
COMP310
Multi-Agent Systems

Dr Terry R. Payne
Department of Computer Science

Chapter 3 - Deductive Reasoning Agents

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agent Architectures
•Pattie Maes (1991)  •Leslie Kaebling (1991)

2

“... [A] particular methodology for building
[agents]. It specifies how . . . the agent can be
decomposed into the construction of a set of
component modules and how these modules
should be made to interact. The total set of
modules and their interactions has to provide
an answer to the question of how the sensor
data and the current internal state of the agent
determine the actions . . . and future internal
state of the agent. An architecture
encompasses techniques and algorithms that
support this methodology ...”

“... [A] specific collection of software (or
hardware) modules, typically designated by
boxes with arrows indicating the data and
control flow among the modules. A more
abstract view of an architecture is as a general
methodology for designing particular modular
decompositions for particular tasks ...”

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Classes of Architecture
•1956–present: Symbolic Reasoning Agents

• Agents make decisions about what to do via symbol manipulation.
• Its purest expression, proposes that agents use explicit logical reasoning in order to

decide what to do.

• 1985–present: Reactive Agents
• Problems with symbolic reasoning led to a reaction against this
• led to the reactive agents movement, 1985–present.

• 1990-present: Hybrid Agents
• Hybrid architectures attempt to combine the best of reasoning and reactive architectures.

3

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Symbolic Reasoning Agents
•The classical approach to building agents is to view them as

a particular type of knowledge-based system, and bring all
the associated methodologies of such systems to bear.
• This paradigm is known as symbolic AI.

•We define a deliberative agent or agent architecture to be
one that:
• contains an explicitly represented, symbolic model of the world;
• makes decisions (for example about what actions to perform) via symbolic

reasoning.

4

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Two issues

5

Most researchers accept that neither problem is anywhere near solved.

The Transduction Problem
Identifying objects is hard!!!

The transduction problem is that of translating the
real world into an accurate, adequate symbolic
description, in time for that description to be
useful.
This has led onto research into vision, speech
understanding, learning…

The Representation/Reasoning Problem
Representing objects is harder!

How to symbolically represent information about
complex real-world entities and processes, and
how to get agents to reason with this information
in time for the results to be useful.
This has led onto research into knowledge
representation, automated reasoning, planning…

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

The representation / reasoning problem
•The underlying problem with knowledge representation/

reasoning lies with the complexity of symbol manipulation
algorithms.
• In general many (most) search-based symbol manipulation algorithms of

interest are highly intractable.
• Hard to find compact representations.

•Because of these problems, some researchers have looked
to alternative techniques for building agents; we look at
these later.

6

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Deductive Reasoning Agents
•How can an agent decide what to do using theorem proving?

• Basic idea is to use logic to encode a theory stating the best action to perform
in any given situation.

• Let:
• ρ be this theory (typically a set of rules);
• ∆ be a logical database that describes the current state of the world;
• Ac be the set of actions the agent can perform;
• ∆ ⊢ρ φ means that φ can be proved from ∆ using ρ.

7

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Deductive Reasoning Agents
• How does this fit into the abstract description we talked about last time?

• The perception function is as before:

• of course, this is (much) easier said than done.

• The next state function revises the database ∆ :

• And the action function?
• Well a possible action function is on the next slide.

8

see : E ! Per

next : �⇥ Per ! �

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Action Function

9

for each ↵ 2 Ac do /* try to find an action explicitly prescribed */
if � `⇢ Do(↵) then

return ↵
end-if

end-for

for each ↵ 2 Ac do /* try to find an action not excluded */
if � 6`⇢ ¬Do(↵) then

return ↵
end-if

end-for

return null /* no action found */

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

An example: The Vacuum World

10

2

1

0

0 1 2

The Vacuum World
The goal is for the robot to clear up all the dirt.

