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Abstract

The characteristic function of a set of arguments S in a framework H is an impor-
tant concept underpinning the formulation of most standard argumentation semantics, e.g.
grounded, complete, admissible and strongly admissible. Within such frameworks, FH(S)
(the characteristic function of S within H) describes that set of arguments which S may
be used to defend. In this work we define and consider the properties of an inverse char-
acteristic function. This function, which we denote F−1H , given an argument y describes
all subsets S for which y ∈ FH(S) \ S. After reviewing some refinements of this idea, we
show that any system of incomparable subsets S is such that a framework with F−1H (y) = S
may be constructed. We further consider some natural decision problems associated with
inverse characteristic functions and classify their complexity.

1. Introduction

The model of abstract argumentation promoted in the seminal article of Dung (1995) has
focused attention on treatment of argumentation structures from a graph-theoretic per-
spective. This graph-theoretic view has proved to be of importance in complexity-theoretic
terms e.g. as exemplified in work of Dimopoulos and Torres (1996), Dunne and Bench-
Capon (2002), Dvořák and Woltran (2010), Dunne (2007, 2009). It also, however, provides
the basis for set-theoretic treatments of argumentation semantics and labelling concepts
so allowing novel notions of “collection of acceptable arguments” to be proposed. Among
the many examples of such novel semantics we find semi-stable semantics from Caminada
(2006), Caminada et al. (2012), the ideal semantics of Dung et al. (2007), and the formula-
tion of strong admissibility given by Baroni and Giacomin (2007).

A central notion in defining argumentation semantics within Dung’s formalism has been
that of the characteristic function. We present a formal definition in Section 2, but for now
note that the characteristic function FH(S) within a framework describes those arguments
that can be defended by S. The interplay between FH(S) and S underpins semantics such
as the grounded, complete, and admissible.

In this article our concern is not with the characteristic function itself but with a for-
mulation of an inverse function. So, while FH(S) tells us what arguments S can defend,
suppose we have some argument, y say, and wish to know what subsets, S, could be used
to defend y, i.e. to determine which sets S are such that y ∈ FH(S). There are a few
reasons why being able to manipulate such “inverse characteristic functions” may be useful.
Such awareness may inform proof procedures in trying to demonstrate that y is acceptable
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under some semantics. For if we know that y ∈ FH(S) we can concentrate on demonstrat-
ing the acceptability of S in order to prove that y is acceptable. Thus an awareness of
which subsets belong to those within the inverse characteristic function of y suggests an
informal “back-tracking” procedure: in trying to establish y under some semantics, choose
S with y ∈ FH(S) then try to establish the validity of arguments in S, i.e. for each z ∈ S
select some Sz for which z ∈ FH(Sz). Furthermore, faced with a number of alternatives
{S1, . . . , Sr} for which y ∈ FH(Si) we can try to capture notions of “best” sets (e.g. as
having smallest cardinality; or the smallest number of distinct attackers, etc).

In this paper, after presenting technical preliminaries in Section 2 together with divers
formulations of the notion of inverse characteristic function, we then review properties of
our formulation in Section 3.

In particular we show that given any incomparable system of subsets, S it is possible
to construct a framework, H, for which the inverse characteristic function of y contains
precisely the sets in S. We extend this construction completely to characterize those systems,
S, (whether incomparable or not) for which an af having exactly the sets in S as the inverse
characteristic function of a given argument can be built. An interesting side-effect of this
characterization is rephrasing through a class of propositional logic functions. We denote
this class by Cn. Not only are monotone Boolean functions, Mn, a strict subset of Cn there
are, in addition, n-argument propositional functions not contained within it. We explore
this class and its properties in greater depth within Section 4.

Some natural decision problems arising with inverse characteristic functions and their
complexity are considered in Section 5 with conclusions reported in Section 6.

2. Preliminaries

We briefly restate some of the basic concepts in formal argumentation theory restricting to
finite argumentation frameworks.

Definition 1. An argumentation framework (af) is a pair H = (X ,A) where X is a finite
set of entities called arguments and A is a binary relation on X . For any p, q ∈ X we say
that p attacks q if < p, q >∈ A.

Definition 2. Let H = (X ,A) be an argumentation framework and x an argument in X .
We define {x}+ to be the set of arguments that are attacked by x and {x}− as the set which
attack x. The forms {x}+ and {x}− are extended to sets of arguments S by defining S+

as the union over all arguments x ∈ S of {x}+ with S− defined in an analogous style.
The notation ν(x) is used for {x}+ ∪ {x}−. A subset S of X is said to be conflict-free if
S ∩ S+ = ∅. A subset S is said to defend x if {x}− ⊆ S+. The characteristic function
FH : 2X → 2X is defined as FH(S) = {x | S defends x}.

Definition 3. Let H = (X ,A) be an argumentation framework. A subset S of the arguments
is said to be:

• an admissible set if S is conflict-free and S ⊆ FH(S)

• a complete extension if S is conflict-free and S = FH(S)

• a grounded extension if S is the smallest (w.r.t. ⊆) complete extension
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• a preferred extension if S is a maximal (w.r.t. ⊆) complete extension

• a strongly admissible set if S is admissible and for each y ∈ S, there is a strongly
admissible subset T of S \ {y} for which y ∈ FH(T ).

The notion of strong admissibility was originally presented by Baroni and Giacomin (2007).
The structure given in Definition 3 is an equivalent formulated by Caminada (2014) and
has been used in exploring computational and complexity issues relating to strong admissi-
bility, e.g. Caminada and Dunne (2019b, 2019a).

We adopt the following notational conventions. Given an underlying set X , we use upper
case Roman letters, e.g. S, T , etc. for an arbitrary subset of X , and lower case Roman
letters, x, y, z, etc. for arbitrary members of X . The notation 2X is used for the set of all
subsets (sometimes referred to as the powerset) of X , with S, T etc. denoting subsets of
2X . Thus, in this latter case, S is a set of subsets. We note the difference between S = ∅
and S = {∅} the former being the collection containing no sets whatsoever and the latter
being the system whose only element is the empty set.

Semantics prescribe criteria to be satisfied by subsets of X in H(X ,A). We use

σ(H) = { S ⊆ X : S satisfies the criteria described by σ }

Referring to cf(H) and adm(H) in the cases of conflict-free and admissible sets of H.
The principal object of interest in the present paper is the idea of inverse characteristic

function.
We start with the most general definition in Definition 4 and then look at how this can

be refined.

