
COMP310
Multi-Agent Systems

Dr Terry R. Payne
Department of Computer Science

Chapter 5 - Reactive and Hybrid Architectures

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Reactive Architectures
• There are many unsolved (some would say insoluble) problems

associated with symbolic AI.
• These problems have led some researchers to question the viability of the whole

paradigm, and to the development of reactive architectures.
• Although united by a belief that the assumptions underpinning mainstream AI are in

some sense wrong, reactive agent researchers use many different techniques.

• In this chapter, we look at alternative architectures that better
support some classes of agents and robots
• At the end, we then examine how hybrid architectures exploits the best aspects

of deliberative and reactive ones

2

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

General Control Architecture

•So far, we have viewed the control
architecture of an agent as one that:

• Perceives the environment
• Revises its internal state, identifying beliefs and desires
• Selects actions from its intention and plan
• Acts, possibly changing the environment

•Intention Reconsideration is important
in highly dynamic environments

3

Agent
see action

next state

Environment

percepts actions

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agent Control Loop as Layers

4

The classic “Sense/Plan/Act” approach breaks it down serially like this

Revise Internal State (Beliefs/Desires)

Perception

Execute Action

Select Intention and Plan

Sensors

Actuators

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Behaviours

•Behaviour based control sees things differently
• Behavioural chunks of control each connecting sensors to actuators
• Implicitly parallel
• Particularly well suited to Autonomous Robots

5

Coordination / Fusion
e.g. fusion via vector

summation

Communicate Data

Actuators

Discover new area

Detect goal position

Avoid Obstacles

Follow right/left wall

ΣSensors

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Behaviours
•Range of ways of combining behaviours.

•Some examples:
• Pick the ``best''
• Sum the outputs
• Use a weighted sum

•Flakey redux used a fuzzy combination
which produced a nice integration of
outputs.

6

Coordination / Fusion
e.g. fusion via vector

summation

ActuatorsΣ

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Subsumption Architecture
•A subsumption architecture is a hierarchy of

task-accomplishing behaviours.
• Each behaviour is a rather simple rule-like structure.
• Each behaviour ‘competes’ with others to exercise control

over the agent.
• Lower layers represent more primitive kinds of behaviour, (such

as avoiding obstacles), and have precedence over layers
further up the hierarchy.

•The resulting systems are, in terms of the
amount of computation they do, extremely
simple.
• Some of the robots do tasks that would be impressive if they

were accomplished by symbolic AI systems.
7

Rodney Brooks “subsumption
architecture” was originally
developed open Genghis

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Brooks Behavioural Languages
•Brooks proposed the following three

theses:
1. Intelligent behaviour can be generated without

explicit representations of the kind that
symbolic AI proposes.

2. Intelligent behaviour can be generated without
explicit abstract reasoning of the kind that
symbolic AI proposes.

3. Intelligence is an emergent property of certain
complex systems.

8

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Brooks Behavioural Languages
• He identified two key ideas that have informed his

research:
1. Situatedness and embodiment: ‘Real’ intelligence is situated in the world,

not in disembodied systems such as theorem provers or expert systems.
2. Intelligence and emergence: ‘Intelligent’ behaviour arises as a result of an

agent’s interaction with its environment. Also, intelligence is ‘in the eye of
the beholder’; it is not an innate, isolated property.

• Brooks built several agents (such as Genghis) based on
his subsumption architecture to illustrate his ideas.

9

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Subsumption Architecture
• It is the piling up of layers that gives the approach of its power.

• Complex behaviour emerges from simple components.
• Since each layer is independent, each can independently be:

• Coded / Tested / Debugged

• Can then assemble them into a complete system.

10

Coordination / Fusion
e.g. fusion via vector

summation

Communicate Data

Actuators

Discover new area

Detect goal position

Avoid Obstacles

Follow right/left wall

ΣSensors

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Abstract view of a Subsumption Machine
•Layered approach based on levels of competence

• Higher level behaviours inhibit lower levels

•Augmented finite state machine:

11

ActuatorsBehaviour ModelSensors

Reset

SuppressionInhibition

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Emergent Behaviour
Putting simple behaviours together leads to synergies

12

Forward motion with a
slight bias to the right

Obstacle
Avoidance

Wall Following

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Emergent behaviour
•Important but not well-understood phenomenon

• Often found in behaviour-based/reactive systems

•Agent behaviours “emerge” from interactions of rules with
environment.
• Sum is greater than the parts.
• The interaction links rules in ways that weren’t anticipated.

•Coded behaviour: In the programming scheme

•Observed behaviour: In the eyes of the observer
• There is no one-to-one mapping between the two!

•When observed behaviour “exceeds” programmed
behaviour, then we have emergence.

13

Emergent Flocking

Flocking is a classic example of emergence, e.g.
Reynolds “Boids”, or Mataric ’́s “nerd herd”.

