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Abstract

Simulating mood within a decision making process has been
shown to allow cooperation to occur within the Prisoner’s
Dilemma. In this paper we propose how to integrate a mood
model into the classical reinforcement learning algorithm
Sarsa, and show how this addition can allow self-interested
agents to be successful within a multi agent environment.
The human-inspired moody agent will learn to cooperate in
social dilemmas without the use of punishments or other ex-
ternal incentives. We use both the Prisoner’s Dilemma and
the Stag Hunt as our dilemmas. We show that the model pro-
vides improvements in both individual payoffs and levels of
cooperation within the system when compared to the standard
Sarsa model. We also show that the agents’ interaction model
and their ability to differentiate between opponents influences
how the reinforcement learning process converges.

Introduction
This paper explores how groups of self-interested agents can
be designed in a way that allows cooperation to develop over
time in social dilemmas. The agents should be able to de-
velop cooperation without the use of external interference,
such as punishments for defection and incentives for coop-
eration. We have chosen to design these agents in a human-
inspired way using mood to influence their learning. We
make use of reinforcement learning techniques to show that
using a human-inspired computational model of mood al-
lows self-interested agents to develop cooperation with other
agents over time.

In particular we investigate whether the mood model de-
veloped by Collenette et al. (2016b) can be incorporated
within the classical reinforcement learning algorithm Sarsa,
and whether this will allow agents to converge towards co-
operation in a social dilemma. Additionally we consider dif-
ferent types of interaction between the agents, depending
on whether or not they can distinguish their opponent and
whether they can observe their opponent’s current mood. We
will be exploring this model in both the Prisoner’s Dilemma
and the Stag Hunt social dilemmas, noting the differences
our model gives to these different dilemmas.

It is worth noting that emotions and mood are two distinct
aspects of the human psyche. Emotions are short-term feel-

ings that are directed to an individual object or person, which
can change quickly (Levenson, 1994). Mood is the reverse
of this, as it does not change quickly and is undirected. It is
a general feeling that an individual has (Gray et al., 2001).
It has been shown that both emotion and mood have an ef-
fect on decision making in humans (Schwarz, 2000; Her-
tel et al., 2000). While we acknowledge that emotions and
mood have physiological effects as well (Keltner and Gross,
1999), within the scope of this paper we incorporate only
the psychological effects mood has on learning and decision
making.

While there has been research into how emotions can be
integrated into agents (Collenette et al., 2016a; Lloyd-Kelly
et al., 2014) and how they can be represented there has been
little work on how mood can be used. Mood has often been
used as a black box (Ojha and Williams, 2016; Santos et al.,
2009) where the mood does not affect the decision making
directly, but affects other aspects of the agent. In contrast
here we set out a clear definition of how mood is incorpo-
rated into decision making, with grounding in psychology.
We focus on the mood as the main aspect of this work.

Mood Model
The mood model of Collenette et al. (2016b) provides a
generic framework of mood, grounded in psychology, which
can be incorporated into other processes. Mood is repre-
sented as a real number in the range of 0 to 100 where low
values represent negative moods and high values represent
positive moods. This spectrum ranging from low to high re-
flects how psychologists view mood as well (Hepburn and
Eysenck, 1989). The numbers of 0 and 100 were chosen to
give an intuitive understanding of where the mood lies and
for easier integration with other parts of the mood model
framework. The framework uses the Homo Egualis model
of fairness (Fehr and Schmidt, 1999) as a basis to define how
an agent’s perception of their payoffs relative to other agents
affects their mood.

Within a social scenario after an interaction has occurred
between two agents we will update each of their mood val-
ues. How the mood is updated is shown in Definition 1.



Definition 1 (Mood Calculation) Let AG be the set of all
agents, with i and j ∈ AG. Let t denote time. Let pti return
the payoff of agent i at time t. Let mt

i return the mood of
agent i at time t, in the range 0 < m < 100. Let µti denote
the average payoff for agent i up to time t. Let F ti return the
opponent of agent i at time t. Let α = β be in the range 0 to
1.

