
COMP327
Mobile Computing
Session: 2012-2013

Lecture Set 1a - Objective-C Refresher and
the Foundation Framework

1

In these Slides...
• We will cover...

• Review of The Objective-C language

• Methods/Classes/Objects

• Message Passing

• Object Creation

• What’s new

• Properties and Accessor Method Synthesis

• ARC and Memory Management

• Recap Foundation Framework

• An introduction to the framework

• Mutable Classes

• Value Objects and Container Classes

• Related Lab:

• Creating a fraction class

Objective-C and
Foundation

These slides provide
an introduction to
Objective-C, with a
focus on the object-
oriented features.

Later slides will
introduce more
features such as
protocols, design
patterns etc.

2

Objective-C Refresher

Objective-C and the Foundation
Framework

3

What is Objective-C

• An object-oriented language

• “..focused on simplicity and the elegance of object oriented
design...”

• A strict superset of ANSI C

• Very Different (and somewhat simpler) to C++

• Exploits a number of object oriented principles

• Inherits many principles from Smalltalk

• Used to develop the Cocoa API Framework

• A variant for C++ also exists

• Originally used within NeXT’s NeXTSTEP OS

• Precursor to Mac OS X

4

Popularity compared to
other languages

Others
24%

Python
4%

Visual Basic
6%

PHP
6%

C#
7%

C++
9%

Objective-C
10%

Java
16%

C
19%

TIOBE Programming Community Index for September 2012
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

• Objective-C is one of the fastest
growing languages (in terms of
uptake) in the last few years

• Ranked 43rd in 2007

• Ranked 3rd in 2012 after C and Java

• TIOBE index (opposite) based on
estimates of the most lines of code
written per year

5

Dynamic Runtime
• Object Creation

• Everything is allocated from the heap

• No stack based objects!!

• Message Dispatch (Dynamic Binding)

• Everything is looked up and dispatched at runtime (not compile time)

• If you send a message to an object, the existence of that object is checked at runtime

• Differs from C++ and Java, which bind methods at compile-time

• Introspection

• A “thing” (class, instance, etc) can be asked at runtime what type it is

• Can pass anonymous objects to a method, and get it to determine what to do depending
on the object’s actual type

6

Classes and Objects

• Classes and instances are both
objects

• Classes declare state and behaviour

• State (data) is maintained using
instance variables

• Behaviour is implemented using
methods

• Instance variables typically hidden

• Accessible only using accessor (i.e.
getter and setter) methods

Fraction

int numerator;
int denominator;

- (void) print;
- (void) setNumerator:(int) n;
- (void) setDenominator:(int) d;
- (void) setTo:(int) n over:(int) d;
- (double) value;

S
ta

te
B

e
h

av
io

u
r

7

Method Syntax
• Methods are defined as Instance

or Class methods

• Methods called on a Class prefixed
with (“+”)

• Affect the class object, not its instances

• Often used to create instances, such as
calling alloc, or using factory classes

• Methods called on Instances
prefixed with (“-”)

• Operate on the instance receiving the
message

Fraction Methods

- (void) print;
- (void) setNumerator:(int) n;
- (void) setDenominator:(int) d;
- (void) setTo:(int) n over:(int) d;
- (double) value;

+ (id) alloc;
+ (int) fractionInstanceCount;
+ (id) newFraction:(double) value;

8

[myInstance method]

[myInstance method:argument]

[myInstance method:anonymousArg1 :anonymousArg2]

[myInstance method:arg1 anotherArgName:arg2]

Message Syntax
• A square brace syntax is used

Object receiving the
message (i.e.

executing the method)

The method
name The main (first)

argument

Subsequent
named arguments

arg-name : arg-value

9

Examples Unicode vs ASCII
C traditionally denotes
strings as an array of
ASCII characters,
represented in double
quotes; i.e.

 “Hello ASCII folk!”

Unicode characters are
bigger than ascii
characters, and support
different alphabets.
Unicode strings are
represented by double
quotes with a preceding
“@” character; i.e.

 @“Hello Unicode folk!”

