
COMP327
Mobile Computing
Session: 2014-2015

Lecture Set 2 - iOS Basics

In these Slides...

• We will cover...

• App Lifecycle and an introduction to UIKit

• The Model-View-Controller (MVC) Pattern

• View Fundamentals

• Building Interfaces

• Nib files and Outlets/Actions

• Events and the Target-Action design pattern

Getting Started
with iOS

These slides will
allow you to develop
a simple application,
understand basic
touch events, create
bespoke views, and
design interfaces
using Xcode.

App LifeCycle

Lecture Set 2 - iOS Basics

Anatomy of an Application

• An application is a bundle of files:

• Compiled code

• Your code

• Frameworks

• Info.plist configuration file

• Storyboard and Nib files

• UI elements and other objects

• Details about object relationships

• Resources (images, sounds, strings, etc)

• Asset Libraries

Launch App

App Initialised

Load Storyboard

Wait for an event

Handle Event

Exit App

UIKit Framework
• Defines the main layer of classes an application needs

to construct and manage its interfaces

• Supports underlying behaviours:

• UIResponder defines interface and default behaviour for event-handling
methods

• This in turn defines the family of UIView and UIViewController classes

• Controls, such as buttons, sliders, switches, pickers etc

• Modal Views, such as action sheets or alert boxes

• Scroll Views, for scrolling over larger areas

• Toolbars, Navigation Bars, split views, view controllers, etc

• UIGestureRecogniser defines single and multi-touch gestures

• Defines UIApplication, which orchestrates app lifecycle

Inside an iOS app
• Like C programs, Objective-C programs start in the main() function

• In effect, the UIApplicationMain is the real main entry point !!!

• In an iOS app, the job of main() is simple:

• Set up a core group of objects

• Hand over control to those objects,

int main(int argc, char *argv[])
{
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([AppDelegate class]));
 }
}

Set up the top level autorelease
pool block to managed
autoreleased memory objects.

Control of the application is passed to a
UIApplicationMain singleton class object

UIApplication

• Every application has a single
instance of UIApplication

• Singleton design pattern

• Only one instance exists, for your
application

• This instance can be easily accessed and
queried to the app status

• Orchestrates the lifecycle of an
application

• Dispatches events

• Manages status bar, application icon
badge, etc

• Rarely subclassed

• Uses delegation instead

Application

UIApplication
Object

Core
Objects

Event
Queue

Delegation
• A design pattern where a host object embeds a pointer to another

object (the delegate), an sends messages when input is required

• Allows an “off-the-shelf” object to be extended without being subclassed

• Messages are defined, which are called given certain events

• The delegate provides the application specific behaviour for each event

• Many UIKit classes use delegates

• UIApplication

• UITableView

• UITextField

Framework
Object

Step 1
Step 2
Step 3
Step 4
Step 5

...

Delegate

StuffAtStep2

StuffAtStep5Protocols
A protocol defines what messages the
framework object may send the delegate.
We’ll cover protocols later ...

View Controllers

• Views are rectangular area on screen, which handles
events and displays some content

• A view could be subclassed as in interface widget

• such as a label, button or slider etc

• A view could be subclassed and customised for specific
behaviour

• such as the drawing area in the SketchMe labs.

• A view could also correspond to the a full “screen” of content

• These are typically managed by a viewController!

• ViewControllers are special controllers that manage
views

• They form the basic building blocks for applications

The MVC (Model View
Controller) Pattern

Lecture Set 4 - iOS Basics

The Model, View, Controller
(MVC) Design Pattern

• Used extensively within Cocoa Touch

• A high level pattern from the days of Smalltalk

• Manages the global architecture of the application

• Classifies objects according to the roles they play

• Model Objects encapsulate data and basic behaviour

• View Objects present information to the user

• Controller objects tie the model to the view

• This pattern is frequently used in many other environments

• Can lead to reusability

• By minimising dependencies, you can take a model or view class
you’ve already written and use it elsewhere

• Think of ways to write less code

Model, View, Controller

The interface components,
and their dependency on

each other

The underlying data and
object model, and model

algorithms, all being
interface independent

Glue-code (ish)
connecting the model with

the interface elements

Model, View, Controller

• Model

• This contains your underlying data

• Could correspond to an external data source or some current model

• iTunes database, stored files, internal state of a game (e.g. tic-tac-toe etc.)

