
COMP327
Mobile Computing
Session: 2012-2013

Lecture Set 4 - Data Persistence, Core Data
and Concurrency

1

In these Slides...

• We will cover...

• An introduction to Local Data
Storage

• The iPhone directory system

• Property lists

• Data Modelling using Core Data

• User Defaults

Storing Data
These slides will allow
you to understand how
data can be modelled
and stored/cached
locally. This may be
for a local database,
or simply saving state
or preferences for an
application.

2

Local Data Storage

Data Persistence, Core Data and
Concurrency

3

Intro to data and persistence

• There may be a number of reasons for wanting to
read or write data to some form of persistent store

• Storing preferences

• Storing simple data in general

• Storing state

• Simple values or container classes

• Serialising custom object data

• Managing data

• SQLite

• Core Data

4

iPhone File System
• Each application sandboxes it’s file system

• Ensures security and privacy

• Apps can’t interfere with other app’s data

• When apps are deleted, all the associated files are
deleted

• Each app maintains its own set of directories

• somewhat reminiscent to a UNIX filestore

• Files stored in Caches are not backed up during iTunes
sync

• Apps cannot write into their own bundles

• This violates the code-signing mechanism

• If apps want to include data in the bundle that can
later be modified

• it must copy the data into your documents directory

• then the data can be modified!

• Remember to do this only once

The sandbox file directory for
the App “FractionPicker”

Inside the App “FractionPicker”

5

File Paths in your Application

• Getting to the Applications home directory

• NSHomeDirectory

• Finding directories in the file system

• NSSearchPathForDirectoriesInDomains

• Creates an array of path strings for the specified directories in
the specified domains

• Good for discovering where a “known” directory is in the file
system

// Documents directory
NSArray *paths = NSSearchPathForDirectoriesInDomains (NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsPath = [paths objectAtIndex:0];

// <Application Home>/Documents/myData.plist
NSString *myDataPath = [documentsPath stringByAppendingPathComponent:@“myData.plist”];

6

iTunes File sharing

• Applications can expose files in their Documents directory to iTunes (when syncing)

• Allows users to add and delete files directly to an application

• Capability is set by setting the Application supports iTunes file sharing
Target Property to YES

7

iTunes File sharing

8

iTunes File sharing

- (IBAction)saveAction:(id)sender {

 // Documents directory
 NSArray *paths = NSSearchPathForDirectoriesInDomains (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsPath = [paths objectAtIndex:0];

 // <Application Home>/Documents/myData.plist
 NSString *myDataPath = [documentsPath stringByAppendingPathComponent:@"myData.plist"];

 NSArray *myArray;
 NSDate *aDate = [NSDate distantFuture];
 NSValue *aValue = [NSNumber numberWithInt:5];
 NSString *aString = @"a string";

 myArray = [NSArray arrayWithObjects:aDate, aValue, aString, nil];

 [myArray writeToFile:myDataPath atomically:YES];
}

9

Property Lists
• Property lists are structured data used by Cocoa and Core

Foundation

• Used extensively within iOS and MacOS

• Typically XML-based data format

• Provides support for

• Primitive data types

• strings (NSString)

• numbers - integers (NSNumber: intVal)

• numbers - floating point (NSNumber: floatVal)

• binary data - (NSData)

• dates - (NSDate)

• boolean values - (NSNumber: boolValue == YES or NO)

• Collections - which can recursively contain other collections

• arrays - (NSArray)

• dictionaries - (NSDictionary)

• Root-level object is almost always either an array or dictionary

• Could be a single element plist containing a primitive data type

10

Property Lists
• A really good way to

store small, structured
persistent data fragments

• Good for:

• less than a few hundred
kilobytes of data

• well defined data elements,
that fit the XML data
serialisation

• Bad for:

• Large data volumes

• Loading is “one-shot”

• Complex objects

• Blocks of binary data

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
! <key>Root</key>
! <dict>
! ! <key>Name</key>
! ! <string>John Doe </string>
! ! <key>Phones</key>
! ! <array>
! ! ! <string>408-974-0000</string>
! ! ! <string>503-333-5555</string>
! ! </array>
! </dict>
</dict>
</plist>

11

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

Reading and Writing
Property Lists

• Both NSArray and NSDictionary have recursive convenience methods

• Reading from a file or URL:

• - (id) initWithContentsOfURL:(NSURL *)aURL;

• - (id) initWithContentsOfFile:(NSString *)aPath;

• Writing to a file or URL

• - (BOOL)writeToFile:(NSString *)aPath atomically:(BOOL)flag;

• - (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)flag;