αti = (100−mt−1
i )/100 (1)

Ωti,j = µti − αti ·max (µtj − µti, 0)− βti ·max (µti − µtj , 0)
(2)

mt
i = mt−1

i + (pti − µt−1i ) + Ωt−1i,j where j = F ti (3)

Equation 1 gives us the mood of the agent that can be
used in the Homo Egualis equation. It gives high moods as
a low number and low moods as a high number. For ex-
ample a mood of 75 will give a α of 0.25. Equation 2 is a
two agent version of the Homo Egualis equation, which re-
turns an adjusted payoff based on how the agent views its
opponent based on a comparison of rewards. We are using
average payoffs rather than total payoffs, as in our scenarios
there is no guarantee that the number of games played will
be the same. In the Homo Egualis equation we take α = β,
representing an idealistic view in which an agent views other
agents equally to itself.

Finally Equation 3 gives the adjustment to the mood value
by taking the difference between the average payoff and the
received payoff with the Homo Egualis adjustment.

Social Dilemmas
Our experimental settings will be the Prisoner’s Dilemma
and the Stag Hunt. In these social dilemmas, two players
have a choice of cooperation or defection where the deci-
sion is made simultaneously, without prior communication
on how the agents will behave. The payoff matrices we will
use for the Prisoner’s Dilemma and the Stag Hunt are given
in Table 1, where cooperation is given as C, defect is given
as D, and the numbers indicate the payoff each player gets
when choosing the indicated actions.

C,C D,D C,D D,C

3, 3 (3, 3) 1, 1 (1, 1) 0, 5 (0, 2) 5, 0 (2, 0)

Table 1: Payoff matrix of the Prisoner’s Dilemma and the
Stag Hunt. The Stag Hunt is shown in parentheses

It is in the best interests of both agents to cooperate in
both dilemmas as this will give the best result for the group
as a whole. However there is an incentive to defect in the
Prisoner’s Dilemma as this leads to a higher payoff for the
defector at the expense of the cooperator. If both agents rea-
son this way in the Prisoner’s Dilemma then the group as a
whole gets the worst payoff as they both defect, highlighting
the dilemma of the game and giving rise to the Nash Equi-
librium of mutual defection.

When compared to the Prisoner’s Dilemma the Stag Hunt
shares many dynamics, but the main change is that there are
now two Nash Equilibriums; these are mutual cooperation
and mutual defection. The mutual defection Nash is a risk-
dominant strategy as when the opponent deviates, there is
no risk of reducing the payoff. However agents can increase
their own payoff and the group’s payoff by choosing to co-
operate; this is a risky move as if the other agent does not
reciprocate the cooperation, the payoff is lost.

Exploring how to encourage cooperation to evolve within
these groups of self-interested agents, has been an active
topic of research (Axelrod and Hamilton, 1981; Santos et al.,
2008; Bloembergen et al., 2014; Skyrms, 2004; Bolton et al.,
2016). It is for this reason that we adopt this model of inter-
action in the current work as well.

Reinforcement Learning
Reinforcement learning (Sutton and Barto, 1998) prescribes
how an agent can learn to optimise her behaviour by re-
peated trial-and-error interaction with the environment. At
each time step, the agent takes an action based on the current
state of the environment, and observes its effect in terms of
a reward signal and resulting state change. Behaviour that
yield high rewards will be reinforced, whereas behaviour
that causes low rewards or penalties will be reduced. The
goal of the learning agent is to maximise her expected fu-
ture rewards.

One of the most well-known reinforcement learning algo-
rithms is Sarsa. Sarsa learns state-action values, Q(st, at),
which represent the expected sum of (discounted) future re-
wards after taking action a in state s at time step t. Defini-
tion 2 gives the Q update function for Sarsa given the im-
mediate reward rt+1 and the expected future rewards, esti-
mated recursively by the value of the next state-action pair
Q(st+1, at+1) and discounted by γ.

