
COMP329
Robotics &
Autonomous Systems
Lectures 2/3
Dr Terry R. Payne
Department of Computer Science

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Autonomous Agents
• An agent is…

• …a computer system that is capable of
independent (autonomous) action on behalf of its
user or owner (figuring out what needs to be
done to satisfy design objectives, rather than
constantly being told).

• Systems like Deep Space 1 and the
Autonomous Asteroid Exploration Project
show that it is possible to do this!

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

A Vision: Autonomous
Space Probes

• When a space probe makes its long flight from Earth to the
outer planets, a ground crew is usually required to continually
track its progress, and decide how to deal with unexpected
eventualities.

• This is not fiction: NASA’s DS1 did this years ago!

• This is costly and, if decisions are
required quickly, it is simply not
practicable.

• For these reasons, organisations like
NASA are seriously investigating the
possibility of making probes more
autonomous — giving them richer
decision making capabilities and
responsibilities.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

So what are Robots?
The word “robot” was first
used in Karel Capek’s play
“Rossum’s Universal
Robots” in 1920

Isaac Asimov coined
the term “robotics” in
1942.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

So what are Robots?
“…a programmable,
multifunction manipulator
designed to move material,
parts, tools, or specialized
devices through variable
programmed motions for the
performance of a variety of
tasks…”

Robot Institute of America
(1980)

“…[a] physical agent that performs tasks by manipulating the physical
world…” Russell and Norvig (2003).

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Robots, Teleoperation
and Autonomy

• Many autonomous vehicles are not really
autonomous
• They are teleoperated.

• Autonomous Robots make their own decisions

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

What is an Agent?
• The main point about agents is they are

autonomous: capable independent action.
• Thus:

• It is all about decisions
• An agent has to choose what action to perform.
• An agent has to decide when to perform an action.

“... An agent is a computer system that is situated in some
environment, and that is capable of autonomous action in that
environment in order to meet its delegated objectives...”

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Agent and Environment

Effectors (Action)

Sensors
(Percepts)

Environment

The fundamental question is what action(s)
to take for a given state of the environment

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

What is mobile
robotics?

• In mobile robotics this becomes three questions:

• Where am I ?
• Where am I going ?
• How do I get there ?

• The robotics part of this course is about answering those
questions.

?

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Autonomy
• There is a spectrum of autonomy

• Autonomy is adjustable
• Decisions handed to a higher authority when this is

beneficial

Simple Machines
(no autonomy)

People
(full autonomy)

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Simple (Uninteresting)
Agents

• Thermostat
• delegated goal is maintain room temperature
• actions are heat on/off

• UNIX biff program
• delegated goal is monitor for incoming email

and flag it
• actions are GUI actions.

• They are trivial because the decision
making they do is trivial.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Intelligent Agents

• We typically think of as intelligent agent as
exhibiting 3 types of behaviour:
• Pro-active (goal-driven);
• Reactive (environment aware)
• Social Ability.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Proactiveness
• Reacting to an environment is easy

• e.g., stimulus → response rules

• But we generally want agents to do things for us.
• Hence goal directed behaviour.

• Pro-activeness = generating and attempting to
achieve goals; not driven solely by events; taking
the initiative.
• Also: recognising opportunities.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Reactivity
• If a program’s environment is guaranteed to be fixed, a

program can just execute blindly.
• The real world is not like that: most environments are dynamic

and information is incomplete.

• Software is hard to build for dynamic domains: program
must take into account possibility of failure
• ask itself whether it is worth executing!

• A reactive system is one that maintains an ongoing
interaction with its environment, and responds to changes
that occur in it (in time for the response to be useful).

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Social Ability
• The real world is a multi-agent environment: we

cannot go around attempting to achieve goals without
taking others into account.
• Some goals can only be achieved by interacting with others.
• Similarly for many computer environments: witness the

INTERNET.

• Social ability in agents is the ability to interact with
other agents (and possibly humans) via cooperation,
coordination, and negotiation.
• At the very least, it means the ability to communicate. . .

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Abstract Architectures
for Agents

• Assume the world may be in any of a finite set E of discrete, instantaneous
states:

• Agents are assumed to have a repertoire of possible actions available to
them, which transform the state of the world.

• Actions can be non-deterministic, but only one state ever results from and action.

• A run, r, of an agent in an environment is a sequence of interleaved world
states and actions:

r : e0
↵0�! e1

↵1�! e2
↵2�! e3

↵3�! · · · ↵u�1�! eu

Ac = {↵,↵0, . . .}

E = {e, e0, . . .}

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Abstract Architectures
for Agents (1)

• When actions are deterministic each state has only
one possible successor.

• A run would look something like the following:

North

North

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Abstract Architectures
for Agents (2)

• When actions are deterministic each state
has only one possible successor.

