheelbase

B2t)

™

-—

SOONONNANNNNNN

Forward

\

n
nt pat
iead of S’W? 90(000"
cuned N giamete™ T e it
to WNEZ ™ ipis €@
\e

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Odometry Pose Provider (OPP)

® \When using the MovePilot ® Pose objects are manipulated
e the control loop running the motors oy OdometryPoseProvider
<KNOWS Instantaneously how far the robot ® Pose objects store a robot pose.

nas mMoved. |
® [urns out you need to do this a lot. Has

® [hatis what it uses to know when to no necessary relation to where the robot

stop the motors.

1S.
| | ® Methods:
® |t s useful to be able to log this . gotXO)
iInformation in the control * getY()

p ‘0 g ram. o getHeading()

® [he OdometryPoseProvider provides
some of this abllity.

® Just as you might/should expect.

® \/alues returned are floats.

17 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Odometry Pose Provider (OPP)

® Getting and Setting the Pose ® \\Vhen you create an OPP, you

e void SetPose(Pose aPose) INK 1t to a Pilot object:
® sets the Pose value in the OPP. OdometryPoseProvider opp =
e Note that this does not move the robot, just new OdometryPoseProvider(pilot);

changes the value that is stored.

e Pose GetPose()

® returns a Pose.

® where pilot is a MovePilot.

® [hen the Pose returned by the OPP is
updated when the robot moves.

® [his is the current pose stored by the OPP.

e If used correctly, this Pose will tell you e Of course, it is updated by the
something useful. amount that the robot thinks it moves.
® A Pose maintains: ® (Since the robot doesn't actually know how

much it is moving.)
o float _heading

e Point location

18 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Example Code - OPP

// Create a pose provider and link it to the movwve pilot

OdometryPoseProvider opp = new OdometryPoseProvider(pilot);

led.drawString("Pose (1): " + opp.getPose(), 10, 20, O0);
pilot.travel (30);
led.drawString("Pose (2): " + opp.getPose(), 10, 40, O);
pilot.rotate (90);
led.drawString("Pose (3): " + opp.getPose(), 10, 60, O);

pilot.travel (20);

led.drawString("Pose (4): " + opp.8etPose(), 10, 70, O);
pilot.rotate (90);

led.drawString("Pose (5): " + opp.getPose(), 10, 90, O);
pilot.travel (30);

pilot.rotate (-180);

led.drawString("Pose (6): " + opp.getPose(), 10, 100, 0);

19

Simple Pose

Fose (112 =:8 Y:@8 H:@
Fress any button to start
Fose (212 x:328 Y:8 H:A
Fress any button to continue
Fose [3): x:38 Y:8 H:9A
Fose [(4): x:38 Y:28 H: 948
Fress any button to contilnue
Fose [(51: x:28 Y:28 H:15H
Fose [(B]l: ®:—HA Y:28 H:H

Fress any button to exlLt

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

- Rty i s T et 2 - . &
‘ : e S O, . s, T
‘-_ - f"‘-.*r,’e,’if P G 3
G N, e P T - GRS R 3 -
,'v‘ X \"-\ T ""'.17-'-"«' g, e
2 *.-, L RE AN E BN e e g :
o “, - ,
PR e 9.t i T s s
1 e e ‘1 i‘
TR * £ ‘
¥ ha, 5

® Heading sensors can be;:
® proprioceptive (gyroscope, Inclinometer); or

® cxteroceptive (compass).

® Used to determine the robot's orientation
and/or inclination.

® Allow, together with an appropriate velocity information,
to integrate the movement to an position estimate.

® A bit more sophisticated than just using
odometry.

20 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Compass

® Used since before 2000 B.C.

® Chinese suspended a piece of naturally magnetic magnetite
from a silk thread and used it to guide a chariot over land.

0

30

\\\\\\\\\\\\\\\ I //////////

® \lagnetic field on earth

® Absolute measure for orientation.

® | arge variety of solutions to measure the
earth’'s magnetic field

® \echanical magnetic compass

® Direct measure of the magnetic field

e (Hall-effect, magnetoresistive sensors)

21 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Compass

® \ajor drawback

® \\\eakness of the earth field

e Easily disturbed by magnetic objects or other
SOUrces

e Not feasible for indoor environments in general.

® \odern devices can give 3D
orientation relative to Earth's
magnetic field.

