
COMP329
Robotics and
Autonomous Systems

Dr Terry R. Payne
Department of Computer Science

Lecture 7: Threads & Multitasking in Robots

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Threads & MultiTasking
•Some more programming techniques that will be helpful for the assignment.

• The main subject will be multitasking
• How to get the robot to do several things at once.

• That involves using threads.
• But we’ll cover some other useful programming ideas as well.

• In robotics we frequently need to deal with concurrency
• Different bits of code running more or less independently in time.
• Once upon a time these had to be separate processes.

• Rather heavyweight.

• A more modern approach is that of threads
• These provide fine-grained concurrency within a process.

• Here we discuss the basic ideas behind the use of threads in Java.

2

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

What are threads
•A thread is a flow of control within a program.

• Similar to multiple processes, but all belonging to the same program
• Can easily share state, and coordinate behaviour

• Threads are like lectures at a university
• Separate, independent entities that can run concurrently
• Resources can be shared,

• Only one entity uses a resource at the same time
• Need coordination to manage access to resources.

• Threads also have local data that is distinct from shared resources
3

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Thread Object
•All execution in Java is

associated with a Thread object.
• That is what main() launches.
• New threads are born when a new

instance of: java.lang.Thread is
created  

•This object is what we
manipulate to control and
coordinate execution of the
thread.

•Two ways to handle threads.
• One way is to sub-class the Thread

object.
• Create your own thread which extends the

standard thread.
• Do this by defining/over-riding the run() method.

• (This is what is invoked when the thread starts.)  

• Second way is to create a Runnable
object and execute it in an unmodified
Thread
• Many Java programmers consider that using

Runnable is better style.

• We will stick to the first.

4

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Thread Scheduling
• In most Java implementations,

threads are time-sliced.
• Each thread runs for a while in some order
• On other Java implementations, you might get

different behavior.
• All depends on what the VM does.

• All threads have a priority value.
• Any time a higher priority thread becomes

runnable, it preempts any lower priority threads
and starts executing.

• By default, threads with the same priority are
scheduled round-robin.  

• This means that once a thread begins
to run it continues until:
• It sleeps due to a sleep() or wait();
• It waits for the lock for a synchronized method;
• It blocks on I/O;
• It explicitly yields control using yield(); or
• It terminates.

• So there is no necessity for threads
to be time-sliced.

5

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Java Thread Creation
•When a Java program starts, a single thread is created

• JVM also has own threads for garbage collection, screen updates, event handling etc.
• New threads may be created by extending the Thread class
• Again, threads may be managed directly by kernel, or implemented at user level by a library

6

class Worker1 extends Thread {
 public void run() {
 System.out.println(“A Worker Thread”);
 }
}
public class First {
 public static void main(String args[]) {
 Worker1 runner = new Worker1();
 runner.start();
 System.out.println(“The Main Thread”);
 }
}

• Class Worker1 is derived from Thread class
• The work of the new thread is specified in the run() method

• In main() we create a new Worker1 object

• Calling the start() method…

• allocates memory and initialises the new thread – causes run()
method to be called

• Original thread and new thread now run in parallel

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Controlling Threads
•There are a few methods that allow us to

control the execution of threads.
• Some are depreciated, others we’ll not look at

•We will focus on the following:
• start() is used to start a thread running.

• We will see an example in a bit.

• sleep() is to pause for a short period
• Synchronisation on shared resources

• Coordinated using wait(), and notify()

7

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

sleep()
•Sometimes we need to tell a thread to take a

break.
• The method sleep() will do this.

• It takes an argument that is the number of milliseconds to sleep for.

• sleep() is a class method of Thread, so it can be called
either using:

• Thread.sleep()

• or by calling it on a specific instance of Thread:
• myOwnLittleThread.sleep()

• Puts the current thread to sleep

8

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

sleep()
•Good practice to put a sleep in a try/

catch structure in case the thread is
interrupted during its sleep.

•You often set threads to sleep precisely
because you are waiting for them to be
interrupted.

•A sleeping thread can be woken up by an
InterruptedException so we need to
specify what to do if this happens.

9

public void run(){
 while(true){
 System.out.println("One!");
 try{
 Thread.sleep(1000);
 } catch(InterruptedException e){
 // Guess we won’t sleep after all
 }
 }
}

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Mutual Exclusion
•Indeterminacy arises because of possible simultaneous

access to a shared resource
• The variable ‘count’ in the example opposite

•Solution is to allow only one thread to access ‘count’
at any one time; all others must be excluded

•To control access to such a shared resource we declare
the section of code in which the thread/process
accesses the resource to be the critical region/section

•We can then regulate access to the critical region
• When one thread is executing in its critical region, no other thread/

process is allowed to execute in its critical region
• This is known as mutual exclusion

10

Example
Suppose we have an object (called
‘thing’) which has the following
method:

public void inc(){
	 count = count + 1;
}

The integer count is private to
‘thing’, and is initially zero. 