Definition 2 (Sarsa (Sutton and Barto, 1998).) Let S be
the set of states with s ∈ S. Let A be the set of actions
with a ∈ A. Let t be the time, r represent the reward, α
the learning step size and γ the discount factor of future re-
wards. Then, Sarsa updates Q(st, at) using the following
equation:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)

−Q(st, at)]

Reinforcement learning has been applied to social dilem-
mas, exploring different aspects of the problem, such as dif-
ferent variations of techniques (Masuda and Ohtsuki, 2009),
and how they can be tweaked to allow greater coopera-
tion against a variety of opponents (Vassiliades et al., 2011;
Crandall and Goodrich, 2005). There has been exploration
of how different interaction networks can affect the spread
of cooperation (Ranjbar-Sahraei et al., 2014), as well apply-
ing emotions to the reinforcement model (Yu et al., 2015).



The majority of the work completed in this area has focused
on agents which are static or are represented in a dynamic
network. In our implementation we simulate mobile agents
randomly navigating an environment, with no guarantees on
the number of interactions and who interacts with who.

In our experiments we build on and compare to the
standard implementation of the Sarsa algorithm, which is
known as an on-policy algorithm as it uses it’s current pol-
icy as a predictor for future rewards, through Q(st+1, at+1)
(Q-learning in contrast uses a greedy policy as predictor,
maxa′ Q(st+1, a

′)). We choose an on-policy method be-
cause mood by definition is an on-policy adaptation since
we learn through experiences and adapt as the environment
changes through the use of mood (Rinck et al., 1992).

Mood Model Integration
To integrate the mood model (Definition 1) into the Sarsa
algorithm (Definition 2) we change the way in which the
estimation of future rewards is computed. Where Sarsa uses
Q(st+1, at+1), the value of the next state-action pair, as an
estimate, we replace this by an estimate Ψ based on mood,
yielding the update rule

Q(st, at)← Q(st, at) + α[rt+1 + γΨ−Q(st, at)].

In our experiments we set α = 0.1 and γ = 0.95.
Our estimation Ψ uses a memory which stores the payoffs

an agent receives in that state action pair. For example if the
agents are able to distinguish between opponents then after a
number of interactions the agent will have stored the results
it received when playing that opponent with each action. To
calculate the estimation we use the mean of the previous in-
teractions for that action and state. The mood is integrated
by changing how far back the agent will look to provide the
mean. For example if the mood is 25 then the agent will
look back at 75% of the previous outcomes and calculate
the mean payoff received. The computation is formalised in
Definition 3. It reflects how people in bad moods will think
longer about a problem compared to those in a good mood,
who use a more instinctive response (Hertel et al., 2000).
We limit the memory to 20 interactions as a longer history
will reduce the effect that an individual interaction has on
the average. However, the effect of an individual interaction
should also not be too extreme. By setting the maximum to
20, we find a balance where the effect is preserved while a
single interaction will not override past experience.

Definition 3 (Estimation of Future Rewards) Let Mema
i

be the set of rewards obtained by agent i when using action
a where |Mema

i | is at maximum 20, and Mema
i (0) returns

the most recent reward. Let mi return the mood of agent i.

αi = (100−mi)/100 (4)

β = ceil(|Mema
i |/αi) (5)

Ψ =

(
n

β∑
0

Mema
i (n)

)
/β (6)

To choose which action to take, we use the ε-greedy
method. This method selects the action with the highest Q
value with probability 1− ε, and a random other action with
probability ε. In our implementation we set ε = 0.1 ini-
tially. We have also integrated the mood model into how ε
is chosen. In neutral moods there is no change in the value
of epsilon. If the agent is in a bad mood (m < 30) and has
chosen to cooperate we increase ε to reflect how humans are
more likely to defect in these kinds of social dilemmas (Ha-
ley and Strickland, 1986). When the agent is in a good mood
(m > 70) then we will likewise increase ε if they choose to
defect. We are reflecting how people in good moods are
more likely to choose an idealist option, even if that choice
is risky, as discussed in (Hertel et al., 2000; Leahy, 2005).

Finally, an important choice when applying reinforcement
learning is how to initialise the state-action values Q(s, a).
In our experiments we use the first reward that the agent
receives for that state action pair as the initial value, as this
best reflects how people learn about new experiences. For
example, Shteingart et al. (2013) show that when resetting
the initial values to new data Q-learning can predict how
people choose between a risky option and a safe option.

