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Cooperative Game Theory
•So far we have taken a game theoretic view of multi-agent 

interactions 
• Prisoner’s Dilemma suggests that cooperation should not occur, as the 

conditions required are not present: 
• Binding agreements are not possible 
• Utility is given to individuals based on individual action 

• These constraints do not necessarily hold in the real world 
• Contracts, or collective payments can facilitate cooperation, leading to 

Coalition Games and Cooperative Game Theory
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Coalitional Games
•Coalitional games model scenarios where agents can 

benefit by cooperating. 
• Sandholm (et. al., 1999) identified the following stages:

!3

Coalitional Structure 
Generation 

Deciding in principle who will work 
together.  It asks the basic question:


Which coalition should I join? 
The result: partitions agents into 
disjoint coalitions.  The overall 
partition is a coalition structure.

Solving the optimization 
problem of each coalition 

Deciding how to work together, and 
how to solve the “joint problem” of a 
coalition.  It also involves finding how 
to maximise the utility of the coalition 
itself, and typically involves joint 
planning etc. 

Dividing the benefits 
Deciding “who gets what” in the 
payoff.  Coalition members cannot 
ignore each other’s preferences, 
because members can defect:

   ...if you try to give me a bad payoff, I 

can always walk away... 
We might want to consider issues 
such as fairness of the distribution. 
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Formalising Cooperative Scenarios
•A Characteristic Function Game (CFG) is 

represented as the tuple: G = ⟨Ag, 𝛎⟩  

• From this, we form a coalition C ⊆ Ag 
• Singleton: where a coalition consists of a single member 
• Grand Coalition: where C = Ag (i.e. all of the agents) 

• Each coalition has a payoff value, defined by the 
characteristic function 𝛎  
• i.e. if 𝛎(C) = k then the coalition will get the payoff k if they cooperate 

on some task
!4

Ag = {1, . . . , n} A set of agents

⌫ : 2Ag ! R the characteristic 
function of the game

% Representation of a Simple 
% Characteristic Function Game 

% List of Agents 
1,2,3 
% Characteristic Function 
1 = 5 
2 = 5 
3 = 5 
1,2 = 10 
1,3 = 10 
2,3 = 10 
1,2,3 = 25
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Characteristic Function Games
• The objective is to join a coalition that the agent cannot object to 

• This involves calculating the characteristic function for different games 

• Sandholm (1999) showed that: 
• If the game is superadditive: if 𝛎(U) + 𝛎(U) < 𝛎(U⋃V) 

• The coalition that maximises social welfare is the Grand Coalition 

• If the game is subadditive: if 𝛎(U) + 𝛎(U) > 𝛎(U⋃V) 
• The coalitions that maximis social welfare are singletons 

• However as some games are neither subadditive or superadditive: 
• the characteristic function value calculations need to be determined for each of the possible coalitions! 
• This is exponentially complex
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Which Coalition Should I Join?
•Assuming that we know the characteristic function and the payoff 

vector, what coalition should an agent join? 
• An outcome x for a coalition C in game ⟨Ag, 𝛎⟩ is a vector of payoffs to members of C, such 

that x = ⟨x1, . . . , xk⟩ which represents an efficient distribution of payoff to members of Ag 

• Where “efficient” means:  

• Example: if 𝛎({1, 2}) = 20, then possible outcomes are: ⟨20,0⟩, ⟨19,1⟩, ⟨18,2⟩ … ⟨1,19⟩, ⟨0,20⟩ 

• Thus, the agent should only join a coalition C which is: 
• Feasible: the coalition C really could obtain some payoff than an agent could not object to; and 
• Efficient: all of the payoff is allocated
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⌫(C) =
X

i2C

xi
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Which Coalition Should I Join?
•However, there may be many coalitions 

• Each has a different characteristic function 
• Agents prefer coalitions that are as productive as possible 
• Therefore a coalition will only form if all the members 

prefer to be in it 
• I.e. they don’t defect to a more preferable coalition 

•Therefore: 
• “which coalition should I join?” can be reduced to “is 

the coalition stable?” 
• Is it rational for all members of coalition C to stay with C, or could they 

benefit by defecting from it?  
• There's no point in me joining a coalition with you, unless you want to 

form one with me, and vice versa.
!7
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Stability and the Core
• Stability can be reduced to the notion of the core 

• Stability is a necessary but not sufficient condition for coalitions to form 
• i.e. Unstable coalitions will never form, but a stable coalition isn’t guaranteed to form 

• The core of a coalitional game is the set of feasible distributions of payoff to 
members of a coalition that no sub-coalition can reasonably object to  
• Intuitively, a coalition C objects to an outcome if there is some other outcome that makes all of them 

strictly better off  
• Formally, C ⊆ Ag objects to an outcome x = ⟨x1, . . . , xn⟩ for the grand coalition if there is some outcome 

x′ = ⟨x1′, . . . , xk′⟩ for C such that: xi′ > xi for all i ∈ C  

• The idea is that an outcome is not going to happen if somebody objects to it! 
• i.e. if the core is empty, then no coalition can form 
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The Core and Fair Payoffs
• Sometimes the core is non-empty but is it “fair”? 

