
COMP327
Mobile Computing
Session: 2012-2013

Lecture Set 3b - View Transitions,
Storyboards and Protocols

1

In these Slides...

• We will cover...

• Navigating through Data

• Protocols and Modal Views

• Tab Bars

• Storyboards and Segues

Transitions
A key component to
designing any multi-
view application is
how to transition from
one view to another.
These slides will look
at both traditional
approaches, as well as
the use of Storyboards
and Segues.

2

Navigation Controllers

Lecture Set 3b - View Transitions,
Storyboards and Protocols

3

Navigation Controllers

• UINavigationController

• Provides a stack of controllers

• As the user explores the data in new views,
corresponding controllers are pushed onto the
stack

• When the user leaves these views, they are
popped off the stack

• A Navigation bar supports this navigation

• Includes back button, title, edit buttons etc.

4

How it fits together

• Two main methods are used to
change the content of a
Navigation stack:

• Push to add a view controller

• Pop to remove a view controller

Top viewController’s view

Top viewController’s
titlePrevious

viewController’s title

- (void)pushViewController:(UIViewController *)viewController
 animated:(BOOL)animated;

- (void)popViewController Animated:(BOOL)animated;

5

Using a Nav Controller
• Create the view controller that should initially appear

• As this will be pushed onto the Nav Controller stack, it is often not retained by an
iVar, but simply retained on the stack.

• Then create the UINavigationController (often stored in an iVar)

• initWithRootController:

• Can either initialise with the first (i.e. root) controller

• pushViewController:animated:

• Or the root controller can be pushed onto the stack

• By convention, no animation should be used with the root view controller

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]] autorelease];
 // Override point for customization after application launch.

 // ===
 MyTableViewController *myRootViewController = [[MyTableViewController alloc] initWithStyle:UITableViewStylePlain];
 myNavigationController = [[UINavigationController alloc] initWithRootViewController:myRootViewController];

 [[self window] addSubview:[myNavigationController view]];
 // ===

 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

6

Using a Nav Controller
• Pushing a View Controller in response to User Actions

• Push from within a view controller on the stack

• Stub code for UITableViewController typically includes code to do this:

• Almost never call pop directly!

• Automatically invoked by the back button

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 // Navigation logic may go here. Create and push another view controller.
 /*
 <#DetailViewController#> *detailViewController = [[<#DetailViewController#> alloc]
 initWithNibName:@"<#Nib name#>" bundle:nil];
 // ...
 // Pass the selected object to the new view controller.
 [self.navigationController pushViewController:detailViewController animated:YES];
 */
}

- (void)someAction:(id)sender {

! // Potentially create another view controller
! UIViewController *viewController = ...;

! [self.navigationController pushViewController:viewController animated:YES];
}

7

Customising Navigation

• Buttons or custom controls can be used to change the
view

• UINavigationItem class

• Describes appearance of the navigation bar

• Title string or custom title view

• Left & right bar buttons

• More properties defined in UINavigationBar.h

• Every view controller has a navigation item for customising

• Displayed when view controller is on top of the stack

• Can change in init or viewDidLoad method

8

- (void)viewDidLoad {

! UIBarButtonItem *addButton = [[UIBarButtonItem alloc] initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
! ! ! ! ! style:UIBarButtonItemStyleBordered target:self
! ! ! ! ! action:@selector(add:)];
! self.navigationItem.rightBarButtonItem = addButton;
}

Common Customisations
• Displaying a Title

• UIViewController already has a title property
• @property(nonatomic,copy) NSString *title;

• Navigation item inherits automatically

• Previous view controller’s title is displayed in back button

• Left and Right Buttons - UIBarButtonItem

• Special object, defines appearance & behaviour for items
in navigation bars and toolbars

• Display a string, image or predefined system item

• Target + action (like a regular button)

9

Protocols and Modal
Views

Lecture Set 3b - View Transitions,
Storyboards and Protocols

10

Using Modal Views

• Modal views temporarily interrupt the current
workflow

• Often used to gather new data or present information

• Displaying preferences, such as displaying information via a flip-side
information view

• Asking the user for specific information - such as creating a new contact
in AddressBook

• Presenting alerts (e.g. with UIAlertView) or action sheets
(UIActionSheet)

• Generally, any view can be presented modally

• View remains until the view is dismissed, at which point the
application returns to its previous state.

11

• When a modal view is presented, a parent-child relationship is
created between:

• The view controller doing the presenting (i.e. the child)

• The view controller managing the modal view (i.e. the parent)

• In iPhone apps, content always covers the visible part of the window

• In iPad apps, modal views can be presented as full-screen, as a page,
or as a form.

