

COMP327 Mobile Computing Session: 2014-2015

Lecture Set 10 - mCommerce

In this Lecture Set

- M-Commerce
 - E-Commerce on a mobile device
 - Challenges and Opportunities
- Payment Systems
 - Payment mechanisms

E-Commerce

- Traditionally concerned with allowing users to buy goods over the web
 - Emerged in the late 90ies, with significant market uptake in the earlier noughties
 - Saw significant market growth year on year (aprox 20-25%) compared to traditional retail (~5% growth)
- Emerging as a convenient means of managing services and discovering alternate providers
 - Price comparison sites allow users to evaluate the market, rather than having to "collect fliers from the high street"
 - Has allowed niche retailers to emerge and gain exposure
 - Augments traditional services with new capabilities
 - E-Government services (paying bills, filing tax returns)
 - Banking and Utilities management

M-Commerce Scenarios

- Augmenting brick-and-mortar commerce
 - Use of RFID or NFC to detect goods
 - Can acquire additional information about the good
 - E.g. product information, price, reviews
 - Additional services such as preview (e.g. for music)
 - Using QR codes to identify, obtain or provide information
 - Quick Response Code
 - Quicker than URLs; can be captured from billboards or printed media
 - Can encode numeric, alpha-numeric or kanji characters
 - Can display, as well as acquire visual codes
 - Airlines are increasingly using e-ticketing for boarding cards
 - Can use optical scanners to read barcodes from a mobile device
 - Deployments include Spanair, Air France, Lufthansa

Advantages

• Informed choice when purchasing goods

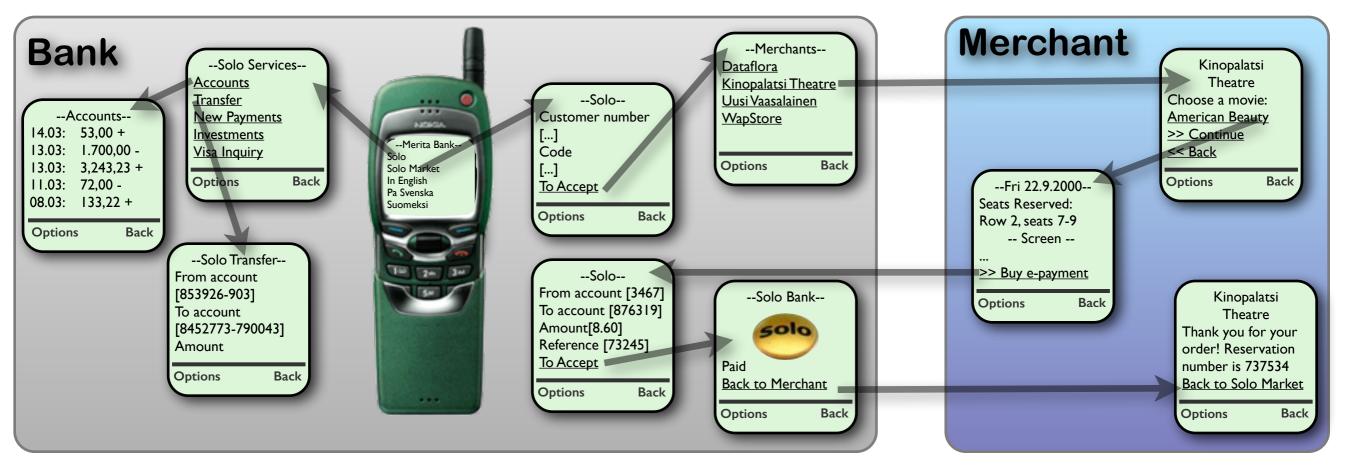
M-Commerce Scenarios

- Electronic Banking, Payment and e-ticketing
 - WAP Solo
 - Provides a means of payment to services via WAP for identified ticketing sites
 - Payments either from your bank account or via credit cards including 3rd parties
 - iMode Felicia
 - Wireless payment scheme
 - Similar to use of Oyster card
 - Used for shopping, transportation, ticketing, membership card, etc
 - SMS payment and alerts
 - Warnings when bank limits are approached or new payments are instructed