• A run would look something like the following:

East

North

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Abstract Architectures for
Agents

• Maecenas aliquam maecenas ligula nostra,
accumsan taciti. Sociis mauris in integer

• El eu libero cras interdum at eget habitasse
elementum est, ipsum purus pede

• Aliquet sed. Lorem ipsum dolor sit amet,
ligula suspendisse nulla pretium, rhoncus

North

North

We could illustrate
this as a graph...

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Abstract Architectures for
Agents

• Maecenas aliquam maecenas ligula nostra,
accumsan taciti. Sociis mauris in integer

• El eu libero cras interdum at eget habitasse
elementum est, ipsum purus pede

• Aliquet sed. Lorem ipsum dolor sit amet,
ligula suspendisse nulla pretium, rhoncus

North

North

When actions are non-
deterministic a run (or
trajectory) is the same, but
the set of possible runs is
more complex.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Runs
• In fact it is more complex still, because all of the runs

we pictured start from the same state.
• Let:

• We will use r,r′,... to stand for the members of
• These sets of runs contain all runs from all starting

states.

R be the set of all such possible finite sequences (over E and Ac);
RAc

be the subset of these that end with an action; and

RE
be the subset of these that end with a state.

R

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Environments
• A state transformer function represents behaviour of the

environment:

• Note that environments are...
• history dependent.
• non-deterministic.

• If there are no possible successor states to r, so we say
the run has ended. (“Game over.”)

• An environment Env is then a triple where E is set
of states, e0 ∈ E is initial state; and τ is state transformer function.

⌧ : RAc ! }(E)

⌧(r) = ;

Env = hE, e0, ⌧i

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Agents
• We can think of an agent as being a

function which maps runs to actions:

• Thus an agent makes a decision about
what action to perform based on the history
of the system that it has witnessed to date.

• Let Ag be the set of all agents.

Ag : RE ! Ac

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Systems
• A system is a pair containing an agent and

an environment.
• Any system will have associated with it a set

of possible runs; we denote the set of runs of
agent Ag in environment Env by:

• Assume contains only runs that
have ended.

R(Ag,Env)

R(Ag,Env)

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Systems

• Maecenas aliquam maecenas ligula nostra,
accumsan taciti. Sociis mauris in integer

• El eu libero cras interdum at eget habitasse
elementum est, ipsum purus pede

• Aliquet sed. Lorem ipsum dolor sit amet,
ligula suspendisse nulla pretium, rhoncus

Formally, a sequence

(e0,↵0, e1,↵1, e2, . . .)

represents a run of an agent Ag in environment Env = hE, e0, ⌧i if:

1. e0 is the initial state of Env

2. ↵0 = Ag(e0); and

3. for u > 0,

eu 2 ⌧((e0,↵0, . . . ,↵u�1)) and

↵u = Ag((e0,↵0, . . . , eu))

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Why the notation?
• Well, it allows us to get a precise handle on some ideas

about agents.
• For example, we can tell when two agents are the same.

• Of course, there are different meanings for “same”. Here
is one specific one.

• We won’t be able to tell two such agents apart by
watching what they do.

Two agents are said to be behaviorally equivalent with

respect to Env i↵ R(Ag1, Env) = R(Ag2, Env).

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Deliberative Agents
• Maecenas aliquam maecenas ligula nostra,

accumsan taciti. Sociis mauris in integer
• El eu libero cras interdum at eget habitasse

elementum est, ipsum purus pede
• Aliquet sed. Lorem ipsum dolor sit amet,

ligula suspendisse nulla pretium, rhoncus

North

North

Potentially the agent will reach a different
decision when it reaches the same state by
different routes.

West
North

East

West

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Purely Reactive Agents
• Some agents decide what to do without reference to their history

— they base their decision making entirely on the present, with
no reference at all to the past.

• We call such agents purely reactive:

• A thermostat is a purely reactive agent.

action : E ! Ac

action(e) =

⇢
o↵ if e = temperature OK
on otherwise.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Reactive Agents
• Maecenas aliquam maecenas ligula nostra,

accumsan taciti. Sociis mauris in integer
• El eu libero cras interdum at eget habitasse

elementum est, ipsum purus pede
• Aliquet sed. Lorem ipsum dolor sit amet,

ligula suspendisse nulla pretium, rhoncus

North

North

A reactive agent will always do the
same thing in the same state.

West
North

West

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Purely Reactive Robots
• A simple reactive program for a robot might

be:
• Drive forward until you bump into something.

Then, turn to the right. Repeat.

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Agent

Agents with State

see action

next state

Environment

32

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Perception

• The see function is the agent’s ability to observe its
environment, whereas the action function represents the
agent’s decision making process.

• Output of the see function is a percept:

• ...which maps environment states to percepts.

• The agent has some internal data structure, which is
typically used to record information about the
environment state and history.