We note that the mood model shares some similarities
with reward shaping. Reward shaping supplies an additional
reward to the reward that would normally be received for a
particular action (Ng et al., 1999). For the Sarsa algorithm
the update rule will be updated to the following.

Q(st, at)← Q(st, at) + α[rt+1 + F (st, at, st+1)+

+ γQ(st+1, at+1)−Q(st, at)]

Where F returns a seperate reward based on the state ac-
tion pair and the next state. The reward is defined by the
designer of the system. This technique can allow reinforce-
ment learning to scale up to more complex problems (De-
vlin et al., 2011; Randløv and Alstrøm, 1998). The main
difference between reward shaping and the mood model is
that the shaping reward function supplies additional rewards,
whereas our mood model directly affects decision making
and the estimation of future rewards.

Experimental Set-up
The experiment will be conducted using the stage library
(Vaughan, 2008) simulating 70 agents within an environ-
ment, shown in Figure 1.

The agents will engage in a random walk around the
arena. When an agent has line of sight and is sufficiently
close to another agent then those two agents will engage
in an iteration of either the Prisoner’s Dilemma or the Stag
Hunt game depending on the scenario. Then they will both
continue moving around the environment. This will con-
tinue for 10 minutes, then the arena will reset (to prevent



Scenario 1 2 3 4 5 6 7
MA 0 0.2 0.4 0.6 0.8 v Sarsa

Table 2: Scenarios with different values of MA.

agents getting stuck in corners of the environment) with the
agents retaining their memory and Q values. This is repeated
until they converge. Convergence is said to have occurred
when the average proportions of outcomes from the last 5
10 minute runs are within 0.005 of the average proportions
of the last 25 10 minute runs.

Scenarios

We simulate across different scenarios, which include varia-
tions on how much the mood value affects the choices made
by the agents (which we indicate as MA) and can be seen in
Table 2. We start with no effect so that we can compare how
the addition of memory alone affects the choices made. We
will then start to increase the value of MA to see the point
at which the reinforcement learning converges to coopera-
tion. In scenario 6, the value of MA is a variable amount v
which is dependant on the mood, the exact calculation of v is
shown in Definition 4. Finally we will compare this against
standard Sarsa to analyse the effect of our implementation.

For each of these scenarios compare three different def-
initions of the state space. The first is Stateless, where the
agents have no knowledge of their environment or who they
are interacting with. The second is Agent State, where the
agents can distinguish between the opponents they are in-
teracting with. Finally, the Mood State is where the agents
additionally observe the mood their opponent is in. The def-
initions are given in Table 3 where AG is the set of agents
and MV = {High,Neutral, Low} is the set of mood rep-
resentations. Given the mood mi of agent i, MVi is High
when mi > 70, Low when mi < 30, and Neutral otherwise.

Definition 4 (Variable MA Value) Letmt
i return the mood

value of agent i at time t.

v =


(mt

i − 50)/100 if mt
i > 70

(50−mt
i)/100 if mt

i < 30

0.1 otherwise.
(7)

Figure 1: The simulated environment. White areas are
traversable. Measures 5m2 with an interior block of 4m2,

Name S Description
Stateless ∅ No state information used

Agent State AG Agents can distinguish be-
tween opponents

Mood State AG×MV Agents can distinguish be-
tween opponents and ob-
serve their mood

Table 3: State definitions

Hypotheses
We predict that the memory only experiment will show a
small amount of variation when compared to the Sarsa al-
gorithm as the only difference between them is how they
predict future rewards (H1). This leads to the same actions
being selected in both cases. In both of these cases we pre-
dict that in both types of social dilemma they will converge
to defection in a stateless scenario as the opponents they will
be facing will be randomised, preventing any cooperation
from being sustained. When the agents are able to distin-
guish between opponents we predict that some small levels
of cooperation will appear that will then fade into defection
as the decision making agent may randomly switch due to
the ε greedy action choice (H2).

