COMP329
Robotics and
Autonomous Systems

Lecture 7: Threads & Multitasking in Robots

Dr Terry R. Payne
Department of Computer Science

v

Threads & MultiTasking

® Some more programming techniques that will be helpful for the assignment.

® [he main subject will be multitasking

® How to get the robot to do several things at once.

® [hat involves using threads.

e But we’ll cover some other useful programming ideas as well.

® |n robotics we frequently need to deal with concurrency

e Different bits of code running more or less independently in time.

e Once upon a time these had to be separate processes.
® Rather heavyweight.

® A more modern approach is that of threads

® [hese provide fine-grained concurrency within a process.

® Here we discuss the basic ideas behind the use of threads In Java.

2 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

VWhat are threads

® A thread Is a flow of control within a program.

e Similar to multiple processes, but all belonging to the same program

e Can easily share state, and coordinate behaviour

® [hreads are like lectures at a university

® Separate, independent entities that can run concurrently

® Resources can be shared,

® Only one entity uses a resource at the same time

® Need coordination to manage access to resources.

® [hreads also have local data that Is distinct from shared resources

3 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Thread Object

® All execution In Java Is ® [Wo ways to handle threads.
assoclated with a Thread object. e One way is to sub-class the Thread
e That is what main() launches. object.
® (Create your own thread which extends the
® New threads are born when a new standard thread.
instance of: java.lang.Thread is e Do this by defining/over-riding the run() method.
created ® (This is what is invoked when the thread starts.)

® Second way IS to create a Runnable

object and execute it In an unmodified

® [his object is what we Thread

maﬂipU‘ate to COﬂtrOl and e Many Javg programmers consider that using
coordinate execution of the Runnable is better style.
thread. e \We will stick to the first.

4 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Thread Scheduling

® [n most Java implementations,
threads are time-sliced.
® Fach thread runs for a while in some order

® On other Java implementations, you might get
different behavior.

® All depends on what the VM does.

e All threads have a priority value.

® Any time a higher priority thread becomes
runnable, it preempts any lower priority threads
and starts executing.

® By default, threads with the same priority are
scheduled round-robin.

® [his means that once a thread begins
to run it continues until:

® [t sleeps due to a sleep() or walit();

® [t waits for the lock for a synchronized method;
® [t blocks on I/O;
e [t explicitly yields control using yield(); or

® [t terminates.

® S0 there Is Nno necessity for threads
to be time-sliced.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Java Thread Creation

® \\Vhen a Java program starts, a single thread is created
® JVM also has own threads for garbage collection, screen updates, event handling etc.
® New threads may be created by extending the Thread class

® Again, threads may be managed directly by kernel, or implemented at user level by a library

class Workerl extends Thread {
public void run() {
System.out.println(“A Worker Thread”);

® Class Workerl is derived from Thread class

e [he work of the new thread is specified in the run() method

}

} blic olass First | e In main() we create a new Workerl object
public class First

public static void main(String args[]) { e (alling the start() method...
Workerl runner = new Workerl();
runner.start();
System.out.println(“The Main Thread”);

® allocates memory and initialises the new thread — causes run()
method to be called

® Original thread and new thread now run in parallel

@) Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Controlling Threads

® [here are a few methods that allow us to
control the execution of threads.

® Some are depreciated, others we’ll not look at

® \\Ve will focus on the following:

e start() Iis used to start a thread running.

o \We will see an example in a bit.

® sleep() Is to pause for a short period

® Synchronisation on shared resources

e (Coordinated using wait(), and notify ()

[/ Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

sleep()

® Sometimes we need to tell a thread to take a

preak.
e [he method sleep() will do this.

e [t takes an argument that is the number of milliseconds to sleep for.

® sleep() Is a class method of Thread, so it can be called

elither using:
e Thread.sleep()

® or by calling it on a specific instance of Thread:
e myOwnLittleThread.sleep()

® Puts the current thread to sleep

8 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

sleep()

® Good practice to put a sleep in a try/
catch structure in case the thread Is

iNnterrupted during its sleep. public void run()
while(true){
System.out.println("One!");
: t
® You often set threads to sleep precisely ~ {Threa,d.sleep(lOOO); |
because you are waiting for them to be O Gos e won't sloop aftor all

INnterrupted.

® A sleeping thread can be woken up by an
InterruptedException so we need to
specity what to do It this happens.

9 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Mutual Exclusion

® [ndeterminacy arises because of possible simultaneous

access to a shared resource

® [he variable ‘count’ in the example opposite

e Solution is to allow only one thread to access ‘count’
at any one time; all others must be excluded

® [0 control access to such a sr

the section of code in which tr

ared resource we declare
e thread/process

accesses the resource to be the critical region/section

e \\e can then regulate access to the critical region

® \Vhen one thread is executing in its critical region, No other thread/
process is allowed to execute In its critical region

® [his is known as mutual exclusion

~

Example

Suppose we have an object (called
‘thing’) which has the following

method:

public void inc(){
count = count + 1;

}

The integer count Is private to
'thing’, and is Initially zero.