• Property lists can also be serialised from objects into a static format

• Can be stored in the file system (in different formats) and read back later

• Uses NSPropertyListSerialization class

 // Reading Data.plist from the resource bundle
 NSString *filePath = [[NSBundle mainBundle] pathForResource:@"Data" ofType:@"plist"];
 NSDictionary *tmpDict = [[NSDictionary alloc] initWithContentsOfFile:filePath];

 // Reading WrittenArray.plist from the application’s file directory
 NSArray *tmpArr = [[NSArray alloc] initWithContentsOfFile:@"WrittenArray.plist"];

12

Example: Writing an
Array to Disk

 NSArray *myArray;
 NSDate *aDate = [NSDate distantFuture];
 NSValue *aValue = [NSNumber numberWithInt:5];
 NSString *aString = @"a string";

 myArray = [NSArray arrayWithObjects:aDate, aValue, aString, nil];

 [myArray writeToFile:@"WrittenArray.plist" atomically:YES];

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 ! <date>4001-01-01T00:00:00Z</date>
 ! <integer>5</integer>
 ! <string>a string</string>
</array>
</plist>

Create an array of three items - a date, a value and a string

Send the message - (BOOL) writeToFile: atomically to the array

The resulting file is written in the application’s file space, to be read later

13

JSON - JavaScript Object Notation

• Lightweight data interchange format with simple BNF structure

• Similar to a property list

• Supports:

• Collections of name/value pairs - objects
• { string : value , string : value , ... }

• Ordered list of values - arrays
• [value , value , ...]

• Values can be
• strings, numbers, objects, arrays, “true”, “false”, “null”

• Elements can be nested

• NSJSONSerialization Class

• Converts JSON data into Foundation classes

• Converts Foundation classes into JSON data

See http://json.org for full definition

14

http://json.org
http://json.org

What does it look like?

• The JSON structure naturally matches that of the Foundation
container classes

• NSDictionaries that contain key-value pairs

• NSArrays or NSSets that contain lists of values

{
 "title": "University of Liverpool Computer Science Programme List",
 "groups": [
! {
! "grouptitle": "Agents ART Group",
! "grouplabel": "agentArt",
! "members": ["Katie", "Trevor", "Frans", "Paul D.", "Floriana", "Wiebe", "Dave J.", "Davide", "Terry", "Valli"]
! },
! {
! "grouptitle": "Complexity Theory and Algorithmics Group",
! "grouplabel": "ctag",
! "members": ["Leszek", "Leslie", "Irina", "Dariusz", "Russ", "Igor", "Prudence", "Michele"]
! },
! {
! "grouptitle": "Logic and Computation Group",
! "grouplabel": "loco",
! "members": ["Michael", "Frank", "Clare", "Ullrich", "Boris", "Alexei", "Grant", "Vladimir", "Sven"]
! },
! {
! "grouptitle": "Economics and Computation Group",
! "grouplabel": "ecco",
! "members": ["Xiaotie", "Paul W.", "Piotr", "Rahul", "Martin", "Mingyu"]
! }
]
}

15

How to use the
NSJSONSerialization Class

• Parsing JSON into Foundation Objects

• Load the JSON data as an NSData object

• Call the method

• Options allow the construction of mutable objects (kNilOptions for no options)

• NSError can report any parsing errors (method also returns nil)

• Creating JSON from Foundation Objects

• Creates JSON data from an NSData object

• Call the method

• Writing option NSJSONWritingPrettyPrinted includes space to make JSON data
readable

+ (id)JSONObjectWithData:(NSData *)data
 options:(NSJSONReadingOptions)opt
 error:(NSError **)error

+ (NSData *)dataWithJSONObject:(id)obj
 options:(NSJSONWritingOptions)opt
 error:(NSError **)error

16

Examples using JSON
// Generate the URL request for the JSON data
NSURL *url = [NSURL URLWithString:@".../Programmes.json"];

// Get the contents of the URL
NSData *data = [NSData dataWithContentsOfURL:url];
NSError *error;

// Create Mutable Foundation Objects
id results = [NSJSONSerialization JSONObjectWithData:data
 options:NSJSONReadingMutableContainers
 error:&error]];

// results could be any object, corresponding to the top level object in the json file
// Normally this will be an:
// NSArray if the top-level object is an array [...]
// NSDictionary if the top-level object is a dictionary { ... }

NSError *error;
NSDictionary *stuart = @{TITLE:@"House of Stuart",
 MONARCHS:@[@"James I", @"Charles I", @"Charles II", @"James II",
 @"Mary II", @"William III", @"Anne"],
 EPOCH:@"From 1603-1707"};

