
COMP310
Multi-Agent Systems

Dr Terry R. Payne
Department of Computer Science

Chapter 8 - Working Together

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Working Together
•Why and how agents work together?

•Since agents are autonomous, they have to make decisions
at run-time, and be capable of dynamic coordination

•Overall they will need to be able to share:
• Tasks
• Information

•If agents are designed by different individuals, they may not
have common goals

•Important to make a distinction between:
• benevolent agents and
• self-interested agents

2

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agent Motivations
•Benevolent Agents

• If we “own” the whole system, we can
design agents to help each other
whenever asked

• In this case, we can assume agents are
benevolent: our best interest is their
best interest

• Problem-solving in benevolent systems
is Cooperative Distributed Problem
Solving (CDPS)
• Benevolence simplifies the system design task

enormously!

• We will talk about CDSP in this lecture

•Self Interested Agents
• If agents represent the interests of

individuals or organisations, (the more
general case), then we cannot make
the benevolence assumption

• Agents will be assumed to act to
further there own interests, possibly
at the expense of others.
• Potential for conflict
• May complicate the design task enormously.

• Strategic behaviour may be required —
we will cover some of these aspects in
later lectures

3

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Cooperative Distributed Problem Solving

4

“... CDPS studies how a loosely coupled network of problem solvers can work
together to solve problems that are beyond their individual capabilities. Each
problem solving node in the network is capable of sophisticated problem-solving,
and can work independently, but the problems faced by the nodes cannot be
completed without cooperation. Cooperation is necessary because no single node
has sufficient expertise, resources, and information to solve a problem, and
different nodes might have expertise solving different parts of the problem….”

(Durfee et. al. 1989).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Coherence and Coordination

•Coherence:
• We can measure coherence in terms of solution

quality, how efficiently resources are used,
conceptual clarity and so on.

•Coordination:
• If the system is perfectly coordinated, agents will

not get in each others’ way, in a physical or a
metaphorical sense.

5

“... how well the [multiagent] system
behaves as a unit along some
dimension of evaluation...”

(Bond and Gasser, 1988).

“... the degree. . . to which [the
agents]. . . can avoid ‘extraneous’
activity [such as] . . . synchronizing
and aligning their activities...”

(Bond and Gasser, 1988).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Task Sharing and Result Sharing
•How does a group of agents work together to solve

problems?

• CPDS addresses the following:
• Problem decomposition

• How can a problem be divided into smaller tasks for distribution amongst agents?

• Sub-problem solution
• How can the overall problem-solving activities of the agents be optimised so as to

produce a solution that maximises the coherence metric?
• What techniques can be used to coordinate the activity of the agents, thus avoiding

destructive interactions?

• Answer synthesis
• How can a problem solution be effectively synthesised from subproblem results?

• Let’s look at these in more detail.
6

Decomposition

Solution

Synthesis

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Problem Decomposition
•The overall problem is divided

into smaller sub-problems.
• This is typically a recursive/hierarchical

process.
• Subproblems get divided up also.
• The granularity of the subproblems is

important
• At one extreme, the problem is decomposed to

atomic actions
• In ACTORS, this is done until we are at the level of

individual program instructions.

•Clearly there is some processing
to do the division.
• How this is done is one design choice.

•Another choice is who does the
division.
• Is it centralised?
• Which agents have knowledge of task

structure?
• Who is going to solve the sub-

problems?

7

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Sub-problem Solution

•The sub-problems derived in the
previous stage are solved.
• Agents typically share some information during

this process.

•A given step may involve two agents
synchronising their actions.
• eg. box pushing

8

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Solution Synthesis

•In this stage solutions to sub-
problems are integrated.
• Again this may be hierarchical

•Different solutions at different levels of
abstraction.

9

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Solution Synthesis
•Given this model of cooperative problem

solving, we have two activities that are likely
to be present:
• task sharing:

• components of a task are distributed to component agents;
• how do we decide how to allocate tasks to agents?

• result sharing:
• information (partial results etc) is distributed.
• how do we assemble a complete solution from the parts?

•An agent may well need a solution to both
these problems in order to be able to function
in a CDPS environment.

10

Task Sharing

Result Sharing

Task 1.1 Task 1.2 Task 1.3

Task 1

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Task Sharing & the Contract Net
•Well known task-sharing protocol for task

allocation is the contract net.