• Suppose we have Ag = {1, 2}, with the following Characteristic Function: 
• 𝛎({1}) = 5  

• 𝛎({2}) = 5  

• 𝛎({1,2}) = 20  

• The outcome ⟨20, 0⟩ (i.e., agent 1 gets everything) will not be in the core, since agent 2 can 
object; by working on its own it can do better, because 𝛎({2}) = 5  

• However, outcome ⟨14, 6⟩ is in the core, as agent 2 gets more than working on its own, 
and thus has no objection. 

• But is it “fair” on agent 2 to get only a payoff of 6, if agent 1 gets 14??? 

!9
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Sharing the Benefits of Cooperation
•The Shapley value is best known 

attempt to define how to divide 
benefits of cooperation fairly. 
• It does this by taking into account how much an 

agent contributes.  
• The Shapley value of agent i is the average 

amount that i is expected to contribute to a 
coalition. 

• The Shapley value is one that satisfies the 
axioms opposite!
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Symmetry 
Agents that make the same contribution should 
get the same payoff.  I.E. the amount an agent 
gets should only depend on their contribution.

Dummy Player 
These are agents that never have any synergy 
with any coalition, and thus only get what they 
can earn on their own.

Additivity 
If two games are combined, the value an agent 
gets should be the sum of the values it gets in 
the individual games.
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Marginal Contribution
•The Shapley value for an agent is based on the marginal contribution 

of that agent to a coalition (for all permutations of coalitions) 

•Let δi(C) be the amount that agent i adds by joining a coalition C ⊆ Ag 
• i.e. the marginal contribution of i to C is defined as δi(C) = 𝛎(C⋃{i}) - 𝛎(C) 

• Note that if δi(C) = 𝛎({i}) then there is no added value from i joining C since the amount i 
adds is the same as if i would earn on its own 

•The Shapley value for i, denoted φi, is the value that agent i in Ag is 
given in the game ⟨Ag, 𝛎⟩
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Shapley Axioms: Symmetry
•Agents that make the same 

contribution should get the same 
payoff 
• The amount an agent gets should only depend 

on their contribution 
• Agents i and j are interchangeable if δi(C) = δj(C)   

for every C ⊆ Ag \ {i, j} 

•The symmetry axiom states: 
• If i and j are interchangeable, then φi = φj

!12
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Shapley Axioms: Dummy Player
•Agents that never have any synergy 

with any coalition, and thus only get 
what they can earn on their own. 
• An agent is a dummy player if δi(C) = 𝛎({i}) for 

every C ⊆ Ag \ {i}   
• i.e. an agent only adds to a coalition what it could get on its 

own 

•The dummy player axiom states: 
• If i is a dummy player, then φi = 𝛎({i})

!13
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Shapley Axioms: Additivity
• If two games are combined, the value an agent gets should be the 

sum of the values it gets in the individual games 
• I.e. an agent doesn’t gain or loose by playing more than once 

• Let G1 = ⟨Ag, 𝛎1⟩ and G2 = ⟨Ag, 𝛎2⟩ be games with the same agents 

• Let i ∈ Ag be one of the agents 

• Let φ1i and φ2i be the value agent i receives in games G1 and G2 respectively 

• Let G1+2 = ⟨Ag, 𝛎1+2⟩ be the game such that 𝛎1+2(C) = 𝛎1(C) + 𝛎2(C) 

•The additivity axiom states: 
• The value φ1+2i of agent i in game G1+2 should be φ1i + φ2i

!14
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Shapley value
•Recall that we stated: 

• The Shapley value for an agent is based on the marginal contribution of that agent to a coalition (for all 
permutations of coalitions) 

• The marginal contribution can be dependent on the order in which an agent joins a coalition 
• This is because an agent may have a larger contribution if it is the first to join, than if it is the last! 