// Create pretty printed (white spaced) JSON data
NSData *data = [NSJSONSerialization dataWithJSONObject:stuart
 options:NSJSONWritingPrettyPrinted
 error:&error]];

Data to JSON

JSON to Data

17

http://www.csc.liv.ac.uk/people/trp/Teaching_Resources/COMP327/Programmes.json
http://www.csc.liv.ac.uk/people/trp/Teaching_Resources/COMP327/Programmes.json

Archiving Objects
(Serialisation)

• A serialisation of some object graph that can be saved to disk

• and then be loaded later

• This is what is used by nibs

• Use the <NSCoding> protocol

• Declares two methods that a class must implement so that instances
can be encoded or decoded

• Encode an object for an archiver: encodeWithCoder

• Decode an object from an archive: initWithCoder

• When writing to file, you either use:

• NSKeyedArchiver - to serialise an object to a file

• NSKeyedUnarchiver - to decode a serialisation from a file

18

Using Web Services

• A lot of data is “in the cloud”

• data is available from some web server

• data can then be sent back to a web server

• A number of APIs available

• Google, Flickr, Ebay, etc...

• Typically exposed via RESTful services

• Uses XML or JSON data formats

• Parsing XML

• iOS provides some XML support - e.g. NSXMLParser

• Several open-source XML parsers available

• JSON is also used by Apple Push Notifications
http://www.raywenderlich.com/553/how-to-chose-the-best-xml-parser-for-your-iphone-project

19

User Defaults and Settings Bundles
• Often applications need to save a small number of settings

• e.g. preferences or last used settings

• NSUserDefaults provides a “registry” for storing values

• Generated on a per user / per application basis

• Register the different settings

• Normally done in the app default

• Determines the default values and types of the settings for first use, or if reset

#define USERDEFAULTS_LASTSELECTEDCELL @"selected_cell"
#define USERDEFAULTS_VERSION @"version_number"

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.

 NSDictionary *appDefaults = @{USERDEFAULTS_LASTSELECTEDCELL:[NSNumber numberWithInteger:0],
 USERDEFAULTS_VERSION:@"V1.0",
 "};
 [[NSUserDefaults standardUserDefaults] registerDefaults:appDefaults];
 ...

20

User Defaults and Settings Bundles

• NSUserDefaults can be set and retrieved at any point in the
application

• Access the defaults object, and treat as a dictionary

• Values are cached in the application and periodically calls the method
synchronize, to store values to the defaults database

• As this is called periodically, you should only use it if you cannot wait - e.g. if the
application is about to exit immediately after changes.

// Select the correct cell
NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
int selectedCellNum = [[defaults objectForKey:USERDEFAULTS_LASTSELECTEDCELL] integerValue];

...

// Save setting in User Defaults
[defaults setObject:[NSNumber numberWithInteger:[indexPath row]] forKey:USERDEFAULTS_LASTSELECTEDCELL];

21

Core Data
• A schema-driven object graph management and persistence

framework

• Model objects can be saved to the file store...

• .. and then retrieved later

• Specifically, Core Data

• provides an infrastructure for managing all the changes to your model objects

• Provides automatic support for undo and redo

• supports the management of a subset of data in memory at any time

• Good for managing memory and keeping the footprint low

• uses a diagrammatic schema to describe your model objects and relationships

• Supports default values and value-validation

• maintains disjoint sets of edits on your objects

• Can allow the user to edit some of your objects, whilst displaying them unchanged elsewhere

22

The Core Data Stack

• A collection of Core Data framework
objects that access a persistent store

• This could be a database, but doesn’t have to be.

• Core Data allows the developer to manage
data at the top of this stack

• abstracts away the storage mechanism

• Allows the developer to focus on

• Managed Objects (i.e. records from tables in
databases)

• Managed Object Context (i.e. work area which
manages objects from a Core Data store

Managed Object Model

A collection entity descriptions

Managed Object Store

A collection of managed Objects

Persistent Object Store

A collection of object data

Persistent Store Coordinator

A collection of stores

Store File

23

Managed Objects

• An object representation of a record from a table in a
database

• The model object (from the MVC pattern) managed by Core Data

• The data used within the application

• shapes, lines, groups of elements in a drawing program

• artists, tracks, albums in a music database

• people and departments in a HR application

• An instance of the NSManagedObject

• or a NSManagedObject subclass

24

Managed Object Contexts

• A context represents a single object space in an application

• Responsible for managing a collection of Managed Objects

• Managed objects form a group of related model objects that represent an
internally consistent view of a data store

• e.g. records and their relationships

• Also responsible for:

