

COMP327 Mobile Computing

Session: 2014-2015

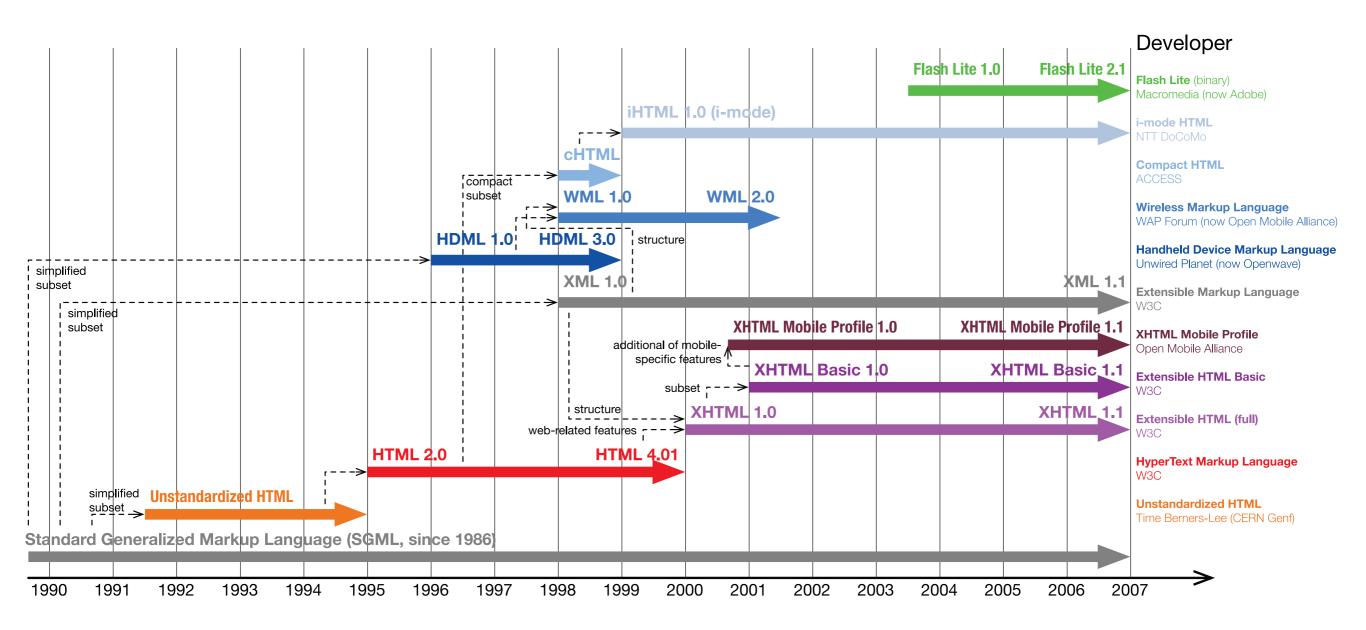
Lecture Set 7 - The Mobile Internet

In this Lecture Set

- Challenges of Mobile access to the Internet
 - Early Wireless Internet Systems
- Wireless Application Protocol
 - Architecture and Application Environment
- Multimedia Messaging Service
 - Short Messaging Service
 - OTA Programming

The challenges in moving from fixed line PCs to Mobile Devices

- To understand the challenges (and pitfalls) of moving to a Mobile Internet, first consider the fixed line Internet!
 - Initially, most usage was email and web
 - Mostly free, other than modem connection charges
 - Top down content distribution model
 - The web was "read-only" Web 1.0
 - Early retailers (e.g. Amazon) exposed inventory, but offered few value-based services
 - Evolved slowly over several years ("incubation time"), driven by access and expectation
 - Technologies had the chance to settle and be tested before large-scale adoption


The challenges in moving from fixed line PCs to Mobile Devices

- Things were different when the Mobile Internet launched
 - Access was initially targeted at general public
 - Previous technologies were tried and tested by students and universities, which ironed out problems
 - Access was charged from day one!
 - Reduced adoption, and raised false expectation
 - Content and Services were adapted from the Web, rather than redesigned to exploit mobility
 - Very few sites or services had any appeal or use for users
 - WAP stack required new tools and additional effort, yet served a small user base!
 - Early networks unsuited for packet-switched data
 - Initial usage was expensive, thus limiting uptake

The Mobile Internet: Early Precursors

- Early approaches to providing content had to contend with new technical challenges:
 - Limited Screen Size and limited input capability
 - Not suited for most web pages
 - Limited memory, processor and power
 - May struggle to handle any client-side processing
 - Intermittent connectivity
 - HTTP is stateless
- Web 2.0 was emerging on the fixed-line Internet
 - Placed greater demands on both the device and the interface
 - Greater potential for mobile devices, though this was not realised for years
- Various content markup solutions have emerged