Two threads, T1 and T2, both
execute the following code:

thing.inc();

10 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Synchronisation

® [ndeterminacy arises because of possible simultaneous access to a shared resource

® [he variable ‘count’ in the example

e Solution Is to allow only one thread to access count at any one time

® gl| others must be excluded

® [0 control access to such a shared resource we declare the section of code in which the
thread/process accesses the resource to be the critical region/section

® \\Ve can then regulate access to the critical region

® \\Vhen one thread is executing in its critical region, no other thread/process is allowed to execute in its critical region

® [his Is known as mutual exclusion

® A key part of synchronisation is ensuring that no job is left waiting indefinitely

11 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Synchronisation

e |n Java, mutual exclusion is achieved by ensuring
synchronisation when calling methods that access
shared resources

® Declare the method as synchronized

public synchronized void myFunction() {

® Only one thread at a time is allowed to execute any
synchronized method of an object.)

® |.e. when called, the object becomes locked

e Other threads are blocked until they can acquire the lock on the object

® Note that locks are reentrant, so a thread does not
block itself.

e [he synchronized function can call itself recursively, and it can call
other synchronized methods of the same object.

12 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

wait() and notify ()

class Buffer {

private int v;

ewait() and notify() provide more direct private volatile boolean empty=true;
synchronization of threads. D o (et (e
® \When a thread executes a synchronized method that o {Wa,it();
contains a wait(), it gives up its hold on the block and goes } cateh (Interruptedlxception e) {}
{O sleep. émpty = false;
® The idea is that the thread is waiting for some necessary OHEO):

event to take place.)

. N J
® Later on, when it wakes up, It will start 10 try 10 get the |0CK B e N Tote e e e Rt e Vo

for the synchronized object. the calling thread to the ‘wait set’

e \When it gets the lock, it will continue from where it left off. ¢ [he notify() call - moves an arbitrary thread
from the wait set back to the entry set

e Can use notifyAll() to move all waiting threads

e \\Vhat wakes the thread up from waiting IS a call |EErEr e
to notify () on the same synchronized object. RISEERSIECICKIEEREIUEEEIEIEE

variable is updated

13 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

SimpleRobot

®| ct’s define a Java class to
represent our robot.

® [wWo touch sensors

® One infrared sensor (ublic class SimpleRobot {
® One colour sensor private EV3TouchSensor leftBump, rightBump;
private EV3IRSensor 1irSensor;
® [\WO drive motors private EV3ColorSensor cSensor;
private SampleProvider leftSP, rightSP, distSP, colourSP;
® (|’m ignOring the motor pointing the private float[] leftSample, rightSample, distSample, colourSample;
. private EV3LargeRegulatedMotor motorL, motorR;
Infrared SeﬂSOr)- private EV3MediumRegulatedMotor motorsS;

® Create an instance as part of a
control program.

® Provide a data element for each
element of the robot

14 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

SimpleRobot Accessor Methods

~

public boolean isLeftBumpPressed() {}

® -ach of these private memoers WOuld | ritic sootean iskightsumppressed> &
need appr()priate “ge.t!! aﬂd/Or “Set” puz:c :oat[jetDiztclmcez 2
. public oat getColour
funCtIOnS- public void startMotors(){}

o Get Sensor Va‘ues public void reverseMotors(){}

public void turnMotors(boolean clockwise){}

e Set motor values.

public void stopMotors(){}

e Get motor values, for example isLeftMotorOn() | ,uiic bootean isRightMotoronty {3

public boolean isLeftMotorOn() {}

15 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

SimpleRobot Constructor

publlc SimpleRobot() {
Brick myEV3 = BrickFinder.getDefault();

‘ COﬂStrUCtOr Sets up the data leftBump = new EV3TouchSensor(myEV3.getPort("S2"));

rightBump = new EV3TouchSensor(myEV3.getPort("S1"));

mem bers tO ta‘k to the irSensor = new EV3IRSensor(myEV3.getPort("S3"));

cSensor = new EV3ColorSensor(myEV3.getPort("S4"));

relevant bits of the hardware. LeFSh - LottBumn. aetTouchodety

rightSP = rightBump.getTouchMode();
distSP = 1irSensor.getDistanceMode();
colourSP = cSensor.getRGBMode();

® GOOd Java praCtlce/Sty‘e tO leftSample = new float[leftSP.sampleSize()];

rightSample = new float[rightSP.sampleSize()];

Set up the rObOt er thiS_ distSample = new float[distSP.sampleSize()];

colourSample = new float[colourSP.sampleSize()];