// Assume that we have a Person Class defined

Person *voter = [[Person alloc] init];

[voter castVote]; // Do something
int theAge = [voter age]; // Get something (getter)
[voter setAge:16]; // Define something
(setter)

if ([voter canLegallyVote]) {
// allow the user to submit a ballot

}

// Send several arguments to a method
[voter registerForElection:@"Wirral" party:@"Labour"];

// Embed the returning value of one message in another
char *name = [[voter spouse] name];

10

@interface
Section

• This is where the class is defined

• Often defined in a header file (suffix “.h”, as in C)

• Encapsulated within the @interface and @end

• The instance variables (ivars) are given

• These appear within the curly braces, and can vary in scope

• The method declarations are then listed

• The arguments and return types are specified

• No code is defined, just the name, return type and arguments
of each method

• By convention, class names start with upper case letters

@interface NewClassName: ParentClassName {
 memberDeclarations;
}

methodDeclarations;
@end

11

Class and Instance Method
Syntax

• Each method declaration consists of:

• a name

• a return type

• an optional list of arguments (and their data or object types)

• an indicator to determine if the method is a class or instance method

• The syntax is

- (void) setNumerator: (int) n;

Method Type:
+ for class

- for instance

Return Type
Method Name

Colon indicates
that the method

takes an argument

Argument
Type

Argument Name

12

@implementation
Section

• This is where the methods for the class are
declared

• Code is in a source file (suffix “.m”)

• Encapsulated within the @implementation and @end
• Normally, all the methods defined within the class interface are

implemented here

• The class can reference itself or its parent class

• self - this is the instance itself

• super - this is the parent class

• Useful to call class methods of its parent

@implementation NewClassName;
methodDefinitions;
@end

[self setNumerator 5];
...
[super dealloc];

13

@implementation section
• Accessor methods are defined here

• A convention should be used, where setters are prefixed with the
string “set”

• No non-class related code should appear in this section

// ---- @implementation section ----
@implementation Fraction;
- (void) print {
 printf(" %i/%i\n", numerator, denominator);
}
- (void) setNumerator: (int) n {
 numerator = n;
}
- (void) setDenominator: (int) d {
 denominator = d;
}
@end

Creating Getters
and Setters

Accessor methods can be
constructed automatically
using the @property and
@synthesise statements.
We’ll cover these later.

14

Dot Syntax
• Objective-C 2.0 introduced dot syntax

• Convenient shorthand for invoking accessor methods

• Follows the dots...

• Essentially provides a shorthand

• Assumes a setter naming convention (setX) etc

• Dot syntax is automatically converted into the brace syntax

float height = [person height];
float height = person.height;

[person setHeight:newHeight];
person.height = newHeight;

[[person child] setHeight:newHeight];

// exactly the same as
person.child.height = newHeight;

15

Memory Management
within Objective-C

Objective-C and the Foundation
Framework

16

Managing Memory
• There are two approaches to managing memory

• ARC: Automatic Reference Counting

• Introduced in iOS5

• Compiler evaluates the requirements of your objects, and automatically inserts memory
management calls at compile time.

• MRR: Manual Retain-Release

• Used prior to iOS5, but still available

• Developer explicitly inserts memory management calls (retain and release) into the code

• Both approaches assume the developer will “allocate” new
memory for new objects

• Both approaches use retain counts for each object

• However, ARC takes responsibility for retaining or releasing objects at
compile time.

17

Creating objects
• Objective-C 2.0 defines new functions to

allocate memory and deallocate heap
memory

• Once a class has been defined, it needs
instantiating

...
// Create an instance
// of the class Fraction
myFraction = [Fraction alloc];
myFraction = [myFraction init];

// Alternative syntax
myF2 = [[Fraction alloc] init];
...

• This involves the creation of a new instance and the allocation of heap memory for that
object

• The “+ alloc” method (inherited from the Object class) is a class method that
allocates the necessary memory and returns a new instance

• All classes should also implement an “- init” method (also defined in the Object class)

• This is responsible for performing any initialisation within the new instance

• Note that the init method could itself change the memory location of the instance,
and hence you should set your variable to its return value!!!