• For example, if Ag = {1,2,3} then the set of all possible orderings, 𝚷(Ag) is given as 
• 𝚷(Ag) = {(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)} 

•We have defined the marginal contribution of i to C as δi(C) = 𝛎(C⋃{i}) - 𝛎(C) 

•The Shapley value for i is defined as:
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'i =

P
o2⇧(Ag)

�i(Ci(o))

|Ag|!
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Shapley Example
•Suppose we have Ag = {1, 2}, with the following characteristic 

function 

•We can now calculate the marginal contribution δi(C) of each agent 
i ∈ C, for each coalition C ⊆ Ag 

•Finally, we can calculate the individual Shapley values for each i:
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⌫({1}) = 5
⌫({2}) = 10
⌫({1, 2}) = 20

�1(?) = ⌫(? [ {1})� ⌫(?) = (5� 0) = 5
�1({2}) = ⌫({2} [ {1})� ⌫({2}) = (20� 10) = 10
�2(?) = ⌫(? [ {2})� ⌫(?) = (10� 0) = 10
�2({1}) = ⌫({1} [ {2})� ⌫({1}) = (20� 5) = 15

'1 =
�1(?) + �1({2})

|Ag|! =
5 + 10

2
= 7.5

'2 =
�2(?) + �2({1})

|Ag|! =
10 + 15

2
= 12.5

Shapley Value (reminder) 

Marginal Contribution: 

δi(C) = 𝛎(C⋃{i}) - 𝛎(C) 

Shapley value:

'i =

P
o2⇧(Ag)

�i(Ci(o))

|Ag|!
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Representing Coalitional Games
•It is important for an agent to know if 

the core of a coalition is non-empty 
• Problem: a naive, obvious representation of a 

coalitional game is exponential in the size of Ag. 
• Now such a representation is: 

• utterly infeasible in practice; and  
• so large that it renders comparisons to this input size 

meaningless 

• An n-player game consists of 2n-1 coalitions 
• e.g. a 100-player game would require 1.2 x 1030 lines

!17

% Representation of a Simple 
% Characteristic Function Game 

% List of Agents 
1,2,3 
% Characteristic Function 
1 = 5 
2 = 5 
3 = 5 
1,2 = 10 
1,3 = 10 
2,3 = 10 
1,2,3 = 25
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Representing Characteristic Functions?
•Two approaches to this problem: 

• try to find a complete representation that is succinct in “most” cases  
• try to find a representation that is not complete but is always succinct 

•A common approach: 
• interpret characteristic function over a combinatorial structure. 

•We look at two possible approaches: 
• Induced Subgraph and Marginal Contribution Networks

!18
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Induced Subgraph

!19

• Represent 𝛎 as an undirected 
graph on Ag, with integer weights 
wi,j between nodes i, j ∈ Ag  

• Value of coalition C is then: 

• i.e., the value of a coalition C ⊆ Ag 
is the weight of the subgraph 
induced by C 

⌫(C) =
X

{i,j}✓Ag

Wi,j

A B

DC

3

1

4

2

5
Weighted Graph

B

D

1

5

 𝛎({B,D}) = 5+1 = 6

A B

C

3

2  𝛎({A,B,C}) = 

3+2 = 5

D

5
 𝛎({D}) = 5
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Induced Subgraph
•Representation is succinct, but not complete 

• there are characteristic functions that cannot be captured using 
this representation 

•Determining emptiness of the core is NP-complete 
• Checking whether a specific distribution is in the core is co-NP-

complete 

•Shapley value can be calculated in polynomial 
time 

• i.e. an agent gets half the income from the edges in the 
graph to which it is attached.

!20

A B

C

3

2

⌫({A,B,C}) = 3 + 2 = 5

'A =
1

2

X

j 6=i

Wi,j =
3 + 2

2
= 2.5

'B =
1

2

X

j 6=i

Wi,j =
3

2
= 1.5

'C =
1

2

X

j 6=i

Wi,j =
2

2
= 1

'i =
1

2

X

j 6=i

Wi,j
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Marginal Contribution Nets
•Characteristic function 𝛎 represented as rules: 

• Pattern is conjunction of agents, a rule applies to a group of agents 
C if C is a superset of the agents in the pattern. 

•Value of a coalition is then sum over the values of all 
the rules that apply to the coalition. 
• Example (rule set 1): 

• We have: 𝛎rs1({a}) = 0, 𝛎rs1({b}) = 2, and 𝛎rs1({a, b}) = 5+2 = 7.  

•We can also allow negations in rules (i.e. for when an 
agent is not present). 