Advantages

- Shorter queues with lower operating costs
- Relax need for on-the-spot revenue collection technologies
 - e.g. coin-operated parking meters

M-Commerce Scenarios


- Killing "dead-time"
 - Provide access to media on-demand
 - Video access such as TV subscription
 - Available in Japan and Korea since 2005
 - More than 20m TV phones in Japan and 8m in Korea
 - News Media Access

- Increasing number of Publishers are charging for access to online variants of print news
- In App Purchasing
 - Music Stores such as iTunes allow access to new content
 - "Free" applications can provide basic functionality, with extended functionality for additional cost
 - E.g. new levels for games, or upgrading to the "Pro" version

Case Study: Noreda's WAP Solo

- WAP based payment and banking system from Noreda Bank
 - Launched in Scandinavia in October, 1999; >2M users within first 24 months
 - Payments either from users bank account or via credit cards including 3rd parties
- Services:
 - Traditional banking services
 - Check balance, pay bills, news, check credit card activity, stock trading
 - But also shopping mall (>600 merchants) , e-salary, loans, insurance, etc.

Mobile Payment: General Considerations

- User Interface Constraints:
 - Tiny keypads make credit card details much more difficult to enter
 - Less of an issue with more modern smart phones, though still time consuming
 - Secure end-to-end TLS connection is not always available
 - Problematic in early WAP scenarios
- Opportunities:
 - Mobile phone can be used as a Personal Trusted Device that replaces your wallet
 - Can also pay non-physical services, e.g. charitable donations via SMS

Mobile Payment Mechanisms

- Four primary models for mobile payment:
 - Premium SMS based transactional payments
 - Mobile Web Payments
 - Contact-less Payment (Near Field Communication)
- Variants of these also exist
 - TextPayMe, mPark, stored value systems
- Increasing adoption
 - Mainly in Europe and Asia
 - Estimated market of \$60B by 2013

Premium SMS based transactional payments

- Payment via an SMS message to a short code
 - Premium charge applied to mobile phone bill
 - Phone-based goods are often delivered through MMS
 - e.g. Music, Ringtones, Wallpapers, but also 2D Barcodes for e-ticketing
 - Challenges:
 - Poor Reliability messages may get lost (no delivery guarantee)
 - Slow Speed SMS delivery can be slow, making the consumer wait
 - High Setup and Running Costs includes delivery of goods via MMS
 - Low Payout Rates After running costs, payout to merchant as low as 30%
 - Low Follow-on Sales limited mechanism, with little user support

Mobile Web Payments

- Payment made via a web site or via embedded code within the app
 - Uses WAP to support communications
 - A variety of implemented payment systems exist to simplify transactions, though require setting up accounts
 - PayPal, obopay, TextPayMe, Google Checkout etc

Mobile Web Payments

- Several Advantages to using Mobile Web Payments
 - Follow-on sales
 - Web or App can return user to the store, other services or related goods.
 - Access to re-usable URLs encourages repeated visits
 - High Customer Satisfaction
 - Confidence in using a widely adopted and brand-familiar approach
 - Ease Of Use
 - Familiarity with a previously used mechanism
 - Requires information known a-priori, or accounts are set up that require little further input

Direct Operator Billing: Advantages

• Simplicity

 the operators already have a billing relationship with the consumers

Instantaneous payments

• giving the highest customer satisfaction

• Accurate responses

- showing success and reasons for failure (no money for example)
- Security
 - to protect payment details and consumer identity

- Best conversion rates
 - from a single click-to-buy and no need to enter any further payment details.
- Reliability
 - that builds confidence
- Reduced customer support costs
 - for merchants and operators
- Higher payout rates
 - with operators such as Vodafone in the UK delivering up to 86% in some cases

Credit Card

- User can provide credit card details for one-off payments
 - Familiar payment mechanism, used by most e-Commerce stores
 - User enters card details, billing address, and (if different) a delivery address
 - Many banks also require 3rd party authentication
- Can be tedious and error prone from a small device
 - leading to lower success or conversion rates
 - By having the retailer retain card details, payments can be simplified
 - increases conversion (i.e successfully completed transaction) rate
 - experience becomes similar to Direct Operator Billing
- Other "peripheral" based approaches emerging
 - E.g. SquareUp for credit card payments on smartphones