Definition 4. Given y ∈ X and H the inverse characteristic function of y with respect to
H is denoted F−1H (y) and consists of the subset of 2X\{y} for which

S ∈ F−1H (y) ⇔ y ∈ FH(S) \ S

i.e. ∀ x ∈ {y}− x ∈ S+

Notice that Definition 4 places no restrictions on S. In this formulation, S is required to
be neither admissible nor even conflict-free. When the characteristic function, FH is applied
in practice, e.g. in specifying various semantic criteria such as admissible or complete sets,
the domain of FH is often restricted to those S which are conflict-free. It is, therefore,
sensible to limit F−1H using some basic variants each of which can be tuned to individual
semantic criteria.
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Definition 5. For y ∈ X and H,

a. F−1H,σ(y) (called the σ-inverse characteristic function) is formed by the subset of 2X\{y}

for which

S ∈ F−1H,σ(y) ⇔ y ∈ FH(S) \ S and S ∪ {y} ∈ σ(H)

b. z−1H,σ(y) (the minimal σ-inverse characteristic function) has

S ∈ z−1H,σ(y) ⇔ S ∈ F−1H,σ(y) and for every T ⊂ S, T /∈ F−1H,σ(y)

c. F−1H,σ(y) (the maximal σ-inverse characteristic function) has

S ∈ F−1H,σ(y) ⇔ S ∈ F−1H,σ(y) and for every T ⊃ S, T /∈ F−1H,σ(y)

It is, of course, easily seen that

z−1H,adm(y) ⊆ F−1H,adm(y) ⊆ F−1H,cf (y) ⊆ F−1H (y)

We do not, necessarily, have z−1H,adm(y) ⊆ z−1H,cf (y). Consider the system in Figure 1 with

X = {u, v, x, y, z} and A = {< v, z >,< z, x >,< x, u >,< u, y >}.

v z x u y

Figure 1: z−1H,adm(y) 6⊆ z−1H,cf (y).

In this {x} ∈ z−1H,cf (y): y ∈ FH({x}), {x, y} ∈ cf(H) but the set {x, y} /∈ adm(H)

since there is no defence to the attack on x from z, hence {x} /∈ z−1H,adm(y). A minimal set

in z−1H,adm(y) is {v, x}, however, although a member of F−1H,cf (y) it is not a minimal such
element.

We further note the condition S ∪ {y} ∈ σ(H) instead of S ∈ σ(H). For semantics such
as conflict-freeness or strong admissibility

y ∈ FH(S) and S ∪ {y} ∈ σ(H) ⇒ S ∈ σ(H)

This, however, is not true of admissibility. For example, suppose we have a single argument,
{z} attacked by {w}. The set {z} is not admissible. Now consider the case (still with
< w, z >∈ A) where {< z, x >, < x, y >, < y,w >} are in the set of attacks A (no
other arguments or attacks being present). In this configuration {z} ∈ F−1H,adm(y): the set
{z, y} is admissible (although not strongly admissible) since y now provides a defence to
the attack on z from w.

The implication

S ∈ σ(H) and y ∈ FH(S) ⇒ S ∪ {y} ∈ σ(H)
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will not always hold. Take the case σ = cf and an af in which {p, q} ∈ cf(H), with no
argument that attacks y and y attacking p. In this example y ∈ FH({p, q}) (y has no
attackers and so is acceptable to every subset of arguments). The set {p, q, y} is, however,
not conflict-free (hence neither strongly admissible nor admissible).

A concept we will use particularly in Section 5 is that of the standard translation of a
formula in cnf to an af.

Definition 6. Let ϕ(x1, . . . , xn) be a propositional formula in conjunctive normal form
(cnf) having clauses {C1, C2, . . . , Cm} each Cj being a disjunction of literals (xi or ¬xi)
drawn from {x1, . . . , xn}.

The standard translation of ϕ to an af is the framework Hϕ with 2n+m+1 arguments
Xϕ given by

Xϕ = { xi,¬xi : 1 ≤ i ≤ n } ∪ { Cj : 1 ≤ j ≤ m } ∪ {ϕ}

and attacks, Aϕ formed as

{ < xi,¬xi >, < ¬xi, xi > : 1 ≤ i ≤ n}
{ < xi, Cj > : xi is a literal in Cj}
{ < ¬xi, Cj > : ¬xi is a literal in Cj}
{ < Cj , ϕ > : 1 ≤ j ≤ m}

With some very minor variations the standard translation was introduced by Dimopoulos
and Torres (1996) and used to demonstrate that deciding if a given argument belonged to
any admissible set was np–complete. Specifically, in the form given in Definition 6: there
is an admissible set containing ϕ if and only if ϕ(x1, x2, . . . , xn) is satisfiable.

Variants of the standard translation underpin many complexity-theoretic constructions
in argumentation, e.g. Dunne and Bench-Capon (2002), Dvorak and Woltran (2010),
Dunne (2007, 2009). A summary may be found in the article (Dunne & Wooldridge, 2009,
Chapter 5).

3. Properties of the Inverse Characteristic Function

We first consider for which collections of subsets, S, we can construct an af, H, with
z−1H,cf (y) = S. It turns out that we can do so for any collection of incomparable sets. It is,
of course, self-evident that should S be incomparable, that is for all (S, T ) ∈ S× S if S ⊆ T
then S = T , then every S ∈ S is minimal with respect to ⊆.

Before presenting this construction we first show that an “upward closure” condition
must be met by any S satisfying S = F−1H (y). Formally

Lemma 1. Given an af, H(X ,A) and y ∈ X if S = F−1H (y) then for all S ∈ S and
T ⊆ X \ {y}, S ∪ T ∈ S.

Proof. By definition, S ∈ F−1H (y) if

∀ z ∈ {y}− z ∈ S+

We thus have from z ∈ S+ that z ∈ (S ∪ T )+ for any T ⊆ X \ {y}, hence S ∪ T ∈ S if
S = F−1H (y).
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The property of Lemma 1 implies that S, if describing F−1H (y), is closed under ∪, should
S and T be subsets within S then S ∪ T must also be in S.

This upward closure property will not, in general be true of the cases F−1H,cf and F−1H,adm.
In fact, we do not necessarily have closure under union: S and T may be conflict-free, be
such that S+ ⊇ {y}− and T+ ⊇ {y}− however S ∪ T is not conflict-free. For example
in Figure 2, both {1} and {2} are members of F−1H,cf (3) however their union {1, 2} is not

conflict-free (this set is in F−1H (3), however).

1 2

3

a

Figure 2: F−1H,cf (3) = {{1}, {2}} and is not closed under ∪.

The liberal nature of the most general formulation of F−1H , specifically the upward closure
requirement, and the absence of closure under ∪ within F−1H,cf provides another motivation

for focusing attention on z−1H,cf (y), that is to say minimal conflict-free sets defending y in
H.

We can justify the term “inverse” through the fact that despite FH mapping from 2X

to 2X and F−1H from X to subsets of 2X , focusing on the conflict-free variants of the latter
there is an easily established link between the two.

Lemma 2. For any af, H(X ,A) let y ∈ X .

a. For all S ∈ F−1H,cf (y), y ∈ FH(S).

b. If S ∪ {y} is conflict-free, y /∈ S and y ∈ FH(S) then S ∈ F−1H,cf (y).

Proof. Immediate from the definitions of FH and F−1H,cf (y).