!21

patern �! value

a ^ b ! 5
b ! 2

a ^ b ! 5
b ! 2
c ! 4

b ^ ¬c ! �2

Rule set (rs) 2:

𝛎rs2({a}) = 0 no rules apply
𝛎rs2({b}) = 2+ -2 = 0 2nd and 4th rules
𝛎rs2({c}) = 4 3rd rule
𝛎rs2({a, b}) = 5+2+-2 = 5 1st, 2nd and 4th rules
𝛎rs2({a, c}) = 4 3rd rule
𝛎rs2({b, c}) = 2+4 = 6 2nd and 3rd rules
𝛎rs2({a, b, c}) = 5+2+4 = 11 1st, 2nd and 3rd rules
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Marginal Contribution Nets
•Calculating the Shapley value for 

marginal contribution nets is similar 
to that for induced subgraphs 
• Again, Shapley’s symmetry axiom applies to each 

agent 
• The contributions from agents in the same rule is equal 

• The additivity property means that: 
• we calculate the Shapley value for each rule 
• sum over the rules to calculate the Shapley value for each agent 

• Handling negative values requires a different 
method

!22

a ^ b ! 5
b ! 2
c ! 4

'A =
X

r2rs;A occurs in lhs of r

'r
A =

5

2
= 2.5

'B =
X

r2rs;B occurs in lhs of r

'r
B =

5

2
+ 2 = 4.5

'C =
X

r2rs;C occurs in lhs of r

'r
C = 4

Calculating the Shapley Value 

where

'i =
X

r2rs;i occurs in lhs of r

'r
i

'1^...^l�!x
i =

x

l
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Coalition Structure Generation
•In addition to representing the characteristic function, there is the challenge 

of calculating them! 
• Remember, for a set of n agents in Ag, there will be 2n-1 distinct coalitions 

•Shehory & Kraus (1998) proposed a method whereby agents distributed 
the calculation amongst themselves 
• Resulted in a communication overhead, in coordinating which agent calculated the characteristic 

function value for which coalition 
• Rahwan & Jennings (2007) proposed the DVCD approach for allocating coalition value 

calculations to agents without the need for communication 
• However, agents could be incentivised to mis-represent the calculations for those coalitions in which they were not a member 

• This was resolved by Riley, Atkinson, Dunne & Payne (2015) through the use of (n,s)-sequences

!23
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(n,s)-sequences
•Riley et.al. proposed a mechanism for calculating the coalition 

value calculation share for an agent, based on the agent’s id 
• Given a set of agents in Ag where n=|Ag|, the agents are labelled 1…n 
• A coalition of size 1 ≤ s < n can be generated given an (n,s)-sequence t by first 

calculating the aggregate offset for each position in t and given the agent x, 
determine its coalition value calculation share (for some 1 ≤ x ≤ n): 

• Note that the result is an agent in the range (1 ≤ x ≤ n) 
• i.e. the result is congruent modulo n  

!24

xi ⌘
⇢

x if i = 1
(x+

Pi�2
k=0 (tk + 1)) mod n if 2  i  s
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Generating Coalition Value 
Calculation Shares 

The following table lists the coalitions generated 
for the (n,s)-sequences where n=6 and s=3

Example
•The (n,s)-sequences for coalitions of size s=3, 

for a set of agents Ag = {1,2,3,4,5,6} are 
⟨0,0,3⟩, ⟨0,1,2⟩, ⟨0,2,1⟩, ⟨1,1,1⟩ 

• These are used to generate the coalition value calculation 
shares for each agent x 
• If each agent generates their share… 
• … all of the coalitions of size s will be generated 

• Duplications occur if there is a repeated periodic sub-
sequence in the (n-s)-sequence (e.g. ⟨1,1,1⟩) 
• If s=4, then ⟨0,1,0,1⟩ has the repeating sub-sequence ⟨…0,1…⟩, but ⟨0,0,1,1⟩ 

has no repeating sequence 

• By tracking which agent generates coalitions from the 
repeated sequence, duplications can be eliminated
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⟨0,0,3⟩ ⟨0,1,2⟩ ⟨0,2,1⟩ ⟨1,1,1⟩
CV31 1,2,3 1,2,4 1,2,5
CV32 2,3,4 2,3,5 2,3,6
CV33 3,4,5 3,4,6 3,4,1
CV34 4,5,6 4,5,1 4,5,2 4,6,2
CV35 5,6,1 5,6,2 5,6,3 5,1,3
CV36 6,1,2 6,1,3 6,1,4

xi ⌘
⇢

x if i = 1
(x+

Pi�2
k=0 (tk + 1)) mod n if 2  i  s
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Generating Coalition Value 
Calculation Shares 