• Actions on the model manage the app data and its state

• Not concerned with UI or presentation

• Leave the interface to the view, and the application logic to the controller

• Should be completely unaware of the controller or view

• Same model should be reusable, unchanged in different
interfaces

• iPhone, cmd line, OSX app, etc

• Typically, this is the most reusable component

Model, View, Controller

• View

• This is what you see on the screen

• The canvas itself, and the interface elements such as buttons, labels, table views etc

• It allows user to manipulate data, and displays data sent to it

• Does not store any data

• Use the model to maintain data

• The typical exception is to cache state for optimisation

• Updates to the model are done through the controller

• Easily reusable & configurable to display different data

• Often uses delegation to allow user to configure behaviour without subclassing

• Tends to be reusable - especially if well written

Model, View, Controller

• Controller

• This is the glue that defines what your app does

• Knows about both the view and the model

• Acts as an intermediary between them

• When the model changes, it lets the view know

• When data is manipulated by the view or other events are triggered, it updates the model

• iOS includes several controller types tailored to managing their
own views:

• UIViewController for managing apps with generic views

• UITabBarController for tabbed applications (e.g. clock)

• UINavigationController for managing hierarchical data (e.g. email folders)

• UITableViewController for lists of data etc (e.g. iTunes tracks)

• Typically app specific, and thus rarely reusable

Model, View, Controller

• Controller typically exposes outlets and actions
which can be used by the model and controller

• Sometimes, a composite controller may be used

• ViewControllers manage views, although the views themselves are
separate objects

• Models may actually be objects managed by the controller and shared
with the view

Controller
Outlet 1
Outlet 2

...

Action 1
Action 2

...

Fraction
setTo:over:

add:

...

Model Object View (Interface)

View Fundamentals and
Building Interfaces

Lecture Set 2 - iOS Basics

View Fundamentals

• What is a View ???

• A rectangular area on screen, which handles events and displays some content

• Interface elements are subclasses of views

• A view is a subclass of UIResponder

• Views are arranged hierarchically

• every view has one superview

• every view has zero or more subviews

• Views live inside of a window (UIWindow)

• One UIWindow for an iPhone app

• Contains the entire view hierarchy

• Set up by default in Xcode template project

View Hierarchy - Ownership

• Superviews retain their subviews

• Not uncommon for views to only be retained by
superview

• Be careful when removing a view!

• It might have subviews you might want to keep!

• Retain subview before removing if you want to reuse it

• Views can be temporarily hidden
[theView setHidden:YES];

View Related Structures
• CGPoint

• location in space: { x , y }

• CGSize

• dimensions: { width , height }

• CGRect

• location and dimension: { origin , size }

CGRect

origin

size

CGPoint

x 25

y 75

CGSize

width 60

height 20 60

20
25

75

(0,0)

Creation Function Example

CGPointMake (x, y)
CGPoint point = CGPointMake (25.0, 75.0);
point.x = 25.0;
point.y = 75.0;

CGSizeMake (width, height)
CGSize size = CGSizeMake (60.0, 20.0);
size.width = 60.0;
size.height = 20.0;

CGRectMake (x, y, width, height)
CGRect rect = CGRectMake (25.0, 75.0, 60.0, 20.0);
rect.origin.x = 25.0;
rect.size.width = 60.0;

Important
These structures are
actually C structs, not
Objective-C objects!!!

Location and Size
• Origin is in the top left corner - with y axis growing downwards

• View’s location and size expressed in two ways

• Frame is in superview’s coordinate system

• Bounds is in local coordinate system
View A frame:
 origin: 0, 0
 size: 550 x 400

View A bounds
 origin: 0, 0
 size: 550 x 400

View B frame:
 origin: 200, 100
 size: 200 x 250

View B bounds
 origin: 0, 0
 size: 200 x 250

Frame and Bounds

• Which to use?