We recall that a propositional function f : {>,⊥}n → {>,⊥} with formal variables
Xn = {x1, . . . , xn} is a monotone (increasing) function if for every S ⊆ Xn for which
f [S] = >, any T ⊇ S also has f [T ] = >. A well-known property of monotone propositional
functions is that these have a unique minimal representation as a disjunction of products
(dnf) equivalently as a conjunction of clauses (cnf). That is, if f(Xn) is monotone there
are unique systems of incomparable subsets {P1, . . . , Pr} and {C1, . . . , Ct} of 2Xn for which

f(Xn) ≡
r∨
i=1

 ∧
xj∈Pi

xj

 ≡
t∧
i=1

 ∨
xj∈Ci

xj
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Theorem 1. Let T ⊂ 2X\{y} be any system of incomparable subsets. and let Z = ∪T∈TT .
There is an af H = (X ,A) in which {y} ∪ Z ⊆ X and T = z−1H,cf (y).

Proof. Given T as in the Theorem statement consider the monotone propositional function
fT over the variables Z = (z1, z2, . . . , zn) defined via

fT(z1, . . . , zn) ≡
∨
T∈T

 ∧
zi∈T

zi


It is clearly the case that fT[S] = > if and only if S ⊇ T for some T ∈ T.

This specification fT is given in implicant form, We can translate T to another system
of subsets over Z,

P = {P1, P2, . . . , Pm}

and the sets in P are also incomparable with

fT(z1, . . . , zn) ≡
m∧
k=1

 ∨
zi∈Pk

zi


Build the af H = (X ,A) with X = Z ∪ {y} ∪ {p1, p2, . . . , pm} m being the number of sets
(i.e. clauses) in P. Add attacks < pk, y > for each 1 ≤ k ≤ m and an attack < zi, pj >
whenever zi ∈ Pj ∈ P.

If U ⊇ T ∈ T then U+ = {p1, p2, . . . , pm} since the implicant (disjunction of product
terms using T) and implicate (conjunction of clauses using P) describe exactly the same
propositional function, i.e. fT[U ] = >.

The general construction is shown in Figure 3.

y

z1 z2 z3 zn

P1 P2 Pk Pm

Figure 3: Realization of z−1H,cf (y) as monotone cnf.

We have established that z−1H,cf (y) ⊇ T, i.e. every set in T is a minimal conflict-free
subset of Z defending y.

To complete the proof we need to show, in addition, that z−1H,cf (y) ⊆ T.

Any U ∈ z−1H,cf (y) can be written as

U = (u1, u2, . . . , um) ui ∈ Pi
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[Notice that (u1, . . . , um) is not necessarily a set : the same ui may attack several distinct
pj ∈ {y}−.]

We have,

fT(z1, . . . , zn) ≡
m∧
k=1

 ∨
zi∈Pk

zi


and fT[U ] = >. However,

fT[U ] ≡
m∧
k=1

ui ≡
∨
T∈T

 ∧
zi∈T

zi

 [U ]

Thus any U ∈ z−1H,cf (y) is also in T.

This realization of an af, H(X ,A) in which z−1H,cf (y) = T for some incomparable system
of subsets T drawn from Z raises at least one question. Since it allows the set Z itself to
be conflict-free it follows that any superset of T ∈ T is also contained in F−1H,cf .

Suppose we wish to realize exactly the collection of incomparable sets specified by T?
In other words an af with the property z−1H,cf (y) = F−1H,cf (y) = T. It turns out that this is
straightforward to achieve.

Corollary 1. Let T ⊂ 2X\{y} be any system of incomparable subsets. and let Z = ∪T∈TT .
There is an af H = (X ,A) in which {y}∪Z ⊆ X , z−1H,cf (y) = F−1H,cf (y) and T = z−1H,cf (y).

Proof. Recall the af, H = (X ,A) which given T ⊂ 2Z simulates the propositional function,

fT(Z) ≡
∨
Tr∈T

 ∧
zi∈Tr

zi

 ≡
∧
Pk∈P

 ∨
zi∈Pk

zi


As illustrated in Figure 3, this uses an argument, pk, for each clause in P. This argument
pk, in addition to attacking y, is attacked by those zj for which zj ∈ Pk.

We have seen that z−1H,cf (y) = T so in order to arrange F−1H,cf (y) = z−1H,cf (y) it suffices
to eliminate all subsets, U of Z for which U ⊃ T for some T ∈ T.

Choose any such U letting U = {u1, u2, . . . , ut}. Since U ⊃ T ∈ T it must be the case
that U+ = {p1, . . . , pm} where m = |P|. It is, however, also the case that T+ = {p1, . . . , pm}
(since U ⊃ T and T ∈ T).

Consider those arguments in U \ T = {v1, . . . , vr} ⊂ Z. For each vi ∈ U \ T we know
the following:

a. {vi}+ ⊆ {p1, . . . , pm}.

b. For each pj ∈ {vi}+ there is some zk ∈ T having pj ∈ {zk}+.

Property (b) following from the fact that T ∈ z−1H,cf (y). From this property not only do
we see {vi, zk} ⊆ Pj but also that we do not need to have both present within a minimal
conflict-free set defending y. It follows that we may modify H by adding all of the attacks

{ < zi, zj >, < zj , zi > : ∃ Pk ∈ P with {zi, zj} ⊆ Pk }
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In this configuration exactly one zi can be chosen to attack a given clause (i.e. pj) since
using two or more distinct z ∈ Pj will result in a non-conflict free set. We deduce that while
the original sets T ∈ T will continue to satisfy T ∈ z−1H,cf (y) from the fact that each such

T will have T+ = {p1, . . . , pm} no strict superset of T will be conflict-free, containing as it
would, arguments zi, zj having pk ∈ {zi}+ ∩ {zj}+.

As a basic example suppose we have the system of incomparable sets

S = {{x1}, {x2, x3}, {x2, x4, x5}}

Then

fS ≡ x1 ∨ x2x3 ∨ x2x4x5

which in clausal form is

fP ≡ (x1 ∨ x2)(x1 ∨ x3 ∨ x4)(x1 ∨ x3 ∨ x5)

To realise a system in which z−1H,cf (y) = S we have y attacked by three arguments {p1, p2, p3}
corresponding to the three clauses of fP. These are, in turn, attacked by relevant subsets of
{x1, x2, x3, x4, x5} so that {x1}+ = {p1, p2, p3}; {x2}+ = {p1}; {x3}+ = {p2, p3}; {x4}+ =
{p2} and {x5}+ = {p3}. In this configuration z−1H,cf (y) ⊂ F−1H,cf (y) (e.g. any strict superset

of {x1} will be in F−1H,cf ). If we wish to ensure z−1H,cf (y) = F−1H,cf (y) we can do so, as
indicated in the proof of Corollary 1, be adding symmetric attacks between x1 and all
of the arguments in {x2, x3, x4, x5}; and between x3 and {x4, x5}. Now if T is a strict
superset of one of {{x1}, {x2, x3}, {x2, x4, x5}}, e.g. T = {x2, x3, x4} then T /∈ F−1H,cf (y)

since (in this specific case) although {x2, x3, x4}+ = {p1, p2, p3} the subset {x3, x4} is not
conflict-free.