Two threads, T1 and T2, both
execute the following code: 

thing.inc();

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Synchronisation
•Indeterminacy arises because of possible simultaneous access to a shared resource

• The variable ‘count’ in the example

•Solution is to allow only one thread to access count at any one time
• all others must be excluded

• To control access to such a shared resource we declare the section of code in which the
thread/process accesses the resource to be the critical region/section

•We can then regulate access to the critical region
• When one thread is executing in its critical region, no other thread/process is allowed to execute in its critical region
• This is known as mutual exclusion

•A key part of synchronisation is ensuring that no job is left waiting indefinitely

11

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Synchronisation
•In Java, mutual exclusion is achieved by ensuring

synchronisation when calling methods that access
shared resources
• Declare the method as synchronized

•Only one thread at a time is allowed to execute any
synchronized method of an object.
• i.e. when called, the object becomes locked
• Other threads are blocked until they can acquire the lock on the object

•Note that locks are reentrant, so a thread does not
block itself.
• The synchronized function can call itself recursively, and it can call

other synchronized methods of the same object.

12

public synchronized void myFunction() {
 …
}

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

wait() and notify()
•wait() and notify() provide more direct

synchronization of threads.
• When a thread executes a synchronized method that

contains a wait(), it gives up its hold on the block and goes
to sleep.

• The idea is that the thread is waiting for some necessary
event to take place.

• Later on, when it wakes up, it will start to try to get the lock
for the synchronized object.
• When it gets the lock, it will continue from where it left off.

•What wakes the thread up from waiting is a call
to notify() on the same synchronized object.

13

class Buffer {
 private int v;
 private volatile boolean empty=true;
 public synchronized void insert(int x) {
 while (!empty) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }
 empty = false;
 v = x;
 notify();
 }
}

•The wait() call - releases the lock and moves
the calling thread to the ‘wait set’

•The notify() call - moves an arbitrary thread
from the wait set back to the entry set

•Can use notifyAll() to move all waiting threads
back to entry set

•We use volatile to guarantee that a shared
variable is updated

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

SimpleRobot
•Let’s define a Java class to

represent our robot.
• Two touch sensors
• One infrared sensor
• One colour sensor
• Two drive motors
• (I’m ignoring the motor pointing the

infrared sensor).

•Create an instance as part of a
control program.
• Provide a data element for each

element of the robot
14

public class SimpleRobot {

private EV3TouchSensor leftBump, rightBump;
private EV3IRSensor irSensor;
private EV3ColorSensor cSensor;
private SampleProvider leftSP, rightSP, distSP, colourSP;
private float[] leftSample, rightSample, distSample, colourSample;
private EV3LargeRegulatedMotor motorL, motorR;
private EV3MediumRegulatedMotor motorS;

…

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

SimpleRobot Accessor Methods

•Each of these private members would
need appropriate “get” and/or “set”
functions.
• Get sensor values.
• Set motor values.
• Get motor values, for example isLeftMotorOn()

15

public boolean isLeftBumpPressed() {}

public boolean isRightBumpPressed() {}

public float getDistance() {}

public float[] getColour() {}

public void startMotors(){}

public void reverseMotors(){}

public void turnMotors(boolean clockwise){}

public void stopMotors(){}

public boolean isRightMotorOn() {}

public boolean isLeftMotorOn() {}

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

SimpleRobot Constructor
•Constructor sets up the data

members to talk to the
relevant bits of the hardware.

•Good Java practice/style to
set up the robot like this.
• Independent of using threads.

•Also include a closeRobot()
method to ensure ports are
closed

16

public SimpleRobot() {
Brick myEV3 = BrickFinder.getDefault();

leftBump = new EV3TouchSensor(myEV3.getPort("S2"));
rightBump = new EV3TouchSensor(myEV3.getPort("S1"));
irSensor = new EV3IRSensor(myEV3.getPort("S3"));
cSensor = new EV3ColorSensor(myEV3.getPort("S4"));

leftSP = leftBump.getTouchMode();
rightSP = rightBump.getTouchMode();
distSP = irSensor.getDistanceMode();
colourSP = cSensor.getRGBMode();

leftSample = new float[leftSP.sampleSize()];
rightSample = new float[rightSP.sampleSize()];
distSample = new float[distSP.sampleSize()];
colourSample = new float[colourSP.sampleSize()];

motorL = new EV3LargeRegulatedMotor(myEV3.getPort("B"));
motorR = new EV3LargeRegulatedMotor(myEV3.getPort("C"));
motorS = new EV3MediumRegulatedMotor(myEV3.getPort("A"));

}

public void closeRobot() {
leftBump.close();
rightBump.close();
irSensor.close();
cSensor.close();

}

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Robot Monitor Thread

•Now we’ll use a thread to set up a
robot monitor.
• Thread that observes what the robot is doing
• Uses the SimpleRobot object to do this.