•The contract net includes five stages:
1. Recognition;
2. Announcement;
3. Bidding;
4. Awarding;
5. Expediting.

•The textbook describes these stages in
procedural terms from the perspective of an
individual agent.

11

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Recognition
•In this stage, an agent recognises it has a

problem it wants help with.

•Agent has a goal, and either. . .
• realises it cannot achieve the goal in isolation

• i.e. it does not have capability;

• realises it would prefer not to achieve the goal in
isolation (typically because of solution quality, deadline,
etc)

•As a result, it needs to involve other
agents.

12

Recognition

Recognition

I have a problem

Annoucement

Bidding
Awarding

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Announcement
•In this stage, the agent with the task sends

out an announcement of the task which
includes a specification of the task to be
achieved.

•Specification must encode:
• description of task itself (maybe executable)
• any constraints (e.g., deadlines, quality constraints)
• meta-task information (e.g., “ . . . bids must be submitted

by . . . ”)

•The announcement is then broadcast.
13

Announcement

Recognition

I have a problem

Annoucement

Bidding
Awarding

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Bidding
•Agents that receive the announcement

decide for themselves whether they wish to
bid for the task.

•Factors:
• agent must decide whether it is capable of expediting

task;
• agent must determine quality constraints & price

information (if relevant).

•If they do choose to bid, then they submit
a tender.

14

BiddingRecognition

I have a problem

Annoucement

Bidding
Awarding

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Awarding & Expediting
•Agent that sent task announcement

must choose between bids & decide
who to “award the contract” to.
• The result of this process is communicated to

agents that submitted a bid.
• The successful contractor then expedites the task.

•May involve generating further manager-
contractor relationships:
• sub-contracting.

• May involve another contract net.
15

Awarding and
Expediting

Recognition

I have a problem

Annoucement

Bidding
Awarding

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

The Contract Net via FIPA Performatives
•The FIPA ACL was designed to be

able to capture the contract net.
• cfp (call for proposals):

• Used for announcing a task;

• propose, refuse:
• Used for making a proposal, or declining to make a proposal.

• accept, reject:
• Used to indicate acceptance or rejection of a proposal.

• inform, failure:
• Used to indicate completion of a task (with the result) or

failure to do so.
16

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: the MAS
•The Contract Net Protocol

(CNP) in AgentSpeak / Jason
• Six Agents

• One Contractor who initiates the CNP
• Three agents that fully participate in the

protocol
• One agent that always refuses
• One agent that announces itself and then goes

silent

• This example also illustrates the mind
inspector
• A way to examine an agents beliefs etc.

17

1. MAS contractNetProtocol {
2. 	 	 infrastructure: Centralised
3.
4. 	agents:
5. 	 	 contractor	 	 // The CNP Initiator
6. 	 	 	 [mindinspector="gui(cycle,html,history)"];
7. 	 	 participant #3;	 // The 3 service providers
8. 	 	 refusenik;	 	 // Participant who always refuse
9. 	 	 silentpartner;		 // A Participant that doesn't answer
10.
11. 	aslSourcePath:
12. 	 	 “src/asl";
13. }

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: silentpartner
•An agent that doesn’t

respond
• Line 4: Initial belief that contractor is

the initiator.
• Line 8: A belief that In is the agent contractor

generates a message to In introducing the
agent.
• Using the internal action .my_name()

• A message is then sent to contractor

• But at that point, nothing else is done
• So, no response to any message

18

1. // Agent silentpartner in project contractNetProtocol
2.
3. // the name of the agent playing initiator in the CNP
4. plays(initiator,contractor).
5.
6. // send a message to the initiator introducing the
7. // agent as a participant
8. +plays(initiator,In)
9. 	 	 : .my_name(Me)
10. 	 	 <- .send(In,tell,introduction(participant,Me)).
11.
12. // Nothing else

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: refusenik
•An agent that says no

• Line 4: Initial belief that contractor is
the initiator.
• Line 8: A belief that In is the agent contractor

generates a message to In introducing the
agent.