In Theorem 1 we showed that any system of incomparable sets, S, (incomparability
being equivalent to all members of S being minimal) may be realised via afs, H, in which
z−1H,σ(y) = S for both σ = cf and σ = adm. In this construction z−1H,σ(y) 6= F−1H,σ(y) as all

supersets of S ∈ S belong to F−1H,σ(y).

In Corollary 1 we go to the other extreme in realizing z−1H,σ(y) as the only sets in F−1H,σ(y).

There is, however, an intermediate possibility. What if we have a system, S which is not
incomparable and wish to arrange F−1H,σ(y) = S? Is it the case that we can always do so or
are there instances for which this is not possible?

As examples, using Z = {z1, z2, z3, z4, z5, z6} as our underlying set of arguments, we
may wish to form F−1H,σ(y) to contain exactly the sets

1. {{z1}, {z2, z4}, {z1, z6}, {z2, z4, z5}, {z1, z3, z5, z6}} or
2. {{z1}, {z1, z2}, {z1, z2, z4}, {z1, z2, z4, z6}, {z3, z5}} or
3. {{z1}, {z6}, {z1, z6}, {z2}, {z3}, {z2, z3}, {z4, z5, z6}} etc.

In case (1) we have minimal sets {{z1}, {z2, z4}} but (among others) we do not have
{{z1, z3, z5}}. Similarly in case (2) we have minimal sets {{z1}, {z3, z5}} but do not all,
e.g. {{z1, z2, z3, z4, z5, z6}}. Finally in case (3) the minimal sets are {{z1}, {z2}, {z3}, {z6}}
and the only allowable set involving z4 or z5 is {{z4, z5, z6}}.
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In examining these cases we have to consider not only the positive requirements of
S ∈ S ∩ F−1H,σ(y) but also the constraints arising from more negative considerations: those

of the form S /∈ S therefore S should not be in F−1H,σ(y).

It is not too difficult to identify systems which cannot be realised as F−1H,cf (y).

Lemma 3. Let Z = {z1, z2, z3} and S = {{z1}, {z2}, {z3}, {z1, z2, z3}}. There is no af, H
for which F−1H,cf (y) = S.

Proof. Suppose the contrary holds and let H be a witnessing framework to F−1H,cf (y) =

{{z1}, {z2}, {z3}, {z1, z2, z3}}. From the fact that {z1} must belong to F−1H,cf (y) we must

have {z1}+ ⊇ {y}− in H. Similarly from {z2} ∈ F−1H,cf (y) we need {z2}+ ⊇ {y}−. Hence,

{z1, z2}+ ⊇ {y}− and since {z1, z2} /∈ S we have, from our contradictory assumption,
{z1, z2} /∈ F−1H,cf (y) so that {z1, z2} /∈ cf(H). This, however, would imply {z1, z2, z3} /∈
cf(H) and hence {z1, z2, z3} /∈ F−1H,cf (y), so contradicting F−1H,cf (y) = S.

Noting the construction from Figure 2, |Z| = 3 is the least number of arguments for
which constructions such as Lemma 3 can be applied. All of the systems {∅, {z1}, {z2}, {z1, z2}}
in 2{z1,z2} can be realised as F−1H,adm(y).

The special case illustrated in Lemma 3 provides the basis for a general nececessary
condition that must hold in order for S to witness exactly the system of sets in F−1H,cf (y).

Definition 7. Let S ⊆ 2Z . The notation µ(S) describes the subset of S for which

µ(S) = { S ∈ S : ∀ T ∈ S T 6⊂ S }

Thus µ(S) describes the minimal sets in S.

Analogously, M(S) describes the maximal sets in S, that is

M(S) = { S ∈ S : ∀ T ∈ S T 6⊃ S}

Let
bSc = { T ∈ µ(S) : T ⊆ S}
dSe = { T ∈M(S) : S ⊆ T}

We say that S is closed with respect to subset intervals if

∀U ∈ µ(S) and ∀V ∈M(S) : (U ⊆ T ⊆ V )⇒ T ∈ S

The systems µ(S) and M(S) are both systems of incomparable subsets of Z. Further-
more if S is itself incomparable then, trivially, µ(S) = S =M(S).

If we take an arbitrary S ⊆ 2Z and look at S ∈ S we have three possibilities.

S1. Exactly one of S ∈ µ(S) or S ∈M(S) holds.

S2. S ∈ µ(S) and S ∈M(S).

S3. S is in neither µ(S) nor M(S).

10



Inverse Characteristic Functions

In the cases (S1) and (S3) we find sets U and V in S for which U ⊂ S (S /∈ µ(S)) or S ⊂ V
(S /∈M(S)). These sets are not necessarily unique. For example if

S = {{z1}, {z2}, {z5}, {z1, z2}, {z1, z2, z3}, {z1, z2, z4}}

Then µ(S) = {{z1}, {z2}, {z5}} andM(S) = {{z1, z2, z3}, {z1, z2, z4}, {z5}}. The set {z1, z2}
has two strict supersets and two strict subsets which are also elements of S. Finally the
set {z5} is in µ(S) ∩M(S). This example is not closed with respect to subset intervals:
{z1} ∈ µ(S), {z1, z2, z4} ∈ M(S) but {z1, z4} /∈ S. To arrange this property the sets

{{z1, z3}, {z1, z4}, {z2, z3}, {z2, z4}}

would have to be added to S.

Theorem 2. Let S ⊆ 2Z . If there is an af, H = (X ,A) having Z ∪ {y} ⊆ X in which
S = F−1H,cf (y) then S is closed with respect to subset intervals.

Proof. Suppose S ⊆ 2Z and we have some af, H, for which S = F−1H,cf (y). Assume, for
the sake of contradiction, that S does not satisfy the closure property of the Theorem
statement, allowing us to find three sets U ∈ µ(S), V ∈M(S) and T for which U ⊆ T ⊆ V ,
T /∈ S. Since it is the case that H witnesses S = F−1H,cf (y) we must have U+ ⊇ {y}− and

V ∪ {y} ∈ cf(H). From these we deduce U ∈ cf(H), T ∈ cf(H), and T+ ⊇ {y}−. The set
T , from our assumption, is not in S and therefore not in F−1H,cf (y). From U ⊆ T we know

that T+ ⊇ {y}−; from T ∪ {y} ⊆ V ∪ {y} we must have T ∪ {y} ∈ cf(H). The condition
T+ ⊇ {y}− indicates y ∈ FH(T ) and we know the set T ∪{y} to be conflict-free. These are
exactly the conditions prescribed for a set to be in F−1H,cf (y) hence either F−1H,cf (y) 6= S or
we have T ∈ S in contradiction to our initial assumption.

We have seen, in Theorem 2, that closure with respect to subset intervals is a necessary
condition for S = F−1H,cf (y). We now show it also to be sufficient.

Theorem 3. If S ⊆ 2Z is closed with respect to subset intervals then there is an af, H,
for which S = F−1H,cf (y).