Modal Views and their Parents

View Controller
(parent)

modalViewController

...

View Controller
(child)

parentViewController

...

View presenting
the modal view

View being
presented modally

12

Presenting a View Controller
Modally

• There are several steps to presenting a view
controller modally

1. Create the view controller you want to present

2. Set the modalTransitionStyle property of the view
controller

3. Assign a delegate object for the modal view controller

4. Call presentViewController:animated:completion:
method of the view controller parent, passing in the view
controller child

13

- (void)showFlipsideView:(id)sender {
!
! FlipsideModuleBrowserViewController *controller =
 [[FlipsideModuleBrowserViewController alloc]
! ! !initWithNibName:@"FlipsideModuleBrowserViewController" bundle:nil];

! controller.delegate = self;
!
! controller.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;
!
! [self presentViewController:controller animated:YES completion:nil];
!
}

Presenting a View Controller
Modally

3: Assign the Delegate Object

1: Create view Controller

2: Set the transition style

4: Present the modal view controller

14

Transition Semantics

• Views can appear in a variety of ways

• By convention, the animation style adds meaning
to the appearance of the modal view

• UIModalTransitionStyleCoverVertical

• Interrupt the current workflow to gather info from the user

• UIModalTransitionStyleFlipHorizontal

• Change the work mode temporarily (e.g. information on an app)

• UIModalTransitionStyleCrossDesolve

• Present an alternate interface, e.g. if rotation changes

15

Dismissing a Modal View
Controller
• Typically, the best approach is to let the parent dismiss it’s

own child view controller

• Normally handled through delegation

• Thus, the object that presents the modal view controller becomes its delegate

• Therefore the child view controller must define a protocol for
its delegate to implement

• Defines actions that the delegate (i.e. the parent in most cases) should do in
response to certain actions (e.g. pressing the done button)

• Advantages of this approach

• Allows the parent to validate data before dismissing the child

• Promotes reuse, as the child view controller can be reused elsewhere

16

Protocols
• A protocol is a list of methods that is shared

among classes

• There is no existing implementation of these methods;
rather it is up to the developer to implement them for
that class

• A class can choose to conform to, or adopt a
protocol

• Conforming to more than one protocol is possible

• Informally similar to multiple inheritance

17

Protocols

• Two types of protocol are possible

• Informal Protocols

• Specified only in the documentation of the class, but is not
stated within source code. A class can then determine if
the method exists through reflection, and invoke it if it
exists.

• Formal Protocols

• Similar to an interface in Java

• Defined, using the @protocol directive ...

18

Formal Protocols
@protocol Locking
- (void)lock;
- (void)unlock;
@end

The protocol is defined
somewhere, using the @protocol
directive, and may group together a
set of related method that should
be implemented if the class adopts
to the protocol.

@interface SomeClass : SomeSuperClass <Locking>
@end

@interface AnotherClass : AnotherSuperClass <Locking, Archiving>
// This class adopts two protocols!!!
@end

id currentObject;
...
if ([currentObject conformsTo: @protocol (Locking)] == YES) {
 // Call lock
 [currentObject lock];

A class is then defined to
adopt the protocol using the
angled bracket notation.

Several protocols could be
adopted, by separating the
protocols with commas

The methods can then be defined in the implementation part of the class

An object can later
check to see if it
conforms to a
protocol, using the
conformsTo method

19

// FlipsideModuleBrowserViewController.h

@protocol FlipsideModuleBrowserViewControllerDelegate;

@interface FlipsideModuleBrowserViewController : UIViewController {

! id <FlipsideModuleBrowserViewControllerDelegate> delegate;

}
@property (nonatomic, assign) id <FlipsideModuleBrowserViewControllerDelegate> delegate;

- (IBAction)done:(id)sender;

@end

@protocol FlipsideModuleBrowserViewControllerDelegate
(void)flipsideViewControllerDidFinish:(FlipsideModuleBrowserViewController *)controller;

@end

Example: Defining a protocol for a simple
modal view controller :-
The child view controller (.h)
The view controller that is to be
presented modally needs to declare
a protocol that the parent adopts.

An ivar containing the id of the
delegate (that adopts the protocol)
is stored by the view controller

The protocol defines one (or more) methods that need to be implemented by the delegate.
In this case, the delegate must implement the flipsideViewControllerDidFinish method

20

// FlipsideModuleBrowserViewController.m

@implementation FlipsideModuleBrowserViewController

@synthesize delegate;

- (IBAction)done:(id)sender {

 // This method is called by selecting the done button
 // hence the IBAction return value

! [[self delegate] flipsideViewControllerDidFinish:self];!