• Let I be the set of all internal states of the agent.

see : E ! Per

33

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 2

Actions and Next State
Functions

• The action-selection function action is now defined
as a mapping from internal states to actions:

• An additional function next is introduced, which maps
an internal state and percept to an internal state:

• This says how the agent updates its view of the
world when it gets a new percept.

action : I ! Ac

next : I ⇥ Per ! I

34

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Agents with State

• Maecenas aliquam maecenas ligula nostra,
accumsan taciti. Sociis mauris in integer

• El eu libero cras interdum at eget habitasse
elementum est, ipsum purus pede

• Aliquet sed. Lorem ipsum dolor sit amet,
ligula suspendisse nulla pretium, rhoncus

1. Agent starts in some initial internal state i0.

2. Observes its environment state e, and generates a percept see(e).

3. Internal state of the agent is then updated via next function, becoming
next(i0, see(e)).

4. The action selected by the agent is action(next(i0, see(e))).

This action is then performed.

5. Goto (2).

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

A Robot with state
• per is a bool that indicates “against

an object”
• i is an integer, “against object for i

steps”.
• see updates per each step,

indicating if the robot is against an
object.

• next is as follows:
Agent

see action

next state

Environment

next(i) =

⇢
i+1 if per = true

0 otherwise.

percepts actions

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

A Robot with state
• Now the robot can take more sophisticated

action.

• For example, backing up if it cannot turn away from
the wall immediately.

• This is an example of a common situation in
robotics.

• Trading memory and computation for
sensing.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

What is mobile
robotics?

• Last time we boiled the challenges of mobile robotics down to:

• Where am I ?
• Where am I going ?
• How do I get there ?

• Now we’ll start talking about how to answer these questions.

?

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

The pieces we need
• Locomotion and Kinematics

• How to make the robot move, tradeoff between manoeverability and ease of
control.

• Perception
• How to make the robot ``see''. Dealing with uncertainty in sensor input and

changing environment. Tradeoff between cost, data and computation.

• Localisation and Mapping
• Establish the robot's position, and an idea of what it's environment looks

like.

• Planning and navigation
• How the robot can find a route to its goal, how it can follow the route.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

General control
architecture

Localisation

Perception Motion
Control

Cognition

Environment Model
Local Map

Position
Global Map

Real World
Environment

Path

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

General control
architecture

Localization / Map
Building

Information
Extraction Path Execution

Cognition Path
Planning

Environment Model
Local Map

Position
Global Map

Real World
Environment

Sensing Action

Raw Data Actuator Commands

Path

M
ot

io
n

C
on

tr
ol

Pe
rc

ep
tio

n

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

What makes it
particularly hard

• Changing environment.
• Things change.
• Things get in the way.

• No compact model available.
• How do you represent this all?

• Many sources of uncertainty.
• All information comes from sensors which have errors.
• The process of extracting useful information from sensors has errors

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

• We start with what the robot can ``see''.

• (These are not a particularly likely set of features.)

The basic operations

• There are several forms
this might take, but it
will depend on:

• What sensors the robot
has

• What features can be
extracted.

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

• A map then says, for example, how these
features sit relative to one another.

Mapping features

10 m

1mile

3
m

ile
s

250 miles

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Localisation
• A robot localises by identifying features

and the position in the map from which it
could see them.

Lanser et al (1996)

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Navigation

• Navigation is then a combination of finding
a path through the map…

10 9 8 7 8

11 10 6 7

5 6

1 2 4 5

0 1 2 3 4

S

G

10

obstacle cell

cell with
distance value

…avoiding things
that get in the way!

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

How do we put these
together?

• A system architecture
specifies how these
pieces fit together.

• Consider these to be
refinements of the “agent
with state” from above.
• Breaking down next and

action into additional
pieces.

• Adding in new aspects of
state i.

Agent
see action

next state

Environment

percepts actions

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Approach: Classical/
Deliberative

• Complete modelling
• Function based
• Horizontal decomposition

Localisation / Map Building

Perception

Motion Control

Cognition / Planning

Sensors

Actuators

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Approach: Behaviour
Based

• Sparse or no modelling
• Behaviour based
• Vertical decomposition
• Bottom up

Coordination /
Fusion

e.g. fusion via vector
summation

Communicate Data

Actuators

Discover new area

Detect goal position

Avoid Obstacles

Follow right/left wall

ΣSensors

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Approach: Hybrid
• A combination of the previous two approaches.
• Exactly the best way to combine them nobody

knows.
• Typical approach is:

• Let ``lower level'' pieces be behaviour based
• Localisation
• Obstacle avoidance
• Data collection

• Let more ``cognitive'' pieces be deliberative
• Planning
• Map building

Original Source: M. Wooldridge, S.Parsons, D.Grossi - updated by Terry Payne, Autumn 2016

Summary
• Last time we talked about what the main

challenges of mobile robotics are.
• These lectures started to describe how

we can meet these challenges.
• We covered the main things we need

to be able to autonomously control a
robot.

• Along the way we looked at how
notions of agency --- and what this
means for autonomy --- can help.

• In the next lecture, we will start to look at
Lego EV3 components and the Lejos
environment