29 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Gyroscope

® Heading sensors, that keep the orientation to
a fixed frame

® Provide an absolute measure for the heading of a mobile
system.

e Unlike a compass doesn't measure the outside world.

® WO categories, mechanical and optical
gyroscopes

® Mechanical Gyroscopes

e Standard gyro
® Rate gyro

® Optical Gyroscopes
e Rate gyro

23 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Mechanical Gyroscopes

® Concept: inertial properties of a fast spinning rotor

® Jyroscopic precession

® Angular momentum associated with a spinning
wheel keeps the axis of the gyroscope inertially
stable.

® No torgue can be transmitted from the outer pivot to the wheel
axIS

® Spinning axis will therefore be space-stable Wheel bearing

e Quality: 0.1 degrees in 6 hours

® |n rate gyros, gimbals are held by torsional springs.

® \Measuring force gives angular velocity.

24 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Optical Gyroscopes

® Use two monochromatic light (or laser) -
beams from the same source.
® One beam travels clockwise in a cylinder l T l 1
around a fibre, the other— counterclockwise.
ng in directi ON: Light
® [he beam traveling in direction of rotation: s;gurce Half silvered mirror
® Slightly shorter path shows a higher frequency e
e Difference in frequency Af of the two beams is —
proportional to the angular velocity €2 of the cylinder/fibre.
Detector

® Newest optical gyros are solid state.

25 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Accelerometer

® \leasure acceleration.

® \Vlass on a spring.

® Measure force in spring through the change in capacitance

® (5ives acceleration of mass.

® Any heading or position sensor reading can be
“differentiated” to give acceleration.

e Difference between two values gives “velocity”

e Difference between two “velocities” gives acceleration

® Any velocity sensor reading can be handled
similarly. Acceleration

Fixed Plate

20 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Sensor Performance

® Dynamic Range

® Spread between lower and upper limits of input
values (as a ratio)

® Resolution

® Minimum difference between two sensor values

® Sensitivity
® easure of the degree to which incremental
change in target input changes output signal
® Ratio of output change to input change
® |[n real world environment, the sensor has very

often high sensitivity to other environmental
changes, e.g. illumination.

27

® Cross-sensitivity

® Sensitivity to environmental parameters that are
orthogonal to the target parameters

® Error / Accuracy

® Difference between the sensor's output and the
true value

Error = 1N — v

m — v

|
ek

accuracy
U

® Wwhere

® m = measured value and

® = true value.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Sensor Performance

e Systematic error = deterministic errors

® (Caused by factors that can (in theory) be modelled

e — prediction

® c.g. distortion caused by the optics of a camera.

® Random error = non-deterministic

® No prediction possible
® However, they can be described probabilistically

® c.g. error iIn wheel odometry.

® Precision . range
- DrectS10n =
® Reproducibility of sensor results o

® |[f a random error of a sensor Is characterised by some mean o and
standard deviation, p then the precision is the ratio of the sensors
output range to s.d.

28 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

y [m]

0.4F

0.2

Coping with Errors

® Compensate for systematic
errors.

e Build a probabilistic model of random
errors.

® Obtain a distribution of possible positions.

Error Propagation in Odometry

e e A Slmple error

p ' model for straight
R E 1 line motion
5 s y
0.2 b - (rhrun, Burgard and FOX)
PO e i
0 O.i5 ;

X [m]

29

® KNOW Where we are on average.

® Don't know where we are in particular.

® Errors accumulate over time.

Error Propagation in Odometry

00

o8]

I I S A N N

o6l A simple error
Y model when we
" 04 turn

s
03 5 .% (Thrun, Burgard and Fox)

5 5 CANE
: R :
(V)% | SERSEEPPEETPEPRR PO TR %M.a
A)
0 L—ynnssananzaverers & i I ! l
0 0.2 0.4 0.6 0.8 1

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

- lw
.
’ 0'
.
- - '
-
’ '
my
& - .
: . ¥
: <
-
| -
: -
a
g :
.
L .
e o~ =
~
c hY
\
’
- -H.
./'-
.
-
- -
e
s .
AN o . \.

Summary

® [his lecture started to look at sensor data.

® |t concentrated on data that can be used in odometry.

e \\heel encoders
® and looked at LeJOS support for doing odometry.
® Also looked at other kinds of related sensor data:

e Compass

® (Gyroscope

® | ater in the module we will look at range sensor data
and cameras as Sensors.

® |n the next lecture, we will look at
Behaviour Based Robots

31 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