Proof. Let S ⊆ 2Z be closed with respect to subset intervals. From Theorem 1 we can
construct H with arguments X = Z ∪ {y} ∪ {y}− for which z−1H,cf = µ(S). In addition, in

this af, {y}− = {p1, p2, . . . , pm} m being the number of clauses in the unique minimal cnf
corresponding to µ(S). Let

Pmin = {Pmin
1 , Pmin

2 , . . . , Pmin
m } Pmin

i ⊆ Z

be the clauses of this minimal cnf so that

S ∈ S ⇒

 m∧
i=1

∨
zj∈Pmin

i

zj

[S] ≡ >

We saw in the construction from Theorem 1 that this admits any T which is a superset of
S ∈ µ(S) as a set in F−1H,cf (y). In achieving F−1H,cf (y) = S we need to add attacks between

11
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arguments in Z in such a way that if T ⊃ U ∈ M(S) then T /∈ cf(H). The construction
of Corollary 1 ensured F−1H,cf (y) = z−1H,cf (y) = µ(S) by adding mutual attacks between any
pair zi and zk occuring in the same clause of P ∈ Pmin. Consider now, however, the subset
of S defined by M(S). This is again an incomparable system and, as we did with µ(S),
there is a unique minimal cnf, with clauses

Pmax = {Pmax
1 , Pmax

2 , . . . , Pmax
r } Pmax

i ⊆ Z

and for any T ⊇ S with S ∈M(S), r∧
i=1

∨
zj∈Pmax

i

zj

[T ] ≡ >

We can use those clauses in Pmax to determine which attacks should be added to H with
z−1H,cf (y) = µ(S). Consider the monotone propositional function, fmax

P (Z) whose minimal
cnf comprises exactly those clauses in Pmax. If U ⊆ Z contains exactly one variable from
each clause Pmax

i of Pmax then fmax
P [U ] = > and U ∈ M(S). If U contains more than one

variable from some clause (while still having at least one variable from each) then U /∈M(S)
since U /∈ S (forming, as it does a strict superset of some maximal set). We can now use
the properties of Pmax to determine which attacks to add to H realising µ(S) = z−1H,cf (y).
We add attacks {< zi, zj >,< zj , zj >} if there is some clause, Pmax

k of Pmax that contains
both zi and zj .

To see that the resulting af, correctly realises S = F−1H,cf (y) consider any S ∈ S. Choos-

ing any T ∈ bSc, T ∈ µ(S) so that T ∈ z−1H,cf (y). Choosing any V ∈ dSe and W ⊃ V will

have V ∈ F−1H,cf (y) (V contains exactly one variable from each clause in Pmax and so no

attacks have been added between the arguments in V ). On the other hand W /∈ F−1H,cf (y)
as W /∈ cf(H): W contains at least two variables from some clause in Pmax and so mutual
attacks between the corresponding arguments from Z have been added.

In summary the adjustments to H realising µ(S) = z−1H,cf (y) and the fact that S is closed
with respect to subset intervals indicate that we can choose any S ∈ S, identify a minimal
subset, T , of this allowing T+ ⊇ {y}− and T ∪ {y} ∈ cf(H). All of the supersets, U of T
up to those belonging toM(S) will allow be conflict-free and continue to have U+ ⊇ {y}−.
Once, however, we have formed a superset, V of T for which V /∈M(S) (so that V /∈ S) we
will not have V ∈ F−1H,cf (y) since V /∈ cf(H).

Returning to our earlier example,

S = {{z1}, {z2}, {z5}, {z1, z2}, {z1, z2, z3}, {z1, z2, z4}}∪
{{z1, z3}, {z1, z4}, {z2, z3}, {z2, z4}}

with µ(S) = {{z1}, {z2}, {z5}} and M(S) = {{z1, z2, z3}, {z1, z2, z4}, {z5}} the whole
system having the closed subset interval property.

Pmin = {{z1, z2, z5}} ; Pmax = {{z1, z5}, {z2, z5}, {z3, z4, z5}}

The af realising z−1H,cf (y) as µ(S) would have a single attacker, p, of y with {p}− =
{z1, z2, z5}. The arguments {z3, z4} would have ν(z3) = ν(z4) = ∅. In order to eliminate

12
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supersets of sets in M(S) we add symmetric attacks between z5 and all other arguments;
and between z3 and z4. The former collection guarantees that no strict superset of {z5} is in
F−1H,cf (y). In addition the set {z2, z3, z4} /∈ F−1H,cf (y). The only minimal set available is {z2}
and the relevant maximal sets {{z1, z2, z3}, {z1, z2, z4}}, however {z2, z3, z4} is not a subset
of any of these: the symmetric attack between z3 and z4 ensures that {z2, z3, z4} /∈ cf(H)
despite {z2, z3, z4}+ ⊇ {y}−.

Noting that the constructions just presented apply equally to σ = adm, combining
Theorem 2 and Theorem 3 we obtain Corollary 2.

Corollary 2. For σ ∈ {adm, cf}, there is an af, H, in which S = F−1H,σ(y) if and only if
S is closed with respect to subset intervals.

One other point raised by the the construction from Theorem 1 is that this may use
exponentially many auxiliary arguments. This, of course, occurs cases for which |T| ∼ 2|Z|,
e.g. when |Z| = 2n and T comprises all subsets of size n from Z. Perhaps less obviously,
one might have (again with |Z| = 2n) |T| = n but, with the construction used, 2n auxiliary
arguments in X . For example if

T = { {zi, zn+i} : 1 ≤ i ≤ n }

The implicant form of fT(z1, . . . , z2n) used in the proof of Theorem 1 is

n∨
i=1

zi ∧ zn+i

The implicate form giving rise to the system of sets P has 2n clauses leading to |X | =
1 + n+ 2n.

Such phenomena raise the question of whether this exponential increase is inevitable.
Suppose we define for an incomparable system, S, using only arguments drawn from a set
Z = {z1, z2, . . . , zn} (by which it is assumed that for each zi ∈ Z there is some S ∈ S with
zi ∈ S)

min(S) = min { |{y}−| : ∃ H(X ,A), {y} ∪ Z ⊆ X , z−1H,cf (y) = S}

Theorem 4. For any incomparable system S from 2Z (in which zi ∈ Z occurs in some
S ∈ S), let PS denote the collection of subsets from Z corresponding to the clauses in the
unique minimal cnf expression equivalent to

fS(Z) ≡
∨
S∈S

∧
z∈S

z

So that

fS(Z) ≡
∧
P∈PS

(∨
z∈P

z

)
Let cnf(S) be the number of clauses in this unique minimal cnf.

min(S) ≥ cnf(S)

13
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Proof. Given the system of incomparable sets, S ⊂ 2Z with Z = {z1, . . . , zm} let H(X ,A)
be such that y ∈ X \ Z, Z ⊂ X and z−1H,cf (y) = S.

We first observe that in realizing S as z−1H,cf (y) the only arguments that are needed are

those in Z ∪ {y} ∪ {y}−. To see this suppose we had some x /∈ {y}−1 ∪Z in X . We have a
number of possibilities.

a. ν(x) ∩ Z 6= ∅. We have some sub-cases.

a1. Letting S ⊆ Z be such that ν(x) ∩ S 6= ∅. In this case {x} ∪ S /∈ F−1H,cf (y).