•Reports the robot state on the
screen.
• Useful debug tool.

17

public class RobotMonitor extends Thread {
private int delay;
public SimpleRobot robot;

 GraphicsLCD lcd = LocalEV3.get().getGraphicsLCD();

 // Make the monitor a daemon and set
 // the robot it monitors and the delay
 public RobotMonitor(SimpleRobot r, int d){
 this.setDaemon(true);
 delay = d;
 robot = r;
 }

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Daemons
• Daemons are threads providing “services” for other

threads in the program.
• They run as background processes
• They serve basic functionalities upon which other threads build

• If a thread is declared Daemon, its existence does not
prevent the JVM from exiting (unlike other threads).
• Useful methods in java.lang.Thread:
• boolean isDaemon()

• Flags whether thread is daemon

• void setDaemon (Boolean on)
• Sets the thread to be a daemon. Can only be used before the thread is created.

18

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Robot Monitor

•We can now report on
the status of the robot
• Note that the infrared sensor

returns one value (distance)
• The colour sensor returns three

values (RGB)
• We’ve used a DecimalFormat object

to round the values to three significant
digits

19

 public void run(){
 // The decimalformat here is used to round the number to three significant digits

DecimalFormat df = new DecimalFormat("####0.000");

 while(true){
 lcd.clear();
 lcd.setFont(Font.getDefaultFont());
 lcd.drawString("Robot Monitor", lcd.getWidth()/2, 0, GraphicsLCD.HCENTER);
 lcd.setFont(Font.getSmallFont());

 lcd.drawString("LBump: "+robot.isLeftBumpPressed(), 0, 20, 0);
 lcd.drawString("RBump: "+robot.isRightBumpPressed(), 0, 30, 0);
 lcd.drawString("Dist: "+robot.getDistance(), 0, 40, 0);
 lcd.drawString("Colour: ["+
 df.format(robot.getColour()[0]) +" "+
 df.format(robot.getColour()[1]) +" "+
 df.format(robot.getColour()[2]) +"]", 0, 50, 0);
 lcd.drawString("Lmotor: "+robot.isLeftMotorOn(), 0, 60, 0);
 lcd.drawString("Rmotor: "+robot.isRightMotorOn(), 0, 70, 0);
 try{
 sleep(delay);
 }
 catch(Exception e){}

 }
 }

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Run Monitor
•Finally we connect the monitor and an

instance of Simple Robot

•Clearly, we could use the same style to
build more complex robot controllers.
• Threads controlling different aspects of the robot:

• Moving around
• Avoiding obstacles
• Preventing collisions

• All talking to the SimpleRobot object to operate
the hardware.

• All together determining what the robot does.
20

public class RunMonitor {

public static void main(String[] args) throws Exception{
SimpleRobot me = new SimpleRobot();

RobotMonitor myMonitor = new RobotMonitor(me, 400);

myMonitor.start();

// Do stuff...
me.closeRobot();

}
}

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Listeners, Events and Behaviours
•In the NXT API Listeners allowed us to monitor sensors

and keys.
• No longer needed to keep a busy watch on the hardware

• Instead, have the hardware tell us when some thing changes.

• Exactly the same kind of event-driven programming that we have in GUIs.
• Pressing a button typically leads to an action.

•In EV3, the listener model has been depreciated
• Problematic with different types of sensor
• Some listeners still exist, e.g. for MoveListener or NavigationListener

•Behaviours now allow us to “listen” for specific events
using the takeControl() method
• Thus events determine which Behaviour fires in our robot

21

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016/17

Summary
•This lecture looked at multi-tasking, which is

handy for many robotics tasks.
• First we looked at threads, which provide a lightweight

approach to multi-tasking.
• Then we looked at how threads can be used in LeJOS.

•Our example also showed how to use
LeJOS in a more object-oriented way.

•In the next lecture, we will look at maps and
mapping, and in particular:
• Occupancy Grids!

22