• Usually depends on the context

• If you are using a view, typically you use frame

• If you are implementing a view, typically you use bounds

• Matter of perspective

• From outside it’s usually the frame

• From inside it’s usually the bounds

• Examples:

• Creating a view, positioning a view in superview - use frame

• Handling events, drawing a view - use bounds

(0,0)
bounds origin

frame origin
(200,100)

Drawing Views
• - (void)drawRect:(CGRect)rect

• -[UIView drawRect:] does nothing by default

• If not overridden, then backgroundColor is used to fill

• Override - drawRect: to draw a custom view

• rect argument is area to draw

• drawRect: is invoked automatically

• Don’t call it directly! Let the framework decide

• When the app thinks the view needs to be redrawn, use:
- (void)setNeedsDisplay;

• For example, in your controller:

Being lazy is good
for performance

When the framework needs
to render the views, it
determines which are
visible, and only draws
those. For each view that
should be redrawn, its
drawRect method will be
called.

This can significantly
improve performance!!!

- (IBAction)changeLineWidth:(id)sender{

lineWidth = [lineWidthSlider value];
[penView setPenValues:lineWidth];

[penView setNeedsDisplay];
}

Graphics Context
• All drawing is done into an opaque graphics context

• Normally set up automatically, so no need to set this up explicitly

• Graphics context setup automatically before invoking drawRect:

• Defines current path, line width, transform, etc.

• Access the graphics context within drawRect: by calling
(CGContextRef)UIGraphicsGetCurrentContext(void);

• Use CG calls to change settings such as colour, line width, etc

• Context only valid for current call to drawRect:

• Do not cache a CGContext!
- (void)drawRect:(CGRect)rect {

CGRect bounds = [self bounds];

// Get the current graphic context
CGContextRef context = UIGraphicsGetCurrentContext();
CGContextSetLineWidth(context, (2*myLineWidth));

CGContextBeginPath(context);
CGContextMoveToPoint(context, (bounds.size.width-1)/2, bounds.size.height/2);
CGContextAddLineToPoint(context, (bounds.size.width-1)/2, bounds.size.height/2);
CGContextStrokePath(context);

}

Drawing in views

• UIKit offers very basic drawing functionality
UIRectFill(CGRect rect); // filling the rectangle

UIRectFrame(CGRect rect); // stroking the rectangle

• CoreGraphics - Drawing APIs

• CG is a C-based API, not Objective-C

• CG and Quartz 2D drawing engine define simple but powerful
graphics primitives, including:

• Graphics context

• Transformations

• Paths

• Colours

• Fonts

• Painting operations

Setting the App’s Main View
• All view controllers have a view

• UIViewController instances have a view property

• represents the root view for the view controller’s hierarchy

• An App needs to know what view is its root view of the view hierarchy

• Normally the view of the main (root) view Controller

• This is typically determined within the App Delegate method

• This tells the delegate that the application has launched, and it is about to be
moved into the “running” state

- (BOOL)application: didFinishLaunchingWithOptions:

• Pre iOS 4.0

• The view should be added as a subview to
the window in this method, and then the
window should become the key window.

• App delegates have the property window,
which is of type UIWindow

• The subview is added to this window

• Post iOS 4.0

• The view controller should be added as the
root view controller of the window, prior
to making the window the key window.

• As properties should now be accessed
through getters/setters, we obtain _window
using the object’s window method.

[window addSubview:[myVC view]];
[window makeKeyAndVisible]; [[self window] setRootViewController:myVC];

[[self window] makeKeyAndVisible];

The App Delegate
• This is the main class that defines what the app will do at certain stages of the app

lifecycle, for example:

• once the application has launched

• when the app goes into the background

• when the app is about to terminate

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
} To create your own view,

create a View Controller and
make it the root view
controller here in the code.

The method application:didFinishLaunchingWithOptions:
is called once the application has started launching.
This is typically where the view hierarchy is initialised.

The app’s window is
created, based on the size
of the device’s screen.

The method makeKeyAndVisible causes it’s owner
(the window) to be loaded, which in turn causes
any other views attached to it to be loaded.