• the complete life-cycle management

• validation of data

• relationship maintenance

• Undo and Redo of actions

• Instance of an NSManagedObjectContext

• or an NSManagedObjectContext subclass

25

Managed Object Contexts
• Managed Objects exist within a a Managed

Object Context

• New managed objects are inserted into context

• Existing records in a database are fetched into a
context as managed objects

• Changes to records are kept in memory until they
are committed to the store by saving the context

• Includes insertion or deletion of complete objects

• Includes manipulation of property values

Managed Object Context

EmployeeEmployee

Name Fred

Salary 90 000

EmployeeEmployee

Name Nigel

Salary 60 000

EmployeeEmployee

Name Salary

Fred 90 000

Julie 97 000

Nigel 50 000

Tanya 56 000

Unsaved Data

Current
Data

This managed object context
contains two managed objects
corresponding to two records
in an external database.

Note that Nigel’s salary has been increased, but that
the change has not been committed to the database.

Other records exist in
the database, but there
are no corresponding
managed objects.

26

Managed Object Model
• A Managed Object model represents a schema that describes the data (and hence

the database)

• And hence the managed objects in the application

• A model is a collection of entity description objects

• Instances of NSEntityDescription

• Describes an entity or table in a database, in terms of:

• Its name

• Name of the class used to describe the entity in the app

• Its properties and attributes

Managed ObjectManaged Object

Name Fred

Salary 90 000

entityDescriptionentityDescription

Entity DescriptionEntity Description

Name “Employee”

Managed Object Class NSManagedObject

Attribute name

Attribute salary

Database Table

EmployeeEmployee

Name Salary

Fred 90 000

Julie 97 000

Nigel 50 000

Tanya 56 000

Core Data
It uses the model to
map between
managed objects in
your app to records
in the database

27

Using Core Data:
The Basics

• Core Data support can be included in several of the
project templates

• Select “Use Core Data” when creating the project

• Includes additional code within the app delegate implementation file

• Manages files in the applications Documents Directory

• Provides a persistent store coordinator for the app

• Returns the managed object model for the app

• Also provides the managed object context for the app

• Also includes a Core Data Model (.xcdatamodeld) file

• Known as the managed object model

28

Getting started with Core
Data

• Any use of code data will need access to the Managed Object Context

• Get this from the app delegate and pass to the main view controller

• Ensure that the controller has an ivar and property to store this

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 RootViewController *rootViewController = [[RootViewController alloc] initWithStyle:UITableViewStylePlain];

 NSManagedObjectContext *context = [self managedObjectContext];
 if (!context) {
 // We have some error here that needs handling!!!
 }

 // Pass the managed object context to the root controller
 [rootViewController setManagedObjectContext:context];

// RootViewController.h

@interface RootViewController : UITableViewController {
 NSMutableArray *eventsArray;
 NSManagedObjectContext *managedObjectContext;
 }

@property (nonatomic, retain) NSMutableArray *eventsArray;
@property (nonatomic, retain) NSManagedObjectContext *managedObjectContext;

The mutable array stores
the collection of event
objects we’ll load from
the persistent store

This is the “gateway”
to the Core Data
Stack

29

Modelling your data
• A data model is a collection of entity and

property description objects that
describe the Managed Objects

• This model can be described
programmatically

• Alternatively, the graphical modelling tool
can be used

• Different editor styles can be selected

• Entity and Attribute properties can be viewed by
opening the right-most pane (the Data Model
Inspector)

• Entities can be added to the model

• This should be an object of type
NSManagedObject

• (see later)

• The entity name doesn’t have to be the
same as class that will represent instances
of this object

• Attributes can then be defined

• complete with name and type

30

Custom Managed Object
Class

• In principle, entities can be represented using NSManagedObject

• Typically better to use a Custom Class

• Provides better development tool support

• Completion for property accessor methods, and compile-time checking

• Easier to tailor validation methods or derived properties

• Xcode can be used to generate custom classes from the Model
1. Select the entity in the graphical editor

2. Create a new File of type Managed Object Class

3. A new class for the entity is added to the project

4. Import the new header in the view controller’s .m file

// Event.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface Event : NSManagedObject {
@private
}
@property (nonatomic, retain) NSDate * creationDate;
@property (nonatomic, retain) NSNumber * latitude;
@property (nonatomic, retain) NSNumber * longitude;

@end

// Event.m

#import "Event.h"

@implementation Event
@dynamic creationDate;
@dynamic latitude;
@dynamic longitude;

@end

31

Custom Managed Object
Class

• Things worth noting about the new class

• Attributes are represented by objects

• The double type has been replaced by NSNumber

• In the implementation file, the properties are not synthesized, but are
“dynamic”