18

Reference Counting in
Memory Management

• Every allocated object has a retain count

• Defined on NSObject (in the Foundation Framework)

• As long as retain count is > 0, object is alive and valid

• When objects are shared (i.e. owned by more than one
variable), then the retain count should track this

• +alloc and -copy create objects with retain count == 1

• -retain increments retain count

• -release decrements retain count

• When retain count reaches 0, object is destroyed

• -dealloc method invoked automatically

19

Object Graph
Class A

Class B

Heap

myThing
alloc/init

Retain count = 1

[myThing retain];

Retain count = 2

Class A

Class B

Heap

myThing
[myThing release];

Retain count = 1

Retain count = 0 ... object destroyed

[myThing release];

20

MRR vs ARC

• When using MRR, if the instance is shared, then it should
be explicitly retained using the retain method call

• This is important when objects are shared, or when object
ownership passes from one parent to another.

• When the object is no longer needed, the memory can be
freed using the release method call

• Ownership may need managing using autorelease

• When using ARC, you don’t need to worry about this!

21

Object Ownership
#import <Foundation/Foundation.h>

@interface Person : NSObject
{
 // instance variables
 NSString *name; // Person class “owns” the name
 int age;
}

// method declarations
- (NSString *)name;
- (void)setName:(NSString *)value;

- (int)age;
- (void)setAge:(int)age;

- (BOOL)canLegallyVote;
- (void)castVote;
@end

The object name requires
memory management. It is
owned by Person.

• may be returned by the
getter accessor
• Do you return a copy of the

name, or a reference to the stored
name?

• may be changed by the
setter accessor
• Do you store a copy of the name,

or retain a reference to the name
owned by the calling method?

22

Shared Object Ownership
#import "Person.h"
// Using the MMR memory model

@implementation Person

- (NSString *)name {
 return name;
}

- (void)setName:(NSString *)newName {
 if (name != newName) {
 [name release];

 name = [newName retain];
 // name’s retain count has been bumped up by 1
 }
}

@end

If a new name string is sent
to setName:

• the previous string is
released (i.e. it is not
longer needed)

• the new string retained
(i.e. this string will also
be owned by Person).

23

Copied Object Ownership
#import "Person.h"
// Using the MMR memory model

@implementation Person

- (NSString *)name {
 return name;
}

- (void)setName:(NSString *)newName {
 if (name != newName) {
 [name release];

 name = [newName copy];
 // name now has a retain count of 1, we own it
 }
}

@end

This version makes a copy
of the string in the setter,
rather than keeping the
argument string.

• The ownership of the
argument string is not
changed. It remains the
responsibility of its
previous owner...

• The setter now has its
own copy of the string
and is responsible for it

24

Returning a newly created
object

• In some cases, objects may be passed with no clear or
obvious ownership

• Hence no responsibility to clean up

• In this case, result is leaked...!

• result is passed as an allocated object with no owner

- (NSString *)fullName {
 NSString *result;
 result = [[NSString alloc] initWithFormat:@“%@ %@”,
 firstName, lastName];
 return result;

 // result was allocated from the heap...
 // ... but now it has been passed to the calling
 // method, it is too late for fullName to manage it!
}

25

• Can’t release result before it is returned

• Yet, after return, the method looses access to the object

• result will be released some time in the future (not now)

• caller can choose to retain it to keep it around!

Returning a newly created
object

- (NSString *)fullName {
 NSString *result;
 result = [[NSString alloc] initWithFormat:@“%@ %@”,
 firstName, lastName];
 [result autorelease];
 return result;

 // result was allocated from the heap...
 // ... and is now managed by autorelease :)
}

26

Autorelease (MRR)

• Calling -autorelease flags an object to
be sent release at some point in the future

• Let’s you fulfil your retain/release obligations while
allowing an object some additional time to live

• Makes it much more convenient to manage
memory

• Very useful in methods which return a newly
created object

27

How does -autorelease
work???