Evolution of Mobile Web-Related Markup Languages

WAP: Wireless Application Protocol

- An open international standard to support access to the Mobile Web
 - Established in June 1997
 - Joint Forum including Ericsson, Nokia, Motorola and Openwave
 - The previous approaches discussed were all proprietry
 - WAP was developed as an open standard
 - Released WAP Specification 1.1 in Summer 1999
 - First services and devices available by the end of that year
 - Based on GSM, it was heavily hyped, but failed to live up to expectation in Europe (although successful in Asia)
 - "Worthless Application Protocol", "Wait And Pay"

Wireless Markup Language (WML)

- Based on the Deck of Cards Metaphor
 - All cards sent simultaneously
 - User then navigates content without bursty comms
 - Overcomes GSM/GPRS latency problems with "bursty" browsing behaviour
 - Uses soft keys, where the semantics change as the context changes
- Includes client-side logic through WMLScript
 - Simplified variant of JavaScript
 - Avoids unnecessary round-trip comms
 - e.g. validating user-entered data
 - Supports functions for digital signing
- WAP 2.0 supports XHTML Basic
 - Separates the data (XML) from the presentation (CSS)

Inspiration for the "Deck of Cards" Metaphor

- Mobile Phones have tiny screens
 - Can only display a limited amount of content
- Many applications assume a dialog-based interaction (i.e. cards)
 - Each interaction involves a number of options, leading to further options based on the earlier choice
- By bundling all the cards together (a deck) and sending in one transaction, transmission time and delays could be reduced.

WML Example

```
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"</pre>
   "http://www.wapforum.org/DTD/wml 1.1.xml" >
<wm1>
 <card id="Card1" title="First Card">
   <do type="accept" label="NEXT">
     <go href="#Card2"/>
   </do>
   A sample WML page.
    Press NEXT.
 </card>
 <card id="Card2" title="Second Card">
   This is card 2.
 </card>
</wml>
```

--First Card--A sample WML page. Press NEXT. **Options** -Browser Options-Next Select Back

--Second Card--This is card 2.

Options

WAP Criticisms

Idiosyncratic WML language

- Providers have to either provide WML specific content, or rely on Webto-WAP transcoders.
 - "Conceptual Distance" between PC screens and mobile display too great

Underspecification of terminal requirements

- Early WAP standards left many features optional
 - Devices often failed to operate properly; functionality was often inconsistent

Constrained User Interface Capabilities

- Early WAP devices had small monochrome screens with limited buttons
- Even later colour devices lacked conventional PC based interactions

Lack of Good Authoring Tools

 Demands of authoring for WML greater than HTML, but poor tool support

The WAP User Experience

- Although WAP introduced a number of features designed to improve the mobile internet experience, many complained of:
 - Slow connections, hence steep bills (pre GPRS)
 - Dead-ends or sites being down
 - Sites with poor sign-posting making search difficult
 - Uneven quality and stale content
 - Small screens
- Studies in late 2000 found that mundane tasks took longer than users could tolerate

The WAP User Experience

- Problems with WAP usage included:
 - Technical limitations due to bearer (GSM) rather than WAP itself
 - Poor site design with little consideration of the user experience.
 - Little in the way of intuitive navigation support
 - Design typically reflected the wired Internet practices with little attempt to understand Mobile Computing constraints
 - Poor content and poorly managed sites
 - Unlike i-Mode, European operators failed to set up business models to encourage the generation of quality content
 - Device limitations
- However, several of these limitations have faded with time, although some issues remain...!

Messaging MMS and SMS

- Messaging services that allow short messages to be sent from a mobile device...
 - ...often to other mobile devices, but also to services and servers.
 - SMS Short Messaging Service
 - A "conversational" communication mechanism where users exchange short messages
 - Generated revenues of US\$114.6 billion globally in 2010 (up from US\$89B in 2008)
 - In 2010, 6.1 trillion messages were sent!
 - Initial uptake was low (0.4 messages per month per user in 1995, 35 in 2000)
 - MMS MultiMedia Messaging Service
 - An extension of SMS which can handle multimedia (video, images, sound, rich text etc)
 - 336 million messages sent in the UK in 2006, 553m in 2008
 - More "event" driven often activity spikes at christmas, celebrations etc
 - 4.4 million picture messages were sent on Christmas Day 2008 (3x daily average)

Short Messaging Service SMS

- The most widely used data application on the planet
 - Uses include Messaging, OTA programming, Value-added Services, and Televoting
- Originally defined as part of the GSM series of standards to send up to 160 7-bit character messages
 - Sent over the signalling paths during quiet (non-call) periods
 - Required the inclusion of a Short Message Service Centre node (SMSC).
 - First commercial deployments in 1993
- Subsequent uptake in other technologies
 - cmda networks, Digital AMPS, 3G, and both satellite and landline networks

Short Messaging Service SMS

- Messages sent to a Short Message Service Centre (SMSC)
 - Provides a store and forward mechanism:
 - Attempts to send messages to recipients
 - If recipient is unavailable, the message is queued for a later retry
 - No guarantees that message will be sent, but delivery reports can be requested