Online Payment Systems

- Online payment systems allow online transactions, and act as a proxy
 - Online account is paired to a 3rd party bank account
 - Credit may be held by the payment system, but can be "topped up" from the bank account
 - Excess credit can be paid back to the bank
 - Authentication performed using an account id and password/pin
- Augments existing banking services
 - New payment systems can be adopted without uptake from highstreet banks
 - Flourished with the advent of Auction Marketplaces such as eBay
- Examples:
 - PayPal, Amazon Payments and Google Checkout

MicroPayments

- Financial transactions involving very small sums of money
 - From a few pennies to a small number of pounds
 - Often used for purchasing online content, or making regular payments
 - music, video, toll-payments, etc
- Standard payment systems problematic for small payments
 - Typically every payment incurs a transaction fees
 - Transaction fee for small payments becomes significant
- Require some billing mechanism to support payments over several transactions:
 - Pre-paid accounts
 - Accumulated Balance Payment Systems

MicroPayments

- Pre-paid accounts
 - MicroPayments can be drawn from this pre-paid account
 - NetBill research project at CMU explored this approach in 1997
 - Still used for systems such as Skype, etc
- Accumulated Balance Payment Systems
 - Accumulate small charges, then bill periodically
 - Familiar to utility users (e.g. phone bills)
 - Assumes Direct Operator Billing, as user needs account
 - Example: Apple Store
 - Payments accrue over a fixed period of time, and then are billed as a single transaction
 - Supports the retail of music tracks (e.g. at 79p), apps (from 59p), rentals, etc

Contact-less Payment Systems

- Uses Near Field Communication (NFC) mechanisms such as RFID to communicate with receivers
 - Device is "passed" near to receiver, to perform transaction
 - May require some authentication using a PIN
 - Payment is then made via a pre-paid account, or billed directly
- Main adoption within mass-transit networks
 - Edy/Suica enabled phones used on Japanese Rail Network
 - Oyster Cards used on London Transport Network

Other payment systems

- Other payment forms have been used
 - Pre-paid accounts
 - User sets up an account and deposits credit
 - Payments are drawn from account
 - User notified when account is low, or automatic re-deposit method used
 - Often used with contact-less payment systems
 - Example: M6 Toll charges use from a pre-paid user account. When credit is low, a single transfer is made to bank account to top up user account
 - SMS-supported payment systems
 - Uses SMS to instruct payment
 - May involve "gluing" another payment system to a user

Examples of SMS-supported payment systems

- mPark (mobile Parking)
 - Parking Meter Payment System using SMS
 - Deployed in Edinburgh, Newbury and Glasgow so far
 - User activates the parking meter, which displays a unique code
 - This code is then sent via an SMS message identifying the user
 - User is then billed through a registered account, but can also be notified of reminders, etc
- Other similar systems exist
 - E.g. Liverpool City Council "Phone and Pay to Park" scheme

Exercises...

- The Desktop and Mobile E-Commerce experience can differ wildly. Describe one limitation and one advantage of using a mobile device for e-commerce.
- Network costs for 2G communications can seriously hamper the use of creditcard payments, especially when using mobile devices with numeric keypads
 - Describe a scenario whereby communication costs can be reduced when paying for goods, and give details of how the payment could be made
- In-App purchasing is a mechanism whereby applications can sell additional services directly from the application.
 - Discuss why micropayments may be desirable in such applications, and by means of an example, give a brief explanation of how micropayments work.
- How does a mobile device augment traditional commerce? Speculate on how RFID sensors could be used to transform a mobile device into a "self-pay" point-of-sales device?
 - How could a store differentiate between legitimate purchases and shoplifted goods?

To Recap...

• In this lecture set, we covered:

- An introduction to E-Commerce
 - Evolution of the B2C e-commerce site
 - Comparison of the Desktop and Mobile experience
- M-Commerce Scenarios
 - Case Studies
- Payment Systems
 - SMS, Credit Card, Pre-payment, Micropayment, and Web-based
 - Contact-less payment systems
- Apple's In-App Payment Framework

Further Reading

M-Commerce Norman Sadeh (Wiley, 2002) Chapters I and 6

• Apple's Development Site