1. Object is added to current autorelease pool

2. Autorelease pools track objects scheduled to be released

• When the pool itself is released, it in turn sends the -release
message to all its objects

3. UIKit automatically wraps a pool around every event
dispatch

• Important for event driven GUI programming

• However, new threads will need their own pool creating

28

App Lifecycle

Launch App

App Initialized

Load main nib

Wait for an event

Handle Event

Exit App

Event
Loop

Pool
Pool Created

Autoreleased
objects in the
event loop are
put in the Pool

29

App Lifecycle

Launch App

App Initialized

Load main nib

Wait for an event

Handle Event

Exit App

Pool

Object Created

30

App Lifecycle

Launch App

App Initialized

Load main nib

Wait for an event

Handle Event

Exit App

Pool

[object autorelease];

31

App Lifecycle

Launch App

App Initialized

Load main nib

Wait for an event

Handle Event

Exit App

Pool
Pool Released

[object release];
[object release];

[object release];

32

App Lifecycle

Launch App

App Initialized

Load main nib

Wait for an event

Handle Event

Exit App

Pool

33

Creating an Autorelease Pool

• An autorelease pool is automatically created in main, and
released by the event loop

• However, it can be desirable (or necessary) to create your
own:

• When creating new threads/NSOperations etc.

• Autorelease pool is thread specific

• Always create one for a new thread

• When using large (nested) loops

• Might be desirable to explicitly maintain and release a pool, to avoid using up memory
in a single event loop

int main(int argc, char *argv[])
{
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([TestSplitViewAppDelegate class]));
 }
}

34

Autorelease Example
// Creating over 5000 strings... in 50 string chunks!
for (int i=0; i<100; i++) {
 @autoreleasepool {
 NSString *str = [NSString stringWithFormat:@"%i:", i];
 for (int j=0; j<50; j++) {
 str = [str stringByAppendingString:@"."];
 }
 NSLog(@"Created String %@", str);
 // Have created 50 strings in the pool
 }
 // pool is released, releasing the strings as well!
}

// Main method in a new thread
- (void)main {
 @autoreleasepool {

 if (self.isCancelled)
 return;
 ...
 }
}

NSAutorelease vs
autorelease blocks

Pre-ARC, a pool would be
allocated, and explicitly
released.

However, this cannot be
used in ARC, so autorelease
blocks are used instead.

Blocks are also more
efficient than using an
instance of a pool

NSAutoreleasePool *pool =
 [[NSAutoreleasePool alloc] init];

// Code benefitting from a
// local autorelease pool.

[pool release];

@autoreleasepool {

 // Code benefitting from a
 // local autorelease pool.

}

35

Object Ownership
and Factory Classes

• Ownership of objects (and hence release responsibility) is one
of the challenges in memory managed code

• If some class returns an object, whose responsibility is it?

• Various conventions exist for determining ownership

• e.g. when using factory classes

NSString myString [[NSString alloc] initWithString:@”I own this”];

// Need to clean up myString using release with MMR
// No need to do anything with ARC

NSString theirString [NSString stringWithString:@”I don’t own this”];

// This factory-class generated string theirString will
// be managed later using the autorelease pool

36

Object Lifecycle Recap

• Objects are created using alloc, copy or using a factory method

• Objects begin with a retain count of 1

• When the retain count reaches 0, the object is freed automatically

• When using MRR

• Call retain to increase the retain count (e.g. when sharing an object)

• Call release when the object is no longer needed by a variable

• When using ARC

• Things will happen automatically

37

Properties and
accessor method
synthesis

Objective-C and the Foundation
Framework

38

Properties

• Provide access to object attributes

• Shortcut to implementing getter/setter methods

• Instead of declaring “boilerplate” code, have it generated
automatically

• Specify @properties in the header (*.h) file

• Create the accessor methods by @synthesizing the properties in the
implementation (*.m) file

• Also allow you to specify:

• read-only versus read-write access

• memory management policy

39

Properties
• Defined within the header file, and determines:

• The iVar that the accessor manages

• The name of the accessor

• by default, the same as the ivar, but can be specified as a different name

• The way in which data is owned

// Fraction.h
@interface Fraction : NSObject {
 int numerator;
 int denominator;
}

- (void) setNumerator: (int) n;
- (void) setDenominator: (int) d;
- (int) numerator;
- (int) denominator;
- (double) convertToNum;
@end

// Fraction.h (using properties)
@interface Fraction : NSObject {
 int numerator; // optional
 int denominator; // optional
}