• Line 13: A CfP message from an
initiator agent will generate a refuse
message

19

1. // Agent refusenik in project contractNetProtocol
2.
3. // the name of the agent playing initiator in the CNP
4. plays(initiator,contractor).
5.
6. // send a message to the initiator introducing the
7. // agent as a participant
8. +plays(initiator,In)
9. 	 	 : .my_name(Me)
10. 	 	 <- .send(In,tell,introduction(participant,Me)).
11.
12. // plan to answer a CFP
13. +cfp(CNPId,_Service)[source(A)]
14. 	 	 : plays(initiator,A)
15. 	 	 <- .send(A,tell,refuse(CNPId)).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: participant
•A participant agent

• Lines 8-14: introduce the agent to the initiator
• Line 5: rule that generates a random price for

its service

•Bidding - Line 17: Plan @c1
• On receipt of a cfp message from agent A

(line 17)
• Where A is the initiator, and where the agent can

generate a price for the requested task

• The agent keeps a mental note of its
proposal (line 19)

• Responds to CfP by making an offer (line 21)
20

1. // Agent participant in project contractNetProtocol
2.
3. // gets the price for the product,
4. // a random value between 100 and 110.
5. price(_Service,X) :- .random(R) & X = (10*R)+100.
6.
7. // the name of the agent playing initiator in the CNP
8. plays(initiator,contractor).
9.
10. // send a message to the initiator introducing the
11. // agent as a participant
12. +plays(initiator,In)
13. 	 	 : .my_name(Me)
14. 	 	 <- .send(In,tell,introduction(participant,Me)).
15.
16. // answer to Call For Proposal
17. @c1 +cfp(CNPId,Task)[source(A)]
18. 	 	 : plays(initiator,A) & price(Task,Offer)
19. 	 	 <-	 // remember my proposal
20. 	 	 	 +proposal(CNPId,Task,Offer);
21. 	 	 	 .send(A,tell,propose(CNPId,Offer)).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: participant
•Expediting - Line 25: Plan @r1

• Handling Accept messages
• The agent responds to the addition of the belief

accept_proposal()
• The agent prints a success message for the contract,

by retrieving the belief regarding the proposal
• Note that there is nothing here to actually do the task.

•Line 32: Plan @r2
• Handling Reject messages

• The agent responds to the addition of the belief
accept_proposal()
• The agent prints a failure message and deletes the

proposal from memory.
21

1. // Agent participant in project contractNetProtocol
2. …

23. // Handling an Accept message
24. @r1 +accept_proposal(CNPId)
25. 	 	 : proposal(CNPId,Task,Offer)
26. 	 	 <- .print("My proposal ‘“, Offer,"' won CNP “,
27. 	 	 	 	 	 	 	 CNPId, " for “, Task, “!").
28. 	 	 // do the task and report to initiator
29.
30. // Handling a Reject message
31. @r2 +reject_proposal(CNPId)
32. 	 	 <- .print("I lost CNP ",CNPId, ".");
33. 	 	 // clear memory
34. 	 	 -proposal(CNPId,_,_).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: contractor
•The contractor agent

• The rule all_proposals checks that
the number of the proposals received
is equal to the number of
introductions
• The predicate will only be true for this equality

• Note in the default run of the system with the
silentpartner agent, this predicate will never be
true!!!

• The initial achievement goal, !startCNP(), is
created:
• with an Id of 1, and the task fix(computer)

22

1. // Agent contractor in project contractNetProtocol
2.
3. // Initial beliefs and rules
4. all_proposals_received(CNPId)
5. 	 	 :-	 .count(introduction(participant,_),NP) &
6. 	 	 	 	 // number of participants
7. 	 	 	 .count(propose(CNPId,_)[source(_)], NO) &
8. 	 	 	 // number of proposes received
9. 	 	 	 .count(refuse(CNPId)[source(_)], NR) &
10. 	 	 // number of refusals received
11. 	 	 	 NP = NO + NR.
12.
13. // Initial goals
14. !startCNP(1,fix(computer)).
15.
16. //!startCNP(2,banana).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Checking beliefs using the mind inspector

•The mind inspector can be used to
check the internal state of the
contract agent
• In the example opposite:

• the number of introductions (4) is equal to the number of
proposals (3) and the number of refusals (1)

• Note that in this run, we removed the agent
silentpartner from the agent community
• the other slides in this set assume that this agent does

participate!!!