Furthermore since x /∈ S for every S ∈ S it must also hold that {x} ∪ T /∈ z−1H,cf
for every subset T of S. It follows x is redundant (with respect to realizing S)
as z−1H,cf and can be removed.

a2. If S ⊆ Z with ν(x)∩S = ∅ then either S+∪{x}+ ⊇ {y}− or S is not conflict-free
and hence {x} ∪ S /∈ F−1H,cf (y). In the former case some subset T of {x} ∪ S is

in z−1H,cf (y) and we cannot have x ∈ T since T ∈ S. Again x can be removed

without changing z−1H,cf (y).

From (a1), x cannot contribute to z−1H,cf (y) and from (a2) this continues to be so for
those S ⊆ Z for which ν(x) ∩ S = ∅.

b. ν(x) ∩ {y}− 6= ∅. From (a) we may deduce that ν(x) ∩ Z = ∅. We are already
working from the premise that x /∈ {y}− and for this case to occur some p ∈ {y}− has
< p, x >∈ A or < x, p >∈ A. In both cases eliminating x from H will have no effect
on z−1H,cf (y) being the system S.

Hence any argument other than those in Z ∪ {y}− is redundant with respect to realising S
as z−1H,cf (y)

Consider |{y}−| in H. Suppose for the sake of contradiction that |{y}−| < cnf(S).

We know from our initial analysis that {y}− ⊆ Z+ and X = Z ∪ {y} ∪ {y}−. Let

{y}− = {p1, p2, . . . , pr}

with r < cnf(S). Consider the system, P = {P1, P2, . . . , Pr} of subsets of Z defined through
Pi = {pi}− ∩ Z and the propositional formula fP(Z) equivalent to

fP(Z) =
r∧
j=1

 ∨
zi∈Pj

zi


We have assumed that S = z−1H,cf (y) and so any S ⊂ Z for which S ∈ S must satisfy
fP[S] = >, i.e. contain at least representative from each Pj . There is, however, exactly one
minimal cnf formula with the property that S ∈ S yields fP[S] = > so either the formula
just constructed does not describe S as z−1H,cf or should it do so it has r ≥ cnf(S).
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4. Propositional Functions and F−1H,cf (y)

In this section our main interest is with questions arising from the following observation.

Given a set of n arguments, X , and any argument y /∈ X , Corollary 2, characterizes exactly
which subsets S of 2X allow frameworks, H to be built with S = F−1H,cf (y). Given the

correspondence between “subsets of 2X ” and “sets of Boolean assignments from {>,⊥}|X |
to X” via the mapping π : 2X → {>,⊥}|X | defined for S ⊆ X as

π(xi) =

{
> if xi ∈ S
⊥ if xi /∈ S

we see that every S ⊆ 2X for which S = F−1H,cf (y) has an associated propositional function

fS : {>,⊥}|X | → {>,⊥} defined through

∀ U ⊆ X fS[U ] = > ⇔ U ∈ S

In this section we wish to consider this class of propositional functions in more depth. We
denote by Cn the class of propositional functions f : {>,⊥} → {>,⊥} such that

∀ S ⊆ 2X fS(x1, . . . , xn) ∈ Cn ⇔ ∃H s.t. S = F−1H,cf (y)

Recalling the standard notation, see e.g. Dunne (Dunne, 1988, pp. 7, 15), we use Bn for the
set of all n argument propositional functions and Mn for the set of n argument monotone
(increasing) propostional functions, i.e. for which

f(x1, . . . , xn) ∈Mn ⇔ ∀ U, V (f [U ] = > and U ⊆ V ) ⇒ f [V ] = >)

From the results presented in Section 3, specifically Corollary 2 we have

Theorem 5.
Mn ⊂ Cn ⊂ Bn

Proof. The containment Mn ⊆ Cn is from Theorem 1 and Corollary 1. That the contain-
ment is strict is from Theorem 2 which also indicates Cn ⊂ Bn.

We know, e.g. (Dunne, 1988, p. 122) that most (in fact, “almost all”) propositional
functions are not in Mn. Formally,

lim
n→∞

|Mn|
|Bn|

= 0

Furthermore the total number of n argument propositional functions is easily shown to be
22

n
. In contrast establishing exact bounds for |Mn| is a classical open problem (Dedekind’s

Problem) for which the best estimates to date are those of (Korshunov, 1981).
In Theorem 6 the characterization of Corollary 2 is reworded.

Theorem 6. For g, h in Bn we write g ≤ h whenever for all U , g[U ]⇒ h[U ].

f(X ) ∈ C|X | ⇔ (f(X ) ≡ g(X ) ∧ (¬h(X )), g, h ∈Mn, and h ≤ g)
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Proof. Suppose that f(X) ≡ g(Xn) ∧ (¬h(Xn)) for monotone Boolean functions g and h
with h ≤ g. We show that

Sf = { {S} : f [S] = > }

is closed with respect to subset intervals and therefore, via Corollary 2, belongs to Cn.
Let Mh(Xn) describe the maximal falsifying subsets of Xn with respect to h. That is

to say, Mh is

Mh = { {U} : h[U ] = ⊥ and (∀ W ⊃ U h[W ] = >}

Similarly, let µg(Xn) describe the minimal satisfying subsets of Xn with respect to g. That
is,

µg = { {U} : g[U ] = > and (∀ V ⊂ U g[V ] = ⊥}

First notice that µ(Sf ) = µg and M(Sf ) = Mh. To see this, consider any S ∈ µ(Sf ).
By definition g[S] = > and h[S] = ⊥ since fS[S] = >. If it were the case some V ⊂ S
had g[V ] = > then exactly the same subset would have h[V ] = ⊥ and hence fS[V ] = >
contradicting S ∈ µ(Sf ). Similarly from S ∈ M(Sf ) we have g[S] = > and h[S] = ⊥ and
were W ⊃ S to be such that h[W ] = ⊥ then g[W ] = > then, again, fS[W ] = > contradicting
S ∈M(Sf ). To establish

(f(X ) ≡ g(X ) ∧ (¬h(X )), g, h ∈Mn, and h ≤ g) ⇒ f ∈ Cn

It suffices to show

∀U ∈ µ(Sf ) and ∀V ∈M(Sf ) : (U ⊆ T ⊆ V )⇒ T ∈ Sf

From the definition of Sf it suffices to show

∀U ∈ µ(Sf ) and ∀V ∈M(Sf ) : (U ⊆ T ⊆ V )⇒ f [T ] = >

Consider any (U, V, T ) with U ∈ µ(Sf ), V ∈ M(Sf ) and U ⊆ T ⊆ V . From U ∈ µ(Sf ) and
U ⊆ T we have g[T ] = >: U ∈ µg, g ∈ Mn and U ⊆ T . From V ∈ M(Sf ) and T ⊆ V we
have h[T ] = ⊥: V ∈Mh, h ∈Mn and T ⊆ V . Hence, from fS ≡ g ∧ (¬h) we obtain

fS[T ] = g[T ] ∧ (¬h[T ]) = > ∧ (¬⊥) = >

So completing the first part.
It remains to show the converse implication

f(X ) ∈ C|X | ⇒ (f(X ) ≡ g(X ) ∧ (¬h(X )), g, h ∈Mn, and h ≤ g)