® \ﬂdepeﬂdeﬂ’[Of USiﬂg threads motorL = new EV3LargeRegulatedMotor(myEV3.getPort("B"));

motorR = new EV3LargeRegulatedMotor(myEV3.getPort("C"));
motorS = new EV3MediumRegulatedMotor(myEV3.getPort("A"));

¥

‘A‘SO IﬂC\Ude d ClOSGRObOt() public void closeRobot() {

leftBump.close();

method to ensure ports are e oS
closed }

cSensor.close();

16 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Robot Monitor Thread

o Now we'll use a thread to set up a
rObOt mOnitOr. @blic class RobotMonitor extends Thread {

private int delay;
public SimpleRobot robot;

® [hread that observes what the robot Is doing

GraphicsLCD lcd = LocalEV3.get().getGraphicsLCD();

e Uses the SimpleRobot object to do this.

// Make the monitor a daemon and set

// the robot 1t monitors and the delay

public RobotMonitor(SimpleRobot r, int d){
this.setDaemon(true);

® Reports the robot state on the delay - d;
screen. }

e Useful debug tool.

17 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Daemons

® Daemons are threads providing “services” for other
threads in the program.

® [hey run as background processes

® [hey serve basic functionalities upon which other threads build

® |[f a thread Is declared Daemon, its existence does not
prevent the JVM from exiting (unlike other threads).

e Useful methods in java.lang.Thread:

¢ pboolean isDaemon()

® [ags whether thread is daemon

e void setDaemon (Boolean on)

® GSets the thread to be a daemon. Can only be used before the thread is created.

18 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Robot Monitor

-~

public void run(){
// The decimalformat here 1is used to round the number to three significant digits
DecimalFormat df = new DecimalFormat("####0.000");

while(true){

®\/\/e can now report on
the Status Of the rObOt %Ej:gliﬁgf\’zéFont.getDefaultFont());

lcd.drawString("Robot Monitor", lcd.getWidth()/2, @, GraphicsLCD.HCENTER);
lcd.setFont(Font.getSmallFont());

e Note that the infrared sensor - .. .
. lcd.drawString("LBump: "+robot.islLeftBumpPressed(), 0, 20, 0);
reytLJrTﬁES C)r1€3 \/Ei‘LJEE ((jIESTERFWCDEB) lcd.drawString("RBump: "+robot.isRightBumpPressed(), 0, 30, 0);

Lcd.drawString("Dist: "+robot.getDistance(), @, 40, @),
lcd.drawString("Colour: ["+

® [he colour sensor returns three df. format(robot. getColourQ[A]) + 4
df.format(robot.getColour()[1]) +" "+
df.format(robot.getColour()[2]) +"]1", @, 50, 0);
Va‘ues (RGB) lcd.drawString("Lmotor: "+robot.islLeftMotorOn(), 0, 60, 0);

lcd.drawString("Rmotor: "+robot.isRightMotorOn(), @, 70, 0);

e \Ve've used a DecimalFormat object try{
to round the values to three significant , sleep(delay);
dlglts catch(Exception e){}

19 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Run Monitor

® Fnally we connect the monitor and an
instance of Simple Robot

public class RunMonitor {

@ C‘ear‘y, We COU‘d use the Same Sty‘e tO public static void main(String[] args) throws Exception{

SimpleRobot me = new SimpleRobot();

bu”d mOre Comp‘ex rObOt COntrOHerS' RobotMonitor myMonitor = new RobotMonitor(me, 400);
® [hreads controlling different aspects of the robot: AR o SEAFEOE
® Moving around ne. loseRobotO);

® Avoiding obstacles

® Preventing collisions

o All talking to the SimpleRobot object to operate
the hardware.

e All together determining what the robot does.

20 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

| ISsteners, Events and Behaviours

®|n the NXT API Listeners allowed us to monitor sensors
and keys.

® No longer needed to keep a busy watch on the hardware

® |nstead, have the hardware tell us when some thing changes.

e Exactly the same kind of event-driven programming that we have in GUIs.

® Pressing a button typically leads to an action.

e |n EV3, the listener model has been depreciated

e Problematic with different types of sensor

e Some listeners still exist, e.qg. for MoveListener or NavigationListener

® Behaviours now allow us to “listen” for specific events
using the takeControl() method

® [hus events determine which Behaviour fires in our robot

21 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Summary

® [his lecture looked at multi-tasking, which is
handy for many robotics tasks.

® irst we looked at threads, which provide a lightweight
approach to multi-tasking.

® [hen we looked at how threads can be used in LeJOS.

® Our example also showed how to use
LeJOS In a more object-oriented way.

® N the next lecture, we will look at maps and
Mmapping, and in particular:

® Occupancy Grids!

22 Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