// AppDelegate.m
#import "AppDelegate.h"
#import "MyWelcomeVC.h"

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

 // ==
 // Override point for customization after application launch.
 MyWelcomeVC *vc = [[MyWelcomeVC alloc] initWithNibName:@"MyWelcomeVC" bundle:nil];
 [[self window] setRootViewController:vc];
 // ==

 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

App Delegate Source File:

Here, we add code after the “override” point as we are not explicitly using Storyboards.
A new view controller is created, and used to define the root View Controller.

Note: in earlier versions of iOS and Xcode (pre iOS6
and Xcode 4.5), it was common to simply add the view
controller’s view as a subview to the window. However,
this now generates a warning by the compiler.

Nib/Xib Files
(pre Storyboards)

• Helps you design the ‘V’ in MVC:

• layout user interface elements

• add controller objects

• Connect the controller and UI

• At runtime, objects are unarchived

• Values/settings in Interface Builder are restored

• Ensures all outlets and actions are connected

• Order of unarchiving is not defined

Getting objects from the Nib
• When the nib is created in interface builder,

you attach these to the properties in the
associated view or controller

• File’s Owner in the nib corresponds to the
object that owns the nib

• IBOutlet and IBAction properties defined in the
object owned by the nib are exposed in
InterfaceBuilder

• Links are made from these properties to the
objects that are created by the nib

• Hence - object creation does not appear in
any source code, but access to the objects
is provided by the IBOutlet properties

From Xib to Nib

1) .xib files are xml-based
source that define various
objects and their properties.

2) When they are compiled, the
objects are actually created in
memory, and their property
values are set.

Compiler

3) The memory objects are then
serialised (or marshalled) and
stored as .nib files, within the
app bundle.

4) When the application runs, the nib files can be loaded
into memory to create the objects directly, rather than
having to be alloc/init’d at runtime.

IBOutlets
• IBOutlets are properties of a view controller that are exposed to the Interface

builder.

• Objects are created in the Interface Builder

• Memory is alloc’d for these objects, but they still need to be managed

• By “linking” objects in the Interface Builder with the exposed setters of the view controller (known as the File’s
Owner, the controller takes control of those objects

• This is the reason why many properties to UI objects use the retain modifier on the properties

• IBOutlets do nothing programmatically

• #define IBOutlet

@interface FractionPickerViewController :
UIViewController

// Property Definitions
@property (nonatomic, retain) IBOutlet UIPickerView
*fraction1PickerView;
@property (nonatomic, retain) IBOutlet UIPickerView
*fraction2PickerView;
@property (nonatomic, retain) IBOutlet UILabel
*fractionLabel;
@property (nonatomic, retain) IBOutlet UIButton
*showFractionButton;

IBActions
• IBActions identify methods provided by a view controller that can be called when some action

occurs within the interface

• These are exposed to the Interface builder, and can be linked to actions performed by an
interface object.

• Events will be generated by an interface object.

• Those events that are valid for the object can then be linked back to the IBAction exposed by the File’s Owner

• IBActions return void

• There is nothing to return a value to

• #define IBAction void

@interface FractionPickerViewController :
UIViewController {
 ...
}
- (IBAction)fractionButtonPressed:(id)sender;

// ------------

@implementation FractionPickerViewController

- (IBAction)fractionButtonPressed:(id)sender{
 ...
}

Defining the size and location
of view objects

• Using NIB files

• Drag out any of the existing view objects (buttons, labels, etc)
and create desired size

• Or drag generic UIView and set custom class

• Programatically

• Views are initialised using -initWithFrame:

• Example:
CGRect frame = CGRectMake(20, 45, 140, 21);
UILabel *label = [[UILabel alloc] initWithFrame:frame];

[view addSubview:label];
[label setText:@”Hello World”];
[label release]; // label now retained by window (MRR)

CGRect frame = CGRectMake(0, 0, 200, 150);
UIView *myView = [[UIView alloc] initWithFrame:frame];

Once the view has
loaded

• If loading the nib automatically creates objects and order
is undefined, how do I customize?

• For example, to displaying initial state?