Each agent uses the following three rules:
1. Don’t run into any other robot
2. Don’t get too far from other robots
3. Keep moving if you can

When run in parallel on many agents, the result
is flocking

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

ToTo
•Maja Mataric ́’s Toto is based on the subsumption

architecture
• Can map spaces and execute plans without the need for a symbolic

representation.
• Inspired by “…the ability of insects such as bees to identify shortcuts

between feeding sites…”

•Each feature/landmark is a set of sensor readings
• Signature

•Recorded in a behaviour as a triple:
• Landmark type
• Compass heading
• Approximate length/size

•Distributed topological map.
14

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

ToTo
•Whenever Toto visited a particular

landmark, its associated map behaviour
would become activated
• If no behaviour was activated, then the landmark was

new, so a new behaviour was created
• If an existing behaviour was activated, it inhibited all

other behaviours

•Localization was based on which
behaviour was active.
• No map object, but the set of behaviours clearly

included map functionality.
15

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Steel’s Mars Explorer System

•Steels’ Mars explorer system
• Uses the subsumption architecture to achieve

near-optimal cooperative performance in
simulated ‘rock gathering on Mars’ domain

• Individual behaviour is governed by a set of
simple rules.

• Coordination between agents can also be
achieved by leaving “markers” in the
environment.

16

Objective
To explore a distant planet, and in
particular, to collect sample of a precious
rock. The location of the samples is not
known in advance, but it is known that
they tend to be clustered.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Steel’s Mars Explorer System
1. For individual (non-cooperative) agents, the lowest-level

behaviour, (and hence the behaviour with the highest
“priority”) is obstacle avoidance.

2. Any samples carried by agents are dropped back at the
mother-ship.

3. If not at the mother-ship, then navigate back there.
• The “gradient” in this case refers to a virtual “hill” radio signal that slopes up to

the mother ship/base.

4. Agents will collect samples they find.

5. An agent with “nothing better to do” will explore randomly.
This is the highest-level behaviour (and hence lowest level
“priority”).

17

if true then move randomly
5

if detect a sample then pick
sample up

4

 if carrying a sample and not at
the base then travel up gradient

3

 if carrying a sample and at the
base then drop sample

2

 if detect an obstacle then change
direction

1

Lo
w

 .
..

P

ri
o

ri
ty

..

.
H

ig
h

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Steel’s Mars Explorer System
•Existing strategy works well when samples are
distributed randomly across the terrain.

•However, samples are located in clusters
•Agents should cooperate with each other to locate clusters

•Solution to this is based on foraging ants.
•Agents leave a “radioactive” trail of crumbs when returning
to the mother ship with samples.

•If another agent senses this trail, it follows the trail back to the source of the
samples
•It also picks up some of the crumbs, making the trail fainter.
•If there are still samples, the trail is reinforced by the agent returning to the
mother ship (leaving more crumbs)
•If no samples remain, the trail will soon be erased.

18

 if sense crumbs then pick up 1
crumb and travel down gradient

4.5

 if carrying samples and not at
the base then drop 2 crumbs and

travel up gradient.

3’

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Situated Automata
•Approach proposed by Rosenschein and Kaelbling.

• An agent is specified in a rule-like (declarative) language.
• Then compiled down to a digital machine, which satisfies the declarative specification.

• This digital machine can operate in a provable time bound.
• Reasoning is done off line, at compile time, rather than online at run time.

• The theoretical limitations of the approach are not well
understood.
• Compilation (with propositional specifications) is equivalent to an NP-complete

problem.
• The more expressive the agent specification language, the harder it is to compile it.

19

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Situated Automata

•An agent is specified by perception
and action
• Two programs are used to synthesise agents:

1.RULER specifies the perception component
• (see opposite)

2.GAPPS specifies the action component
• Takes a set of goal reduction rules and a top-level goal

(symbolically specified) and generates a non-symbolic program

20

RULER takes as its input three
components…

“…[A] specification of the semantics of the
[agent’s] inputs (“whenever bit 1 is on, it is
raining”); a set of static facts (“whenever it is
raining, the ground is wet”); and a
specification of the state transitions of the
world (“if the ground is wet, it stays wet until
the sun comes out”). The programmer then
specifies the desired semantics for the
output (“if this bit is on, the ground is wet”),
and the compiler … [synthesises] a circuit
whose output will have the correct
semantics… All that declarative “knowledge”
has been reduced to a very simple circuit…”

Kaelbling, L.P. (1991) A Situated Automata
Approach to the Design of Embedded Agents.

SIGART Bulletin, 2(4): 85-88

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Limitations of Reactive Systems

•Although there are clear advantages of Reactive Systems,
there are also limitations!

• If a model of the environment isn’t used, then sufficient information of the local environment is
needed for determining actions

• As actions are based on local information, such agents inherently take a “short-term” view
• Emergent behaviour is very hard to engineer or validate; typically a trial and error approach is

ultimately adopted
• Whilst agents with few layers are straightforward to build, models using many layers are

inherently complex and difficult to understand.

21

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Hybrid Architectures
•Many researchers have argued that neither a completely deliberative

nor completely reactive approach is suitable for building agents.