@property int numerator;
@property int denominator;
@property (readonly) double convertToNum;
@end

40

Synthesising Properties
• Performed in implementation file,

and generates the accessor methods

• If the synthesize operation isn’t
used, then the corresponding
method should be defined by hand

// Fraction.m (using properties)
@implementation Fraction

@synthesize numerator;
@synthesize denominator;

- (double) convertToNum {
 if (denominator != 0)
 return (double)
 numerator / denominator;
 else
 return 1.0;
}
@end

// Fraction.m
@implementation Fraction

- (void) setNumerator: (int) n {
 numerator = n;
}
- (void) setDenominator: (int) d {
 denominator = d;
}
- (int) numerator {
 return numerator;
}
- (int) denominator {
 return denominator;
}

- (double) convertToNum {
 if (denominator != 0)
 return (double)
 numerator / denominator;
 else
 return 1.0;
}
@end

41

Property Attributes

• Properties Read-only versus read-write

• Property attributes with different names to ivars

• Change the getter name (getter=gettername) ...

• ... or the setter name (setter=settername) or both!!!

@property (readwrite) int numerator; // rarely seen
@property int numerator; // read-write by default, same as above

@property (readonly) double convertToNum; (getter=gettername)

42

Property Attributes

• MMR Policies (only for object properties)

• Automatic Reference Count Policies

•

@property (assign) NSString *name; // value assignment (e.g. for int float etc)
@property (retain) NSString *name; // retain called
@property (copy) NSString *name;" // copy called

@property (assign) NSString *name; // value assignment (e.g. for int float etc)
@property (strong) NSString *name; // reference counting should be managed
@property (weak) NSString *name; // reference will not keep the object alive

http://developer.apple.com/library/ios/#releasenotes/ObjectiveC/RN-TransitioningToARC/
Introduction/Introduction.html

43

Property Attributes

• Atomicity - for threaded accessors

• Properties are atomic by default, to provide robust
access in a multithreaded environment

• For retained or copied properties that are atomic,
then locking is used

• For nonatomic properties, the value is simply
returned directly

@property (nonatomic, strong) UIWindow *window;
@property (nonatomic, strong) FractionPickerViewController *viewController;

44

Recent Updates to
Objective-C

Objective-C and the Foundation
Framework

45

Objective-C Updates
• Explicit definition of instance variables

• Previously, these would be declared in the header file

• Properties would then be defined for them
• This resulted in an iVar and a getter method with the same name

• However, this is not necessary, as @synthesise creates this iVar
automatically

@interface ViewController : UIViewController {
 NSArray *myStorage;
}

@property (nonatomic, strong) NSArray *myStorage;

@end

@interface ViewController : UIViewController;

@property (nonatomic, strong) NSArray *myStorage;

@end

46

Objective-C Updates
• Definition of private instance variables in the

implementation file

• Previously, these would be exposed in the header file

• Viewable by other implementation files that include the header

• Could be protected by using @private

• These can now be included after the @implementation element in the
implementation file:

@interface ViewController : UIViewController {
 @private
 NSDictionary *namesDictionary;
}

// No property declared here for namesDictionary
@end

// ViewController.h

@interface ViewController : UIViewController

@end

// ViewController.m

#include “ViewController.h”
@implementation ViewController {
 NSDictionary *namesDictionary;
}

47

Objective-C Updates
• iVar vs Properties

• Properties have often been declared as the same as the getters

• Results in the creation of a method and a variable with the same name

• If iVars are created automatically, this still occurs when using synthesis

• Dot notation could be ambiguous

• Different names can be generated using @synthesis foo = _foo;

• Avoids the ambiguity

• The “underscore” variable is only modified when absolutely necessary

• Good practice dictates that the getter and setter are always used instead

self.myString = @”Hello”;
// Are we changing the value of iVar myString? (no)
// Or are we calling the method myString: on self? (yes)

// ViewController.h
@interface ViewController : UIViewController;

@property (nonatomic, strong) NSString *myString;

@end

// ViewController.m
@implementation ViewController

@synthesise myString = _myString;