• Accessor methods are created at runtime not compile time

• The implementation file has no dealloc method declared

• Core data is responsible for the life-cycle of all modelled properties of a managed object

• The editor now represents the “Event” as the new type

• As opposed to NSManagedObject - see earlier
// Event.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface Event : NSManagedObject {
@private
}
@property (nonatomic, retain) NSDate * creationDate;
@property (nonatomic, retain) NSNumber * latitude;
@property (nonatomic, retain) NSNumber * longitude;

@end

// Event.m

#import "Event.h"

@implementation Event
@dynamic creationDate;
@dynamic latitude;
@dynamic longitude;

@end

32

Managing instances of the new
custom managed class

• Create and configure the “Event” object

• A convenience NSEntityDescription method returns a properly initialised instance of the
specified entity

• This is inserted in the managed object context

• Once created, set the property values

• Note that changes to the instance are not pushed to the persistent store until the context is saved

• Save the context
// RootViewController.m

- (void) addEvent {
 CLLocation *location = [locationManager location];

 // Create and configure a new instance of the Event entity

 Event *event = (Event *)[NSEntityDescription insertNewObjectForEntityForName:@"Event"
 inManagedObjectContext:managedObjectContext];

 CLLocationCoordinate2D coordinate = [location coordinate];

 [event setLatitude:[NSNumber numberWithDouble:coordinate.latitude]];
 [event setLongitude:[NSNumber numberWithDouble:coordinate.longitude]];
 [event setCreationDate:[NSDate date]];

 NSError *error = nil;

 if (![managedObjectContext save:&error]) {
 // We need to handle this error at some point
 // However, if we did get here, then this is probably a catastrophic error
 }

Create an instance of
the new event object.

Note that we identified
our object using the
name from the model

Use setter methods to
set the values of the
object’s attributes

Save the context to
commit the managed
objects into the store

33

Fetching objects from the
store

Database Table

EmployeeEmployee

Name Salary

Fred 90 000

Julie 97 000

Nigel 50 000

Tanya 56 000

Resulting Array

Managed ObjectManaged Object

Name Julie

Salary 97 000

entityDescriptionentityDescription

Managed ObjectManaged Object

Name Fred

Salary 90 000

entityDescriptionentityDescription

Managed Object Store
A collection of managed Objects

Persistent Object Store

A collection of object data

Persistent Store Coordinator

A collection of stores

Fetch Request

Entity (table name)
 Employee

Predicate (optional)
 salary > 60 000

SortOrderings (optional)
 name:ascending alphabetical

To fetch objects you need a
managed object context and a
fetch request.

Often, objects not fetched,
but that are relevant to a
fetch (such as related objects)
will also be fetched.

34

Creating and Executing a
Request
// RootViewController.m

- (void) viewDidLoad {

 // Create the request
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event"
 inManagedObjectContext:managedObjectContext];

 [request setEntity:entity];

 // Set the sort descriptor
 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"creationDate" ascending:NO];
 NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor, nil];
 [request setSortDescriptors:sortDescriptors];
 [sortDescriptors release];
 [sortDescriptor release];

 // Execute the Request
 NSError *error = nil;
 NSMutableArray *mutableFetchResults = [[managedObjectContext executeFetchRequest:request
 error:&error] mutableCopy];

Create the fetch request, and identify the entity. Provide
the name of the entity (“Event”) to the managed context.

Set the sort descriptor;
otherwise the order the order
the objects are returned will
be undefined.

As multiple sort orderings
may be specified, these are
given in an array.

Execute the request - in this case we
store it in a mutable array, as the results
may be modified within our application.

35

Deleting Managed Objects

// RootViewController.m

- (void)tableView:(UITableView *)tableView commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete) {

 // Delete the managed object at the given index path
 NSManagedObject *eventToDelete = [eventsArray objectAtIndex:[indexPath row]];
 [managedObjectContext deleteObject:eventToDelete];

 // Update the array and table view
 [eventsArray removeObjectAtIndex:[indexPath row]];
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath] withRowAnimation:YES];

 // Commit the change
 NSError *error = nil;
 if (![managedObjectContext save:&error]) {
 // Handle This error somehow
 }

In this case, we have received an edit request from the
UITableView to delete an entry in the table, that corresponds
to an entry we want to delete from our store.

Identify the NSManagedObject which is to be deleted.

In this case, it is held within the eventsArray, which is also
used to fill in entries in the table.

In this app, we also
need to delete the
entry from our array,
and from the table view

Save the context, to push the changes
down to the persistent store!

36

Questions?

Data Persistence, Core Data and
Concurrency

37