• They have suggested using hybrid systems, which attempt to
marry classical and alternative approaches.

• An obvious approach is to build an agent out of two (or more)
subsystems:
• a deliberative one, containing a symbolic world model, which develops plans and

makes decisions in the way proposed by symbolic AI; and
• a reactive one, which is capable of reacting to events without complex reasoning.

22

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Hybrid Architectures
•Often, the reactive component is given some kind of precedence over

the deliberative one.

• This kind of structuring leads naturally to the idea of a layered
architecture, of which InterRap and TouringMachines are examples.
• In such an architecture, an agent’s control subsystems are arranged into a hierarchy…
• …with higher layers dealing with information at increasing levels of abstraction.

•A key problem in such architectures is what kind control framework to
embed the agent’s subsystems in, to manage the interactions
between the various layers.

23

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Hybrid Architectures
• Horizontal layering.

• Layers are each directly connected to
the sensory input and action output.

• In effect, each layer itself acts like an
agent, producing suggestions as to
what action to perform. 

• Vertical layering.
• Sensory input and action output are

each dealt with by at most one layer
each.

24

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ferguson - TouringMachines

•The TouringMachines architecture
consists of perception and action
subsystems
• These interface directly with the agent’s

environment, and three control layers,
embedded in a control framework, which
mediates between the layers.

25

perceptual

sub−system

modelling layer

planning layer

reactive layer

control

subsystem

action
subsystem actions

sensor

input

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ferguson - TouringMachines
•The reactive layer is implemented as a set of situation-

action rules, a` la subsumption architecture.
• The planning layer constructs plans and selects actions to execute in order

to achieve the agent’s goals.

26

rule-1: kerb-avoidance

if

is-in-front(Kerb, Observer) and

speed(Observer) > 0 and

separation(Kerb, Observer) < KerbThreshHold

then

change-orientation(KerbAvoidanceAngle)

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Ferguson - TouringMachines
•The modelling layer contains symbolic representations

of the ‘cognitive state’ of other entities in the agent’s
environment.
• The three layers communicate with each other and are embedded in a

control framework, which use control rules.
• Such control structures have become common in robotics.

27

censor-rule-1:

if

entity(obstacle-6) in perception-buffer

then

remove-sensory-record(layer-R, entity(obstacle-6))

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Real World Example: Stanley
•Won the 2005 DARPA Grand Challenge

• Used a combination of the subsumption
architecture with deliberative planning

• Consists of 30 different independently operating
modules across 6 layers

28

Global Services Layer

User Interface Layer

Vehicle Interface Layer

Planning and Control layer

Perception layer

Sensor interface layer

The key challenge… was not one of action, but one of perception…

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Question 2.a

29

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Q2.a answer

30

The Touring Machines architecture is an example of a hybrid architecture that combines reactive behaviour with
that of deliberative, or pro-active behaviour. It consists of three layers, each of which operate in parallel. Each has
access to the perceptual sub-system, which is responsible for converting the percepts obtained from sensor input
into predicates that can be used for reasoning. In addition, each layer can result in the generation of actions that
can then be executed. A control subsystem is responsible for monitoring the incoming percepts held in the
perceptual sub-system, and then determining which of the actions (if any) should be executed from the different
layers; i.e. it determines which layer is responsible for controlling the agent. In particular, the control subsystem
can suppress sensor information going to certain layers, or it can censor actions generated by the different layers.
The reactive layer is responsible for responding to changes in the environment (in a similar way to Bookes
subsumption architecture). A set of situation-action rules are defined, which then fire if they map to sensor input.
 For example, if the agent is controlling an autonomous vehicle and it detects a kerb unexpectedly in front of the
vehicle, it can stop (or slow down) and turn to avoid the kerb.
The planning layer is responsible for determining the actions necessary to achieve the agent's goals. Under
normal operation, this layer determines what the agent should do. This is done by making use of a set of planning
schema, relating to different goals, and then performing the necessary actions. Note that no low level planning is
performed.
The modelling layer represents the various entities in the world. This is responsible for modelling the world,
including other agents, and for determining the agents goals, or planning goals that resolve any conflicts with other
agents if such conflicts are detected. Whenever a goal is generated, it is passed onto the planning layer, which
then determines the final actions.

Although several of the details here are from your notes, much more description was
originally given in the lecture, and is also available from the course text book.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Summary
•This lecture has looked at two further

kinds of agent:
• Reactive agents; and
• Hybrid agents.

•Reactive agents build complex
behaviour from simple components.

•Hybrid agents try to combine the speed
of reactive agents with the power of
deliberative agents.

31

Class Reading (Chapter 5):

“A Robust Layered Control System for a
Mobile Robot,”, Rodney A. Brooks. IEEE
Journal of Robotics and Automation, 2(1),
March 1986, pp. 14–23. (also MIT AI Memo
864, September 1985)

A provocative, fascinating article,
packed with ideas. It is interesting to
compare this with some of Brook’s
later - arguably more controversial -
articles