From f(X ) ∈ C|X | and Corollary 2 the set Sf , defined earlier, is closed with respect to
subset intervals. Consider the propositional functions g and h defined as

g(x1, . . . , xn) ≡
∨

S∈µ(Sf )

∧
xi∈S

xi

h(x1, . . . , xn) ≡
∨

S∈M(Sf )

∧
xi∈S

xi ∧

 ∨
xj /∈S

xj
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It is clear that g ∈ Mn and h ∈ Mn.1 We claim that h ≤ g. To see this consider any
T ⊆ {x1, . . . , xn} for which h[T ] = >. In this case we find some V ∈ M(Sf ) for which
V ⊆ T so that, from h[V ] = > we have h[T ] = >. From the fact that there must be
(at least) one U ∈ µ(Sf ) for which U ⊆ V we have g[U ] = > and, thence g[T ] = > (as
U ⊆ V ⊆ T ). In total, g ∈Mn, h ∈Mn. amd h ≤ g. To complete the argument we need to
show

∀ S ∈ Sf g[S] = > and h[S] = ⊥

Let T be any set in Sf . Since it must be the case that T ⊇ U for some U ∈ µ(Sf ) we must
have g[T ] = >. It is, however, also the case that T ⊆ V for some V ∈ M(Sf ). Examining
the structure of h(x1, . . . , xn) in more detail, its implicants are all products (conjunctions)
taking some V ∈M(Sf ) and forming

∧
xi∈V

xi ∧

 ∨
xj /∈V

xj


so that the only W ⊆ {x1, . . . , xn} for which h[W ] = > are those which are a strict superset
of a set in M(Sf ). For all other subsets, W , it holds that h[W ] = ⊥. We have chosen an
arbitrary T in Sf and such T casnnot be a strict superset of any maximal set in Sf , hence
h[T ] = ⊥ and the required conclusion

∀ S ∈ Sf g[S] = > and h[S] = ⊥

In total we deduce that

f(X ) ∈ C|X | ⇔ (f(X ) ≡ g(X ) ∧ (¬h(X )), g, h ∈Mn, and h ≤ g)

as claimed.

Corollary 3.

lim
n→∞

|Cn|
|Bn|

= 0

That is to say, for almost all n-argument propositional functions, f(x1, . . . , xn) there is no
af for which

{ S ⊆ {x1, . . . , xn} : f [S] = > } = F−1H,cf (y)

Proof. From Theorem 6, every f ∈ Cn is described by two monotone Boolean functions and
hence |Cn| ≤ |Mn|2. Using Hansel’s upper bound for |Mn| from (Hansel, 1966) we have:2

|Cn| ≤ 3
2

 n
bn/2c


1. Although we have not explicitly stated this, one of the defining attributes of Mn is that every (non-

constant) f ∈ Mn is equivalent to some propositional formula, ϕf built using the logical operations
{∨,∧}, cf. (Dunne, 1988, Lemma 1.1, p. 15).

2. Although the upper estimate by Hansel has been reduced, it suffices to use this for the proof, one
advantage being the elegant function form obtained.
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From Stirling’s approximation we obtain(
n
bn/2c

)
∼ 2n√

2πn

So that,

log2|Cn| = O

(
2n√
n

)
On the other hand log2|Bn| = 2n which being asymptotically larger than our estimate for
log2|Cn| gives the result claimed.

5. Complexity Issues

Letting σ ∈ {adm, cf} we have a number of computational issues motivated with respect
to F−1H,σ(y) and z−1H,σ(y). Specifically the following decision problems are raised.

σ–verification

Instance: af H(X ,A), argument y ∈ X , S ⊆ X \ {y}.

Question: S ∈ F−1H,σ(y)?

σ–non-emptiness

Instance: af H(X ,A), argument y ∈ X

Question: F−1H,σ(y) 6= ∅?

σ–minimality

Instance: af H(X ,A) argument y ∈ X , S ⊆ X \ {y}.

Question: S ∈ z−1H,σ(y)?

σ–maximality

Instance: af H(X ,A) argument y ∈ X , S ⊆ X \ {y}.

Question: S ∈ F−1H,σ(y)?

σ–coincidence

Instance: af H(X ,A) argument y ∈ X

Question: z−1H,σ(y) = F−1H,σ(y)?

18
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Two of these problems are easily classified.

Theorem 7.

a. σ–verification is in p for both σ = adm and σ = cf .

b. σ–non-emptiness is np–complete for both σ = adm and σ = cf .

Proof. For (a) verifying that S ∈ F−1H,σ(y) requires only checking S ∪ {y} ∈ σ(H) and that
y ∈ FH(S) both of which are efficiently decidable.

For (b) simply use the standard translation of Definition 6 from a cnf-sat of cnf
formula ϕ(x1, . . . , xn) having clauses {C1, . . . , Cm} to an af, Hϕ(Xϕ,Aφ). The instance
(H, ϕ) of σ–non-emptiness is accepted, i.e. F−1Hϕ,σ

(ϕ) 6= ∅ if and only if ϕ(x1, . . . , xn) is
satisfiable.

With a little more effort we can also show

Theorem 8. cf -minimality and cf -maximality are in p.

Proof. Given H(X ,A), y ∈ X and S ⊆ X , in order to check S ∈ z−1H,cf we first need to

confirm both S ∪ {y} ∈ cf(H) and y ∈ FH(S): if either fails to hold then S /∈ z−1H,cf
since S /∈ F−1H,cf . Both of these preconditions are verifiable efficiently. Suppose we have

determined that S ∈ F−1H,cf (y). If S is not minimal then there is some T ⊂ S for which

T ∈ F−1H,cf (y). For each x ∈ S let Sx be S \ {x}. We can first check for each x in turn

whether S+
x ⊇ {y}−. If for every x ∈ S it turns out that S+

x 6⊇ {y}− then S ∈ z−1H,cf (y)
since it is not possible to remove any argument from S and preserve a defense of y. On the
other hand if we find a single x ∈ S for which S+

x ⊇ {y}− then Sx ∈ F−1H,cf (y) and Sx ⊂ S

thence S /∈ z−1H,cf .

For checking cf -maximality it suffices first to verify that S ∈ F−1H,cf (y) and then confirm

for all z ∈ X \ (S ∪ {y}) that S ∪ {z, y} /∈ cf(H) (notice that S ∈ F−1H,cf (y) immediately

gives S+ ∪ {z}+ ⊇ {y}+ so in order for S to be maximal all supersets must be shown not
to be conflict-free).

Notice that the argument used in this proof does not extend to adm-minimality. In the
proof we exploit the fact that every subset of a conflict-free set is conflict-free, however, it
is not the case that every subset of an admissible set is admissible.