}

Example: Defining a protocol for a simple
modal view controller :-
The child view controller (.m)

The action that triggers closing the modal view
controller (in this case, done:) calls the protocol
method flipsideViewControllerDidFinish: on
the delegate.

The delegate (normally the parent)
will be stored in the iVar delegate
(defined in the header file)

21

// ParentViewController.h

// Repeat the forward declaration of the protocol, defined in the child’s header file
@protocol FlipsideModuleBrowserViewControllerDelegate;

 ...

@interface ParentViewController : UIViewController <FlipsideModuleBrowserViewControllerDelegate> {
 ...
}

- (void)flipsideViewControllerDidFinish:(FlipsideModuleBrowserViewController *)controller;

Example: Defining a protocol for a simple
modal view controller :-
The parent view controller (.h)

Need to assert that the parent adopts the protocol, defined
in the child’s header file. Remember to include the child’s
deader file in the parent’s implementation file.

Include the method prototype that implements the method
defined in the protocol. Note that we pass back the child
object as an argument; this simplifies managing it.

22

// ParentViewController.m

@implementation ParentViewController

- (void)flipsideViewControllerDidFinish:(FlipsideModuleBrowserViewController *)controller {
!
! [self dismissViewControllerAnimated:YES completion:nil];
}

- (IBAction)showFlipsideView:(id)sender {
!
! FlipsideModuleBrowserViewController *controller = [[FlipsideModuleBrowserViewController alloc]
! ! ! ! initWithNibName:@"FlipsideModuleBrowserViewController" bundle:nil];
! controller.delegate = self;
!
! controller.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;
! [self presentViewController:controller animated:YES completion:nil];
}

Example: Defining a protocol for a simple
modal view controller :-
The parent view controller (.m)
The protocol states that the delegate should
implement the flipsideViewControllerDidFinish
method. In the implementation, all it does in this
case is to call (on itself)the message to dismiss the
modal view controller it owns.

The parent creates the child object, configures it,
and then presents it. Note that once the controller
has been presented, it can be released, as presenting
a controller will cause it to be retained.

23

• To summarise:

• The parent presents the child

• Best practice dictates that the same object that presents should also dismiss!

• The parent becomes the delegate, and can therefore dismisses the child later

• The child defines a protocol which states the message it will send to the
parent to tell the parent when it is done

• The parent adopts the protocol, and implements the associated method

• On receipt of the message, the parent dismisses its child

Modal Views and their Parents

View Controller
(parent)

Present the child

ChildsFinished

Dismiss the child

View Controller
(child)

call delegate’s
ChildsFinished method

...

24

Organising Data on the
display’s window

Lecture Set 3b - View Transitions,
Storyboards and Protocols

25

Tab Bar Controllers

• UITabBarController

• Provides an array of controllers

• User can select which view to inspect or
interact with

• The selected view appears in the main screen
area

• The corresponding image appears in blue
within a tab bar that appears at the bottom of
the display

26

Using a Tab Bar Controller

• The different controllers (to appear) are held in an
array

• View controllers can define their appearance in the tab
bar

• Each view controller comes with a tab bar item for
customising

• UITabBarItem

• Image and Title...

• ... or system item

- (void)viewDidLoad {
! self.tabBarItem = [[UITabBarItem alloc]
! ! ! ! initWithTitle:@“Playlists”
! ! ! ! image:[UIImage imageNamed:@“music.png”]
! ! ! ! tag:0]

! // To display a system item use
! // the following init instead
! // initWithTabBarSystemItem:UITabBarSystemItemBookmarks
}

27

More View Controllers

• What happens when a tab bar has too many view
controllers to display at once?

• “More” tab bar item is displayed automatically

• User can navigate to remaining view controllers

• User can also customise what appears on the tab bar

28

Combining Tab Bars and
Navigators

• Often it is desirable to include one of the views as a navigation
controller

• First create the tab bar controller

• Then create the navigation controllers

• Finally, add them to the navigation controller

• A common mistake is to make the tab bar controller the first view of
the navigation controller

• This will simply disappear when the next view is pushed.

29

Storyboards
(coming soon)

Lecture Set 3b - View Transitions,
Storyboards and Protocols

30

Questions?

Lecture Set 3b - View Transitions,
Storyboards and Protocols

31