23

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: contractor
•CNP Announcement

• Plan for +!startCNP()
• Line 21: wait for participants to introduce

themselves
• Line 23: track the current state of the protocol

24

1. // Agent contractor in project contractNetProtocol
2. …

18. // start the CNP
19. +!startCNP(Id,Task)
20. 	 	 <-	 .print("Waiting participants for task ",Task,"...");
21. 	 	 	 .wait(2000); // wait participants introduction
22. 	 	 	 // remember the state of the CNP
23. 	 	 	 +cnp_state(Id,propose);
24. 	 	 	 .findall(Name,introduction(participant,Name),LP);
25. 	 	 	 .print("Sending CFP to ",LP);
26. 	 	 	 .send(LP,tell,cfp(Id,Task));
27. 	 	 	 // the deadline of the CNP is now + 4 seconds
28. 	 	 	 // (or all proposals were received)
29. 	 	 	 .wait(all_proposals_received(CNPId), 4000, _);
30. 	 	 	 !contract(Id).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: contractor
•CNP Announcement

• Plan for +!startCNP()
• Line 21: wait for participants to introduce

themselves
• Line 23: track the current state of the protocol
• Line 24: get a list of the agents that introduced

themselves
• Find all beliefs for the predicate introduction and

unify the variable Name for each

• Construct a list LP of all of the unified values of
Name

• Line 26: Send cfp messages to each agent in
the list LP

• …
25

1. // Agent contractor in project contractNetProtocol
2. …

18. // start the CNP
19. +!startCNP(Id,Task)
20. 	 	 <-	 .print("Waiting participants for task ",Task,"...");
21. 	 	 	 .wait(2000); // wait participants introduction
22. 	 	 	 // remember the state of the CNP
23. 	 	 	 +cnp_state(Id,propose);
24. 	 	 	 .findall(Name,introduction(participant,Name),LP);
25. 	 	 	 .print("Sending CFP to ",LP);
26. 	 	 	 .send(LP,tell,cfp(Id,Task));
27. 	 	 	 // the deadline of the CNP is now + 4 seconds
28. 	 	 	 // (or all proposals were received)
29. 	 	 	 .wait(all_proposals_received(CNPId), 4000, _);
30. 	 	 	 !contract(Id).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: contractor

26

1. // Agent contractor in project contractNetProtocol
2. …

18. // start the CNP
19. +!startCNP(Id,Task)
20. 	 	 <-	 .print("Waiting participants for task ",Task,"...");
21. 	 	 	 .wait(2000); // wait participants introduction
22. 	 	 	 // remember the state of the CNP
23. 	 	 	 +cnp_state(Id,propose);
24. 	 	 	 .findall(Name,introduction(participant,Name),LP);
25. 	 	 	 .print("Sending CFP to ",LP);
26. 	 	 	 .send(LP,tell,cfp(Id,Task));
27. 	 	 	 // the deadline of the CNP is now + 4 seconds
28. 	 	 	 // (or all proposals were received)
29. 	 	 	 .wait(all_proposals_received(CNPId), 4000, _);
30. 	 	 	 !contract(Id).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: contractor
•CNP Announcement

• Plan for +!startCNP()
• …
• Line 26: Send cfp messages to each agent in

the list LP

• Line 29: Wait until all of the proposals have
been received, or we have a timeout of 4s
• Note that the rule all_proposals_received() fails

when the agent slientpartner is in the MAS

• However, we recover by waiting for 4 seconds

• Line 30: Create the achievement goal to award
the contract for Id

27

1. // Agent contractor in project contractNetProtocol
2. …

18. // start the CNP
19. +!startCNP(Id,Task)
20. 	 	 <-	 .print("Waiting participants for task ",Task,"...");
21. 	 	 	 .wait(2000); // wait participants introduction
22. 	 	 	 // remember the state of the CNP
23. 	 	 	 +cnp_state(Id,propose);
24. 	 	 	 .findall(Name,introduction(participant,Name),LP);
25. 	 	 	 .print("Sending CFP to ",LP);
26. 	 	 	 .send(LP,tell,cfp(Id,Task));
27. 	 	 	 // the deadline of the CNP is now + 4 seconds
28. 	 	 	 // (or all proposals were received)
29. 	 	 	 .wait(all_proposals_received(CNPId), 4000, _);
30. 	 	 	 !contract(Id).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: contractor
•CNP Awarding