@end

48

Objective-C Updates
• iVar vs Properties (cont)

• An important advantage of using getter and setter methods is with memory
management

• When using iVars directly, then management of the previous object pointed
to by the iVar needs to be done (see slides on ownership)

• If property setter is used, then this is handled automatically

// ViewController.m
@implementation ViewController

...
 _myString = @”Hello”;
 // This can be problematic, as the previous value of _myString could be lost

 [self myString:@”Hello”];
 // This ensures that any releasing (if necessary) is performed

 [self myString:nil];
 // very useful, as it ensures memory is released, and no invalid memory address is kept

....
@end

49

Objective-C Updates
• Private Categories and class extensions

• Like private iVars, these would be exposed in the header file

• Previously necessary to define forward declarations

• These can now be added to the implementation file, before the @implementation
element:

@interface ViewController (Private)
- (void)sortTable;
- (void)updateValues;
@end

// ViewController.m

#include “ViewController.h”

@interface ViewController ()
- (void)sortTable;
- (void)updateValues;
@end

@implementation ViewController

...
@end

50

Objective-C Updates
• Synthesis ... or not

• Prior to Xcode 4.5, properties needed to be synthesised

• This also allowed the developer to use the “underscore” syntax

• Post Xcode 4.5 synthesis is performed automatically

• No need to synthesise properties in the implementation file

• iVars using the “underscore” syntax are automatically created

• Forward Declarations

• Traditionally, methods had to be declared before they were used

• Either they appeared before they were called in the code

• Or a forward declaration would appear in either the header or implementation

• This is no longer necessary for Objective-C methods in Xcode 4.3 onwards

• Note - C functions still need forward declarations!!!

51

The Foundation
Framework (Recap)

Objective-C and the Foundation
Framework

52

Foundation Framework

• Defines a base layer of classes for use in creating
applications

• Supports all the underlying (common) classes

• Common to all Apple platforms (OS X, iPhone etc)

• Provides object wrappers for primitive types and collections

• Provides support for internationalisation and localisation
with the use of dynamically loaded bundles

• Facilitated access to various lower level services of the
operating system, including threads, file system, IPC etc

• Practically all applications include this framework

53

Foundation Framework
• Introduces several paradigms and policies to Cocoa

Programming, to ensure consistent and predictable
behaviour

• Object retention and disposal (i.e. memory management)

• Includes object ownership policies

• Mutable Class variants

• Many container or value classes define an immutable class and a mutable
subclass

• Class clusters

• Abstraction of a class that hides several private subclasses, to handle different
objects optimised for different kinds of storage/memory requirements

• Notifications

• Allows classes to be kept informed of changes to other classes

54

Value Objects

• Value Objects encapsulate values
of various primitive types:

• strings

• numbers (integers and floating point values)

• dates

• structures and pointers

• Allows types to be wrapped and
used as attributes of other
objects, or stored within other
objects (e.g. container classes)

• Supports object behaviour, including
introspection, serialisation

Value Objects vs
Primitive Data Types

It is often desirable to use C
types, structs and pointers for
some code fragments, especially
when the fragment is
algorithmic and doesn’t involve
objects.

However, when objects are
involved, it is better to use Value
Objects, or create these objects
when necessary from primitive
types.

55

Useful Value Object
subclasses

• NSNumber: Instantiates objects containing numeric values

• Such as integers, floating point values and doubles

• NSDate: Define objects that represent times, dates, calendar
and locales.

• Supporting classes handle formatting, time zones etc

• NSString: Provide object-oriented storage for sequences of
Unicode characters

• Unicode is a coding system which represents all of the world’s languages

• C strings (char *) rarely ever used

• Support for reading and writing of files, search, string comparison, parsing, etc

• Without doubt the most commonly used class

• NSData: Provides object-oriented storage for streams of bytes

• Support for reading and writing to files

56

NSNumber

• In Objective-C, you typically use standard C number types

• NSNumber is used to wrap C number types as objects

• No mutable equivalent!

• Typically better to use floats, ints etc, and only convert when necessary

• Avoids having to unpack an NSNumber, modify it, and repackage it!