Uses 3 domain predicates in this
exercise:

In(x,y) agent is at (x,y)

Dirt(x,y) there is dirt at (x,y)

Facing(d) the agent is facing direction d

Possible Actions:

Ac = {turn, forward, suck}

Note: turn means “turn right”

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

The Vacuum World

11

In(0, 0)
Facing(north)

Dirt(0,2)
Dirt(1,2)

In(0, 1)
Facing(north)

Dirt(0,2)
Dirt(1,2)forward

In(0, 0)
Facing(east)

Dirt(0,2)
Dirt(1,2)

turn

In(0, 2)
Facing(north)

Dirt(0,2)
Dirt(1,2)

forward
In(0, 2)

Facing(north)
Dirt(1,2)

suck

In(1, 0)
Facing(east)

Dirt(0,2)
Dirt(1,2)

forward

suck

In(2, 0)
Facing(east)

Dirt(0,2)
Dirt(1,2)

forward

In(1, 0)
Facing(south)

Dirt(0,2)
Dirt(1,2)

turn
2

1

0

0 1 2

With the system as depicted
above, here are some possible
ways that the system might run.

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

The Vacuum World
•Rules ρ for determining what to do:

• ... and so on!

•Using these rules (+ other obvious
ones), starting at (0, 0) the robot will
clear up dirt.

12

Uses 3 domain predicates
in this exercise:

In(x,y) agent is at (x,y)

Dirt(x,y) there is dirt at (x,y)

Facing(d) the agent is facing
direction d

Possible Actions:

Ac = {turn, forward, suck}

Note: turn means “turn right”

2

1

0

0 1 2

In(0, 0) ^ Facing(north) ^ ¬Dirt(0, 0) �! Do(forward)

In(0, 1) ^ Facing(north) ^ ¬Dirt(0, 1) �! Do(forward)

In(0, 2) ^ Facing(north) ^ ¬Dirt(0, 2) �! Do(turn)

In(0, 2) ^ Facing(east) �! Do(forward)

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

The Vacuum World
•Problems:

• how to convert video camera
input to Dirt(0, 1)?

• decision making assumes a static
environment:
• calculative rationality.

• decision making using first-order
logic is undecidable!  

•Typical solutions:
• weaken the logic;
• use symbolic, non-logical

representations;
• shift the emphasis of reasoning

from run time to design time.

13

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agent-oriented programming
•Yoav Shoham introduced “agent-oriented programming” in

1990:

• The key idea:
• directly programming agents in terms of intentional notions

• like belief, desire, and intention
• Adopts the same abstraction as humans

• Resulted in the Agent0 programming language

14

“... new programming paradigm, based on a societal view of computation ...”

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agent0
•AGENT0 is implemented as an extension to LISP.

• Each agent in AGENT0 has 4 components:
• a set of capabilities (things the agent can do);
• a set of initial beliefs;
• a set of initial commitments (things the agent will do); and
• a set of commitment rules.

• The key component, which determines how the agent acts, is the
commitment rule set.
• Each commitment rule contains

• a message condition;
• a mental condition; and
• an action.

15

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Agent0 Decision Cycle

16

On each decision cycle . . .
• The message condition is matched against the messages the agent has received;

• The mental condition is matched against the beliefs of the agent.
• If the rule fires, then the agent becomes committed to the action (the action gets added to the agents

commitment set).

Actions may be . . .
• Private

• An externally executed computation
• Communicative

• Sending messages

Messages are constrained to be
one of three types . . .

• requests
• To commit to action

• unrequests
• To refrain from action

• Informs
• Which pass on information

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Commitment Rules

•This rule may be paraphrased as
follows:
• if I receive a message from agent which requests

me to do action at time, and I believe that:
• agent is currently a friend;
• I can do the action;
• at time, I am not committed to doing any other action,

• then commit to doing action at time.

17

A commitment Rule

COMMIT(

(agent, REQUEST, DO(time, action)

), ;;; msg condition

(B,

[now, Friend agent] AND

CAN(self, action) AND

NOT [time, CMT(self, anyaction)]

), ;;; mental condition

self,

DO(time, action)

)

Copyright: M. J. Wooldridge & S.Parsons, used with permission/updated by Terry R. Payne, Spring 2013COMP310: Chapter 3

PLACA

• A more refined implementation was developed by
Becky Thomas, for her 1993 doctoral thesis.

• Her Planning Communicating Agents (PLACA)
language was intended to address one severe
drawback to AGENT0

• the inability of agents to plan, and communicate requests
for action via high-level goals.