• Plan for @lc1 +!contract()
• Trigger only if we are in the propose state for the

contract CNPId

• Change the cnp_state to signify that we are
awarding the contract (line 37)

• Lines 38-44: Create a list L of offer(O,A) predicates
and find the winner
• Find all of the predicates propose() for the contact Id

from each agent A, and extract the offer O from each

• Ensure the list has at least one entry (line 41)

• The winning offer is the one from L with the lowest offer
WOf

• Create the goal to announce the result (line 45)
• Change the cnp_state to signify that we are finished

(line 46)
28

1. // Agent contractor in project contractNetProtocol
2. …

32. // this plan needs to be atomic so as not to accept
33. // proposals or refusals while contracting
34. @lc1[atomic] +!contract(CNPId)
35. 	 	 : cnp_state(CNPId,propose)
36. 	 	 <-	 -cnp_state(CNPId,_);
37. 	 	 	 +cnp_state(CNPId,contract);
38. 	 	 	 .findall(offer(O,A),propose(CNPId,O)[source(A)],L);
39. 	 	 	 .print("Offers are ",L);
40. 	 	 	 // constrain the plan execution to at least one offer
41. 	 	 	 L \== [];
42. 	 	 	 // sort offers, the first is the best
43. 	 	 	 .min(L,offer(WOf,WAg));
44. 	 	 	 .print("Winner is ",WAg," with ",WOf);
45. 	 	 	 !announce_result(CNPId,L,WAg);
46. 	 	 	 -+cnp_state(CNPId,finished).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: contractor
•CNP Awarding

• Alternate Plan for +!contract()
• An alternate plan exists if we are not in the right

context; this does nothing (line 49)

• Plan for -!contract()
• If we delete the goal contract() then we know

something failed, and thus a message is
generated

• This can occur if there were no viable contracts
proposed (i.e. if the constraint on line 41 was
violated)

29

1. // Agent contractor in project contractNetProtocol
2. …

39. …
40. 	 	 	 // constrain the plan execution to at least one offer
41. 	 	 	 L \== [];
42. …

48. // nothing todo, the current phase is not 'propose'
49. @lc2 +!contract(_).
50.
51. -!contract(CNPId)
52. 		 <-	 .print(“CNP ",CNPId," has failed!").

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason: contractor
•CNP Awarding

• The awarding process is recursive
• The goal was created on line 45 of the plan @lc1
• If the head of the list L is the winner WAg, then the

plan on line 58 is satisfied
• An accept_proposal belief is sent to the winner

• The goal announce_result is then called on the tail of
the list of agents L

• If the head of the list L is not the winner WAg, then
the plan on line 63 is satisfied
• A reject_proposal belief is sent to the agent

• Again, the goal announce_result is then called on the
remaining agents (the tail of L)

• To terminate the recursion
• Line 55 triggers with a call on an empty list

30

1. // Agent contractor in project contractNetProtocol
2. …

44. …
45. 	 	 	 !announce_result(CNPId,L,WAg);
46. …

54. // Terminate the recursion when we have no more
55. // agents participating in the CFP
56. +!announce_result(_,[],_).
57.
58. // announce to the winner
59. +!announce_result(CNPId,[offer(_,WAg)|T],WAg)
60. 	 	 <-	 .send(WAg,tell,accept_proposal(CNPId));
61. 	 	 	 !announce_result(CNPId,T,WAg).
62.
63. // announce to others
64. +!announce_result(CNPId,[offer(_,LAg)|T],WAg)
65. 	 	 <-	 .send(LAg,tell,reject_proposal(CNPId));
66. 	 	 	 !announce_result(CNPId,T,WAg).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

CNP in Jason
•Here is the trace of the agents

• Note that each agent’s output is preceded by the agent name.

31

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Issues for Implementing Contract Net

•How to…
• ... specify tasks?
• ... specify quality of service?
• ... decide how to bid?
• ... select between competing offers?
• … differentiate between offers based on multiple

criteria?

32

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Deciding how to bid
• At some time t a contractor i is scheduled to carry out τti.