• -viewDidLoad

• Control point to implement any additional logic after the view
loading

• You often implement it in your controller class

• e.g. to restore previously saved application state

• At this point, everything has been unarchived from nib, and all
property connections have been made

Events and the Target-
Action Design Pattern

Lecture Set 2 - iOS Basics

Controls - Events

• View objects that allows users to initiate some type of
action

• Respond to variety of events

• Touch events

• touchDown

• touchDragged (entered, exited, drag inside, drag outside)

• touchUp (inside, outside)

• Value changed

• Editing events

• editing began

• editing changed

• editing ended

Controls - Target / Action

• When an event occurs, an action is invoked
on the target object

target: myObject
action: @selector(decrease:)
event: UIControlEventTouchUpInside

UIControlEventTouchUpInside

Controller
(myObject)

Method Call on the
action selector

- (void) decrease:

Action Methods

• 3 different flavours of action method selector types

• (id)sender corresponds to the object that created the event

• (UIEvent *)event contains details about the event that took place

• Controls can trigger multiple actions on different targets in
response to the same event

• Different events can be set up in the Interface Builder

(void)actionMethod:(id)sender withEvent:(UIEvent *)event;

(void)actionMethod;

(void)actionMethod:(id)sender;

Action Method Variations

• Simple no-argument selector

• Single argument selector - control is ‘sender’

• May need to interrogate the control for additional
information

- (void)increase {
 // Increase the Drawing Line Width
 [lineObj setWidth:[lineObj width] + 1];
}

// for example, if control is a slider...

- (void)adjustLineWidth:(id)sender {
 [lineObj setWidth:[sender value]];
}

Action Method Variations

• Two-arguments in selector (sender & event)

• UIEvent contains details about the event that took place

- (void)adjustLineWidth:(id)sender
 withEvent:(UIEvent *)event
{
 // may want to perform one action if the was a
 // touch-up event, and a *different* action if
 // a drag or edit event occurred.

 // sender allows you to interrogate the interface element
 // event allows you to ask about the event that occurred

}

• Target Actions can be created using various methods

• Typically, you would use addTarget:action:forControlEvents:

• addTarget:(id) target - corresponds to the instance that receives the
message

• action:(SEL)action - corresponds to the method selector that should be sent

• forControlEvents:(UIControlEvents)controlEvents - the event type

Creating Target-Actions
programmatically

- (void)decrease:(id)sender {
 // Note that we don’t use sender here, but illustrate a method with one arg.
 myCount -= 1;
}

- (void)setUpButton {
 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];

 [button addTarget:self
 action:@selector(decrease:)
 forControlEvents: UIControlEventTouchUpInside];

 [button setTitle:@"Decrease" forState:UIControlStateNormal];
 button.frame = CGRectMake(80.0, 210.0, 160.0, 40.0);
 [view addSubview:button];
}

Touch Events
• Handling touch events requires the definition of four methods to

manage the different phases of a touch action

• - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

• This is called when a touch event is discovered

• - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

• This is called when a touch event moves around the view

• - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

• This is called when the finger is removed from the display

• - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

• This is called if there is some cancel action, e.g. a call comes in, etc

Touch Events
• It is important to override all these methods...

• ... Even if they do nothing!!!

• Events propagate from the lowest view up, until methods are found

• However, a class may handle state depending on the different events

• Hence, all the methods should be handled together. Avoid some events
propagating up, when others stay at a lower level!!!

Example code for touchesBegan

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {

// We only support single touches, so anyObject retrieves just that touch from touches
UITouch *touch = [touches anyObject];

UIView *myView = [self mySketchView];

if ([touch view] == myView) {
// only process touches occurred in this view only

 // get the touch coordinate wrt this view
CGPoint touchPoint = [touch locationInView:myView];
NSString *coordinateMsg = [NSString stringWithFormat:@"Coord: %.0f, %.0f",

 touchPoint.x, touchPoint.y];
NSLog(coordinateMsg);

}
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {

// Do something similar to touchesBegan
}

1) Extract a single touch
event from the touches set.

2) Find out in which view the
touch began (not where it is
now), and if it began in the
sketchView, then handle it.

3) Calculate the position of the
touch with respect to the
sketchView view, and display
the coordinates.

Example code for touchesEnd
or touchesCancelled

• Remember - it is important to override
all these methods...

• ... Even if they do nothing!!!

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
NSLog([NSString stringWithString:@"Touch Ended"]);

}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event {
// Do nothing

}

Questions?

Lecture Set 2 - iOS Basics