SMS Message Size

- Messages are 140 octets long (8*140=1120 bits) plus routing data and metadata
- Messages can be encoded using different alphabets:
 - I. Default GSM 7-bit alphabet
 - Each character encoded as 7 bits from a basic character set
 - Possible to send up to 160 characters (160 * 7 = 1120 bits = 40 octets)
 - Extended character set provides an additional table of escaped characters
 - Represented using 2 characters an escape, followed by a second character
 - For example: the character '[' is actually encoded using an 'Esc' character and '<'

2. National Language Shift Table

- Also uses 7-bit encoding, but requires a 4 octet UDH (User Data Header) to identify the language
 - Uses an extended escaped character set to represent a "shift" table
- Possible to send up to 155 characters (155 * 7 = aprox 136 octets, + 4 UDH octets)
- Supports languages such as Urdu, Hindi, etc,

SMS Message Size

- Messages are 140 octets long (8*140=1120 bits) plus routing data and metadata
- Messages can be encoded using different alphabets:
 - 3. 8-bit data alphabet
 - Treated as raw data up to 1120 bits (or 140 octets of data)
 - 4. 16 bit UCS-2 alphabet
 - Supports most commonly used Latin and eastern character sets
 - Arabic, Chinese, Korean, Cyrillic
 - Possible to send up to 70 16-bit characters
 - Default mode is GSM7-bit, but if an extended character is used (e.g. lower case c with cedilla 'ç'), then all characters are converted into 16-bit UCS-2 characters.

Longer SMS messages

- Concatenated SMS can be used to overcome the message length limitation (140 octets)
 - Message is split into a number of segment messages, each of which include User Data Header (UDH)
 - Receiving device then re-assembles message
 - Each smaller message is charged at the same price as a single message.
 - UDH lengths can vary, depending on the alphabet
 - GSM 7-bit alphabet: 153 7-bit characters per segment
 - 8-bit data alphabet: 134 8-bit characters per segment
 - 16-bit UCS-2 alphabet: 67 16-bit characters per segment

Example

- A message containing 160 7-bit characters can be sent in a single SMS message
- A message containing 161 7-bit characters will be sent as two SMS messages
 - The first containing 153 7-bit characters and a 49-bit UDH
 - The second containing 8 7-bit characters and a 49-bit UDH.

MultiMedia Messaging Service - MMS

- Often considered a spinoff of SMS and WAP
 - Extends SMS to support transmission of media
 - Driven primarily due to the uptake of camera capabilities within mobile phones
 - Also used to deliver ring tones, etc
 - Developed by the Open Mobile Alliance (OMA)
 - However, was also part of 3GPP and WAP groups
 - Launched in March 2002 across GSM/GPRS and 3G
 - However, deployment and uptake delayed in the US until 2009 (AT&T)
- Messages typically sent to other mobile devices
 - But due to backward compatibility, messages are sometimes viewed over the web from a 3 party device

MultiMedia Messaging Service - MMS

- Completely different delivery mechanism to SMS
 - Multimedia content is first encoded using MIME format
 - Then sent to the recipient carrier's MMS store and forward server (MMSC)
 - The MMSC determines if the recipient's device is MMS capable:
 - Content is extracted and sent to a temporary HTTP enabled store
 - An SMS control message containing the content's URL is sent
 - The recipient's WAP browser opens and receives content from the URL
 - If the device is not MMS capable (legacy experience):
 - Content is delivered to a web based service
 - URL is forwarded to the recipient as a standard SMS message
 - Differences in device capability may require transcoding of content

Over-the-air programming (OTA)

- One of the main challenges of MMS is the number of handset parameters that need configuring.
 - Bad configuration is often responsible for poor user experience
- Over-the-air programming (OTA) increasingly being used to set configuration parameters
 - New software updates or configurations can be sent directly to the device from network operators
- Several Methods in use
 - A call or SMS alerting the user to a new update. User then dials in (when convenient) triggering an automatic software update.
 - SMS may be sent automatically due to a trigger; e.g. using a service for the first time, or after having signed up for a service

Typically relies on the device possessing a provisioning client to set parameters.

Exercises...

- Describe the Deck-of-Cards metaphor, and explain its origins and motivation. How does it improve the user experience over GSM networks?
- Why did WAP appear to fail, and why is the future of Mobile Computing more promising? What challenges learned from the WAP experience still need to be overcome?
- Compare and contrast the delivery mechanisms used by SMS and MMS. Describe each, and give details about how MMS messages are sent to legacy (non MMS capable) devices.

To Recap...

- In this lecture set, we covered:
 - Differences between Internet access from a PC over a fixed line vs a Mobile wireless device
 - And how this affected early provision of mobile services
 - Early approaches, which led to WAP
 - The WAP stack, WML and Deck-of-Cards
 - Other content delivery systems
 - SMS, MMS and OTA

Further Reading

- M-Commerce
 - Norman Sadeh (Wiley, 2009)
 - Chapter 4
- Pervasive Computing: The Mobile World

Uwe Hansmann, Lothar Merk, Martin S. Nicklous, Thomas Stober (Springer Professional Computing, 2003)

- Chapter I I
- Beyond 3G: Bringing Networks, Terminals, and the Web Together

Martin Sauter (Wiley, 2009)

Chapter 6