• Contractor i also has resources ei.
• Then i receives an announcement of task specification ts, which is for a set of tasks τ(ts).
• The cost to i to carry these out is: cti(τ)

• The marginal cost of carrying out τ will be:

• that is the difference between carrying out what it has already agreed to do and what it
has already agreed plus the new tasks.

33

µi(τ (ts) | τti) = ci(τ (ts) ∪ τti) − ci(τti)

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Deciding how to bid
•Due to synergies, this is often not just cti(τ(ts))

• in fact, it can be zero — the additional tasks can be done for free.

• Think of the cost of giving another person a ride to work.
• As long as µi(τ(ts) | τti) < e then the agent can afford to do the new work, then it is

rational for the agent to bid for the work.
• Otherwise not.

• You can extend the analysis to the case where the agent gets  
paid for completing a task.
• And for considering the duration of tasks.

34

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Results Sharing
•In results sharing, agents provide each other

with information as they work towards a
solution.

•It is generally accepted that results sharing
improves problem solving by:
• Independent pieces of a solution can be cross-checked.
• Combining local views can achieve a better overall view.
• Shared results can improve the accuracy of results.
• Sharing results allows the use of parallel resources on a

problem.

•The following are examples of results sharing.
35

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Results Sharing in Blackboard Systems
•The first scheme for cooperative problem

solving: was the blackboard system.
• Results shared via shared data structure (BB).
• Multiple agents (KSs/KAs) can read and write to BB.
• Agents write partial solutions to BB.

•Blackboards may be structured as a hierarchy.
• Mutual exclusion over BB required ⇒ bottleneck.

• Not concurrent activity.

•Compare:
• LINDA tuple spaces, JAVASPACES.

36

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Result Sharing in Subscribe/Notify Pattern
•Common design pattern in OO systems:

subscribe/notify.
• An object subscribes to another object, saying “tell me

when event e happens”.
• When event e happens, original object is notified.

•Information pro-actively shared between
objects.

•Objects required to know about the interests
of other objects ⇒ inform objects when
relevant information arises.

37

The Centibots robots collaborate to
map a space and find objects.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Handling Inconsistency
•A group of agents may have inconsistencies in their:

• Beliefs
• Goals or intentions

• Inconsistent beliefs arise because agents have different views
of the world.
• May be due to sensor faults or noise or just because they can’t see everything.

• Inconsistent goals may arise because agents are built by
different people with different objectives.

38

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Handling Inconsistency
•Three ways to handle inconsistency (Durfee at al.)

• Do not allow it!
• For example, in the contract net the only view that matters is that of the manager agent.

• Resolve inconsistency
• Agents discuss the inconsistent information/goals until the inconsistency goes away.

• We will discuss this later (argumentation).

•Build systems that degrade gracefully in the face of
inconsistency.

39

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Coordination
•Coordination is managing dependencies between agents.

• Any thoughts in resolving the following?

40

1.We both want to leave the room through the same door.
We are walking such that we will arrive at the door at the
same time. What do we do to ensure we can both get
through the door?

2.We both arrive at the copy room with a stack of paper to
photocopy. Who gets to use the machine first?

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Coordination
•Von Martial suggested that positive coordination is:

• Requested (explicit)
• Non-requested (implicit)

•Non-requested coordination relationships can be as follows.
• Action equality:

• We both plan to do something, and by recognising this one of us can be saved the effort.

• Consequence:
• What I plan to do will have the side-effect of achieving something you want to do.

• Favor:
• What I plan to do will make it easier for you to do what you want to do.

•Now let’s look at some approaches to coordination.
41

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Social Norms
•Societies are often regulated by (often

unwritten) rules of behaviour.

•Example:
• A group of people is waiting at the bus stop. The bus

arrives. Who gets on the bus first?
• Another example:

• On 34th Street, which side of the sidewalk do you walk along?

•In an agent system, we can design the
norms and program agents to follow them,
or let norms evolve.

42

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Offline Design
•Recall how we described agents before:

• As a function which, given a run ending in a state,
gives us an action.

•A constraint is then a pair:
• where E′ ⊆ E is a set of states, and α ∈ Ac is an action.

• This constraint says that α cannot be done in any state
in E′.

•A social law is then a set of these
constraints.