• Common NSNumber methods:

Note that these methods are class
factories, and thus you don’t have
to worry about releasing them.
More on these later...

+ (NSNumber *)numberWithInt:(int)value;

+ (NSNumber *)numberWithDouble:(double)value;

- (int)intValue;

- (double)doubleValue;

57

Mutable and Immutable
classes

• Many classes have mutable variants

• Mutable Object: an object who’s value may be changed at any time

• Immutable Object: an object who’s value will remain the same
throughout the cannot be changed

• Why mutable and immutable object variants?

• Mutable objects shared between classes may change unexpectedly

• When passing a mutable object to another object, it is often desirable to make a copy to
avoid it being changed

• If the object is immutable, then it can be retained without fear of mutation

• Mutable variants involve additional overhead in process and storage
requirements, compared to immutable classes

• A mutable class has the string “Mutable” in it!

• NSArray vs NSMutableArray, NSString vs NSMutableString, etc

• NSNumbers are not mutable!!!

58

Collections
• Collections are objects that store other objects

• NSArray - ordered collection of objects

• NSDictionary - collection of key-value pairs

• NSSet - unordered collection of unique objects

• Each has a mutable variant

• NSMutableArray, NSMutableDictionary and NSMutableSet

• Collection classes can contain any object

• Any object stored in a collection is automatically retained

• If an object is created and then added to the collection class, it can then be
released, thus passing ownership (and hence responsibility) to that container

• Common enumeration mechanism

59

NSArray
• NSArrays manage ordered collections of

objects called arrays

• NSMutable arrays are dynamic - i.e. they can
change their size or values, etc.

• Typically, values at some index are accessed

NSArray *myArray;
NSDate *aDate = [NSDate distantFuture];
NSValue *aValue = [NSNumber numberWithInt:5];
NSString *aString = @"a string";

myArray = [NSArray arrayWithObjects:aDate, aValue, aString, nil];

id myVal = [myArray objectAtIndex:2];
// myVal is of type NSString with the value “a string”

Note that nil marks
the end of the list

60

NSDictionary
• NSDictionaries manage collections of

key-value pairs (known as “entries”)

• Each entry consists of:

• A value, which can be any object

• A key, which is unique. This key can be any object,
but is most commonly an NSString

• Objects must never be nil

NSDictionary *myDict = [[NSDictionary alloc]
 initWithObjectsAndKeys:
 @"value1", @"key1", @"value2", @"key2", nil];

id myVal = [myDict objectForKey:@”key2”];
// myVal is of type NSString
// with the value “value2”

Empty values in
Dictionaries

If you need to represent
a NULL value in a
dictionary, use NSNull.

This is a singleton object
used to represent NULL in
collections

61

NSSet
• NSSets manage unordered objects

• Can be used as an alternative to arrays when the order
is not important

• In this case, membership testing is faster with sets than arrays

• Good for maintaining collections of items, when membership, or
intersection with other set collections is required

• NSCountedSet maintains a count for each object in the set

NSSet *mySet;
NSData *someData = [NSData dataWithContentsOfFile:aPath];
NSValue *aValue = [NSNumber numberWithInteger:5];
NSString *aString = @"a string";

mySet = [NSSet setWithObjects:someData, aValue, aString, nil];

id myVal = [mySet anyObject];
// myVal will correspond to one of the three objects in the set

62

Fast Enumeration
• Cocoa supports three forms of enumeration through

a collection

• Fast enumeration

• Block-based enumeration

• Using the NSEnumerator class

• Fast enumeration is preferred as it has the following
benefits:

• The enumeration is more efficient than using NSEnumerator directly.

• The syntax is concise.

• The enumerator raises an exception if you modify the collection while
enumerating.

• You can perform multiple enumerations concurrently.

63

Fast Enumeration Example

NSString *element ;
for (element in someArray) {
 NSLog(@"element: %@", element);
}

NSString *key;
for(key in someDictionary){
 NSLog(@"Key: %@, Value %@", key,
 [someDictionary objectForKey:key]);
}

id myVal;
for (myVal in mySet) {
 NSLog(@”Element %@ in the set”, myVal);
}

64

Questions?

Objective-C and the Foundation
Framework

65