• Agents in PLACA are programmed in much the
same way as in AGENT0, in terms of mental change
rules.

18

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

PLACA
•A more refined implementation was developed by Becky

Thomas, for her 1993 doctoral thesis.

•Her Planning Communicating Agents (PLACA) language was
intended to address one severe drawback to AGENT0
• the inability of agents to plan, and communicate requests for action via high-

level goals.

•Agents in PLACA are programmed in much the same way
as in AGENT0, in terms of mental change rules.

19

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

PLACA: Mental Change Rule
•If:

• someone asks you to xerox something
x at time t and you can, and you don’t
believe that they’re a VIP, or that
you’re supposed to be shelving books

•Then:
• adopt the intention to xerox it by 5pm,

and
• inform them of your newly adopted

intention.
20

A PLACA Mental Change Rule

(((self ?agent REQUEST (?t (xeroxed ?x)))
(AND (CAN-ACHIEVE (?t xeroxed ?x)))

(NOT (BEL (*now* shelving)))
(NOT (BEL (*now* (vip ?agent))))

((ADOPT (INTEND (5pm (xeroxed ?x)))))
((?agent self INFORM

(*now* (INTEND (5pm (xeroxed ?x)))))))

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Concurrent MetateM
•Concurrent METATEM is a multi-agent

language, developed by Michael Fisher
• Each agent is programmed by giving it a temporal logic

specification of the behaviour it should exhibit.
• These specifications are executed directly in order to generate the behaviour

of the agent.

•Temporal logic is classical logic augmented by
modal operators for describing how the truth
of propositions changes over time.
• Think of the world as being a number of discrete states.
• There is a single past history, but a number of possible

futures
• all the possible ways that the world might develop.

21

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

MetateM Agents

•A Concurrent MetateM system
contains a number of agents (objects)
• Each object has 3 attributes:

• a name
• an interface
• a MetateM program

• An agent’s interface contains two sets:
• messages the agent will accept;
• messages the agent may send.

22

For example, a ‘stack’ object’s interface:

stack(pop, push)[popped, stackfull]

{pop, push} = messages received
{popped, stackfull} = messages sent

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

MetateM
•The root of the MetateM concept is Gabbay’s separation

theorem:
• Any arbitrary temporal logic formula can be rewritten in a logically equivalent

past ⇒ future form.

•Execution proceeds by a process of continually matching
rules against a “history”, and firing those rules whose
antecedents are satisfied.
• The instantiated future-time consequents become commitments which must

subsequently be satisfied.

23

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Examples

24

important(agents)

}important(ConcurrentMetateM)

}• important(Prolog)

(¬friends(us))U apologise(you)

gapologise(you)
bcddefffapologise(you)) gfriends(us)
friends(us)S apologise(you)

means “it is now, and will always be true
that agents are important”

means “sometime in the future,
ConcurrentMetateM will be important”

means “sometime in the past it was true
that Prolog was important”

means “we are not friends until you
apologise”

means “tomorrow (in the next state), you
apologise”

means “if you apologised yesterday, then
tomorrow we will be friends”

means “we have been friends since you
apologised”

Copyright: M. J. Wooldridge, S.Parsons and T.R.Payne, Spring 2013. Updated 2018

Summary
•This chapter has focussed on Agent

Architectures and general approaches to
programming an agent.
• We defined the notion of symbolic reasoning agents, and

discussed...
• ...how can deductive reasoning be achieved through the use of logic; and
• ...the Transduction and Representation Problems

• We introduced the concept of Agent Oriented Programming,
and looked at examples of AOP languages, including:
• Agent0 and PLACA
• Concurrent MetateM and temporal logic

•In the next chapter, we will consider the merits
of practical reasoning agents.

25

Class Reading (Chapter 3):

“Agent Oriented Programming”, Yoav
Shoham. Artificial Intelligence Journal 60(1),
March 1993. pp51-92.

This paper introduced agent-oriented
programming and throughout the late
90ies was one of the most cited
articles in the agent community. One
of the main points was the notion of
using mental states, and introduced
the programming language Agent0.