43

Ag:RE →Ac

<E′, α>

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Offline Design
•We can refine our view of an

environment.
• Focal states, F ⊆ E are the states we want our

agent to be able to get to.
• From any focal state e ∈ F it should be possible to

get to any other focal state e′ ∈ F (though not
necessarily right away).

•A useful social law is then one that
does not prevent agents from getting
from one focal state to another.

44

A useful social law that
prevents collisions
(Wooldridge p177, from
Shoham and Tennenholtz):

1. On even rows the robots move left while in
odd rows the robots move right.

2. Robots move up when in the rightmost
column.

3. Robots move down when in the leftmost
column of even rows or the second rightmost
column of odd rows.

Not necessarily efficient (On2 steps to get
to a specific square).

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Emergence
•We can also design systems in which social laws

emerge.

•What strategy update function should they use?
45

“... Agents have both a red t-shirt and a blue t-shirt
and wear one. Goal is for everyone to end up with
the same color on. In each round, each agent
meets one other agent, and decides whether or
not to change their shirt. During the round they
only see the shirt their pair is wearing — they don’t
get any other information...”

T-shirt Game (Shoham and Tennenholtz)

Simple majority:
Agents pick the shirt they have seen the

most.

Simple majority with types:
Agents come in two types. When they meet
an agent of the same type, agents pass their

memories. Otherwise they act as simple
majority.

Highest cumulative reward:
Agents can “see” how often other agents

(some subset of all the agents) have matched
their pair. They pick the shirt with the largest

number of matches.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Joint Intentions
• Just as we have individual intentions, we can have joint intentions for

a team of agents.

• Levesque defined the idea of a joint persistent goal (JPG).
• A group of agents have a collective commitment to bring about some goal φ, “move the

couch”.
• Also have motivation ψ, “Simon wants the couch moved”.

• The mental states of agents mirror those in BDI agents.
• Agents don’t believe that φ is satisfied, but believe it is possible.
• Agents maintain the goal φ until a termination condition is reached.

46

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Joint Intentions

•The terminations condition is that it is mutually believed that:
• goal φ is satisfied; or
• goal φ is impossible; or
• the motivation ψ is no longer present

•The termination condition is achieved when an agent realises
that, the goal is satisfied, impossible and so on.

•But it doesn’t drop the goal right away.
• Instead it adopts a new goal — to make this new knowledge mutually

believed.
• This ensures that the agents are coordinated.

•They don’t stop working towards the goal until they are all
appraised of the situation.
• Mutual belief is achieved by communication.

47

“... You and I have a mutual
belief that p if I believe p and you

believe p and I believe that you
believe p and I believe that you

believe that I believe p and ...”

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Multiagent Planning
•Another approach to coordinate is to explicitly plan

what all the agents do.
• For example, come up with a large STRIPS plan for all the agents

in a system. 

•Could have:
• Centralised planning for distributed plans.

• One agent comes up with a plan for everybody

• Distributed planning
• A group of agents come up with a centralised plan for another group of agents.

• Distributed planning for distributed plans
• Agents build up plans for themselves, but take into account the actions of others.  

48

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Multiagent Planning
• In general, the more decentralized it is, the harder it is.

• Georgeff propsed a distributed version of STRIPS.
• New list: during
• Specifies what must be true while the action is carried out.
• This places constraints on when other agents can do things.

• Different agents plan to achieve their goals using these operators and then do:
• Interaction analysis: do different plans affect one another?

• Safety analysis: which interactions are problematic?
• Interaction resolution: treat the problematic interactions as critical sections and enforce mutual

exclusion.

49

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Summary
•This lecture has discussed how to get agents

working together to do things.
• Key assumption: benevolence
• Agents are working together, not in competition.

•We discussed a number of ways of having agents
decide what to do, and make sure that their work
is coordinated.
• A typical system will need to use a combination of these ideas.

•Next time, we will go on to look at agents being in
competition with one another.  

50

Class Reading (Chapter 8):

“Distributed Problem Solving and Planning”,
E.H. Durfee. In Weiss, G. ed.: Multiagent
Systems,1999, pp121-164.

This is a detailed and precise
introduction to distributed problem
solving and distributed planning, with
many useful pointers into the literature.