We also observe that the reduction used in the proof that σ–non-emptiness is np–
complete can not be applied to establish σ–coincidence is conp–complete. If we use the
standard translation, attempting to reduce from cnf–unsatisfiability to σ–coincidence
then, although unsatisfiability does imply coincidence (since unsatisfiability implies F−1H,σ(ϕ) =

∅ and so, vacuously, z−1H,σ(ϕ) = F−1H,σ(ϕ)), the converse – z−1H,σ(ϕ) = F−1H,σ(ϕ) implies ϕ is
unsatisfiable – is not, necessarily true: for example ϕ could have a unique satisfying assign-
ment or only satisfying assignments which require every variable to be assigned some truth
value, i.e. ϕ has no redundant literals.

Nevertheless, in the case adm-coincidence we are able to prove:

Theorem 9. adm–coincidence is conp–complete.
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Proof. Given the instance (H(X ,A), y) checking if z−1H,adm(y) = F−1H,adm(y) just requires
testing if

∀S ⊆ X , ∀T ⊆ X (S ⊂ T )⇒ (S /∈ F−1H,adm(y) or T /∈ F−1H,adm(y))

Since testing membership in F−1H,adm(y) can be done efficiently this computation can be

realised in conp. It is noted that S ⊂ T and both S ∈ F−1H,adm(y) and T ∈ F−1H,adm(y)

guarantees z−1H,adm(y) 6= F−1H,adm(y) even though it may not be the case that S ∈ z−1H,adm(y).
To show adm-coincidence is conp–hard we use a variant of the standard translation

from propositional formulae in cnf arguing that ϕ(x1, . . . , xn) is unsatisfiable if and only
the constructed af, Gϕ has z−1G,adm(ψ) = F−1G,adm(ψ)

Given ϕ(x1, . . . , xn) a propositional formula in cnf modify Hϕ(Xϕ,Aϕ) of the standard
translation to the af, G, by adding arguments

{ α, ϑ, π, ψ}

and attacks {
< ϕ,α >, < ϕ, π >, < ϑ, π >, < π, ψ >,
< α, xi >, < α,¬x> : 1 ≤ i ≤ n

}
The construction is illustrated in Figure 4.

H
Φ

Φ

ψ

π

θα

Figure 4: Variant of Standard Translation in Reduction to adm–coincidence.

We claim that (G, ψ) is accepted as an instance of adm-coincidence if and only if
ϕ(x1, . . . , xn) is unsatisfiable.

Suppose that (G, ψ) is accepted as an instance of adm-coincidence. Notice that
F−1G,adm(ψ) contains the set {{ϑ}}. The argument ϑ is one attacker of π the only attacker

of ψ. It follows that {ϑ, ψ} is admissible and since {ϑ}− = ∅ (hence {ϑ} is admissible)
so ψ ∈ FG({ϑ}). It is clear that {{ϑ}} ∈ z−1G,adm(ψ). Suppose some other S was a mem-

ber of F−1G,adm(ψ). If ϑ ∈ S and S 6= {ϑ} the assumption that (G, ψ) is accepted as an
instance of adm-coincidence would be contradicted: S /∈ zG,adm(ψ) (since ϑ ∈ S). Since
we cannot have ϑ ∈ S in order for S ∈ F−1G,adm(ψ) requires ϕ ∈ S. Such would require
a subset {y1, . . . , yn} of the arguments {xi, ¬xi : 1 ≤ i ≤ n} in order to attack all of
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the clause arguments Cj . Such a set would, however, indicate that ϕ was satisfiable. This
allows us to deduce that if (G, ψ) is accepted as an instance of adm-coincidence the only
set in z−1G,adm(ψ) is {{ϑ}} and there are no other sets in F−1G,adm(ψ). Notice that since the
argument α attacks each xi and ¬xi and α is only counterattacked by ϕ, although, given
y ∈ {0, 1}n all sets of the form

Sy = {ϑ} ∪ {xi : yi = 1} ∪ {¬xi : yi = 0}

belong to F−1G,cf (ψ) these do not belong to F−1G,adm(ψ) since they do not contain a defence to
the attacks by α.

We deduce that if (G, ψ) is accepted as an instance of adm-coincidence then ϕ(x1, . . . , xn)
is unsatisfiable.

For the converse implication suppose that ϕ(x1, . . . , xn) is unsatisfiable. We show in this
event that (G, ψ) is accepted as an instance of adm-coincidence. Since ϕ is unsatisfiable
not only is there no admissible subset of the arguments in G that contains ϕ there is,
furthermore, no admissible set that contains any of the arguments xi or ¬xi. In order for
the latter arguments to be admissible a witnessing set would have to contain a defence to
the attack from α, however, the only such defender would be ϕ which is itself inadmissible.
It follows that the only subset, S, for which ψ ∈ FG(S) is the set {ϑ}, hence F−1G,adm(ψ) =

{{ϑ}} and F−1G,adm(ψ) = z−1G,adm(ψ). It follows that if ϕ(x1, . . . , xn) is unsatisfiable then
(G, ψ) is accepted as an instance of adm-coincidence so completing the proof that adm-
coincidence is conp–complete.

We have as an immediate Corollary of Theorem 9.

Corollary 4. adm-maximality is conp–complete.

Proof. For membership in conp given (H, y, S) it suffices to test S ∈ F−1H,adm(y) and for
every T ⊃ S that T ∪ {y} /∈ adm(H).

For conp–hardness we use exactly the same translation from cnf formulae, ϕ to the af,
G, described in the proof of Theorem 9. The instance of adm-maximality is (G, ψ, {ϑ}).
We have already seen that {ϑ} ∈ F−1G,adm(ψ). It will be a maximal such set if and only if no
other arguments of G can be added and admissibility preserved. Following the argument of
Theorem 9 this will be the case if and only ϕ is unsatisfiable.
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6. Conclusions & Further work

The principal aim of this paper has been to propose a formulation of the concept “inverse
characteristic function” as a complementary notion to the well-studied standard idea of
characteristic function. Our main efforts have been directed towards considering different
plausible formulation from entirely unrestricted through to cases imposing some semantic
constraint on the subsets of arguments allowed. We have argued that, in keeping with its
prevalence in formulating semantics in Dung’s schema, the most reasonable of these for-
mulations is to require S ∪ {y} to be conflict-free if S is to be considered as a candidate
inverse for y. After reviewing ideas of minimal and maximal sets within the formalism, we
proceeded completely to characterize which subsets of a set X describe possible inverses
later rephrasing this characterization in terms of a specific class of propositional functions.
Finally we formulated some natural decision problems within the model classifying com-
plexity status for all but two of these. The two unclassified cases – adm–minimality and
cf–coincidence – are the focus of on-going work, however while it seems plausible to to
conjecture that adm–minimality is conp–complete (membership in conp being straight-
forward), the status of cf–coincidence is less clear. Finally, in additions to exploring how
these concepts can be exploited within proof procedures, the result presented in Theorem 4
giving exact bounds on the number of auxiliary arguments required to bring about a spe-
cific behaviour, raises a number of questions of interest. Among such would be examining
related questions (bounds on numbers of arguments) in contexts other than that which has
been the main focus of the current paper.
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