The following table lists the coalitions generated 
for the (n,s)-sequences where n=6 and s=3

Example
•The (n,s)-sequences for coalitions of size s=3, 

for a set of agents Ag = {1,2,3,4,5,6} are 
⟨0,0,3⟩, ⟨0,1,2⟩, ⟨0,2,1⟩, ⟨1,1,1⟩ 

•Therefore, if we consider agent 5: 
• C(5, ⟨0,0,3⟩) ≡ {5, 6, 1}  

• i.e. {5, (5+0+1) mod 6, ((5+0+1) + 0 +1) mod 6} ≡ {5, 6, 1}   

• C(5, ⟨0,1,2⟩) ≡ {5, 6, 2} 
• i.e. {5, (5+0+1) mod 6, ((5+0+1) + 1 +1) mod 6} ≡ {5, 6, 2} 

• C(5, ⟨0,2,1⟩) ≡ {5, 6, 3} 
• i.e. {5, (5+0+1) mod 6, ((5+0+1) + 2 +1) mod 6} ≡ {5, 6, 3} 

• C(5, ⟨1,1,1⟩) ≡ {5, 1, 3} 
• i.e. {5, (5+1+1) mod 6, ((5+1+1) + 1 +1) mod 6} ≡ {5, 1, 3}
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⟨0,0,3⟩ ⟨0,1,2⟩ ⟨0,2,1⟩ ⟨1,1,1⟩
CV31 1,2,3 1,2,4 1,2,5
CV32 2,3,4 2,3,5 2,3,6
CV33 3,4,5 3,4,6 3,4,1
CV34 4,5,6 4,5,1 4,5,2 4,6,2
CV35 5,6,1 5,6,2 5,6,3 5,1,3
CV36 6,1,2 6,1,3 6,1,4

xi ⌘
⇢

x if i = 1
(x+

Pi�2
k=0 (tk + 1)) mod n if 2  i  s
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Example
•The (n,s)-sequences for coalitions of size s=3, 

for a set of agents Ag = {1,2,3,4,5,6} are 
⟨0,0,3⟩, ⟨0,1,2⟩, ⟨0,2,1⟩, ⟨1,1,1⟩ 

•Therefore, if we consider agent 5: 
• C(5, ⟨0,0,3⟩) ≡ {5, 6, 1}  

• i.e. {5, (5+0+1) mod 6, ((5+0+1) + 0 +1) mod 6} ≡ {5, 6, 1}   

• C(5, ⟨0,1,2⟩) ≡ {5, 6, 2} 
• i.e. {5, (5+0+1) mod 6, ((5+0+1) + 1 +1) mod 6} ≡ {5, 6, 2} 

• C(5, ⟨0,2,1⟩) ≡ {5, 6, 3} 
• i.e. {5, (5+0+1) mod 6, ((5+0+1) + 2 +1) mod 6} ≡ {5, 6, 3} 

• C(5, ⟨1,1,1⟩) ≡ {5, 1, 3} 
• i.e. {5, (5+1+1) mod 6, ((5+1+1) + 1 +1) mod 6} ≡ {5, 1, 3}
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0+1

1

5

6

0+1

3+1

C(5, ⟨0,0,3⟩)

0+1

2

5

6

1+1

2+1

C(5, ⟨0,1,2⟩)

0+1

3

5

6

2+1

1+1

C(5, ⟨0,2,1⟩)

1+1

3

5

1

1+1

1+1

C(5, ⟨1,1,1⟩)
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Summary
•In this lecture we have looked at mechanisms for identifying 

coalitions.  
• The notion of a stable coalition game was presented, through the idea of a 

Core. 
• The Shapley Value was then introduced, to determine the contribution that 

different agents may have on a coalition. 

•The problem of representing coalitional games and 
characteristic functions was then discussed, including: 
• Induced Subgraphs 
• Marginal Contribution Nets.  

•We finally talked about Coalition Structure Generation 

•This is again an active research area, especially from a 
game-theoretic and computational complexity perspective.
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Class Reading (Chapter 13): 

“Marginal contribution nets: A compact 
representation scheme for coalition games”, 
S. Ieong and Y. Shoham.  Proceedings of 
the Sixth ACM Conference on Electronic 
Commerce (EC’05), Vancouver, Canada, 
2005. 

This is a technical article (but a very 
nice one), introducing the marginal 
contribution nets scheme.