In regards to the other scenarios we predict that high lev-
els of MA will give higher levels of cooperation (H3); this
is due to an effect with the mood model that Collenette et al.
(2016b) showed. The levels of mood will increase with mu-
tual defection, however when the agent starts to cooperate
the mood will fall, causing the other agents’ mood to go up.
The rate at which the mood decreases in the original agent
will be less than the rate at which it rises in the opponent,
ending with the overall mood increasing, which in turn will
lead to the agents using the higher ε when choosing to de-
fect. H1, H2, and H3 refer to our hypotheses.

Results and Analysis
Understanding whether the introduction of this mood model
has been a success we first need to define what success
means. We look at two criteria for success, firstly we look
at whether mutual cooperation can be created and sustained,
secondly we look at the average payoffs for the agents to see
if the agents are better off using our mood model as com-
pared to Sarsa.

Tables 4, 5, and 6 show the proportions of the different
outcomes the agents converged to, along with their 99% con-
fidence values for the Stateless, Agent State, and Mood State
scenarios respectively.

We first note that while Sarsa has shown a strong prefer-
ence for cooperation in prior work (Vassiliades et al., 2011),
in our work it shows a strong preference for defection. This
is due to a change from a two agent setting to a larger set-
ting, which is reflected in the cooperation increasing when



S G Coop Defect Non Mutual
1 PD 0.084±0.007 0.486±0.015 0.431±0.011
1 SH 0.114±0.007 0.436±0.015 0.450±0.011
2 PD 0.144±0.009 0.386±0.014 0.470±0.010
2 SH 0.157±0.009 0.369±0.013 0.474±0.009
3 PD 0.297±0.010 0.197±0.008 0.506±0.008
3 SH 0.313±0.011 0.207±0.010 0.481±0.008
4 PD 0.499±0.010 0.089±0.004 0.412±0.008
4 SH 0.804±0.006 0.010±0.001 0.186±0.006
5 PD 0.789±0.005 0.014±0.001 0.197±0.005
5 SH 0.809±0.004 0.010±0.001 0.181±0.004
6 PD 0.366±0.008 0.149±0.006 0.484±0.006
6 SH 0.634±0.026 0.060±0.009 0.306±0.019
7 PD 0.017±0.002 0.765±0.007 0.218±0.007
7 SH 0.028±0.006 0.735±0.018 0.236±0.012

Table 4: Proportions of outcomes converged to with 99%
confidence intervals, for each Scenario (S) and each Game
(G), when no state information is used (Stateless).

the agents are able to distinguish between different oppo-
nents. While this explains some of the differences, we also
note that there are effects from allowing our agents to move
and the resulting inconsistency in the number of interactions.
Introducing movement into our scenarios also introduces
randomness into when any two agents may interact. This
randomness does not allow accurate predictions on who the
next opponent will be, or whether any two particular agents
will converge in their pairwise interactions.

By comparing the Sarsa (scenario 7) outcomes to our
memory only outcomes (scenario 1), we note that there is a
small improvement to the memory only outcomes when the
agents are anonymous, which is in contrast with our hypoth-
esis H1. The difference in the improvements is down to how
Sarsa predicts future outcomes based on its current Q value,
which takes into account all previous interactions, whereas
the mood agents use a limited memory of recent outcomes
which allows it to adapt to the prevailing action consensus
quicker than the Sarsa agents.

Similarly, for the scenarios we tested, the addition of
states allows cooperation to increase, while introducing
larger amounts of non mutual actions and reducing mutual
defection. This is in contrast to our hypothesis H2 which
stated that any cooperation created would fall. However
there was an exception with larger values of MA, where
cooperation decreases with the addition of states. The ad-
dition of states increases the instability of the system, if the
value ofMA is high then the chance of an agent defecting is
reduced to the point where cooperation spreads more effec-
tively than defection. The reduction of information allows
this cooperation to spread as agents try to converge on the
group of agents as a whole rather than on an individual level.
When MA values are low, then the additional informations

S G Coop Defect Non Mutual
1 PD 0.211±0.007 0.498±0.011 0.290±0.011
1 SH 0.216±0.007 0.499±0.010 0.285±0.009
2 PD 0.247±0.009 0.393±0.010 0.361±0.008
2 SH 0.230±0.007 0.384±0.011 0.387±0.010
3 PD 0.321±0.008 0.243±0.007 0.436±0.007
3 SH 0.338±0.008 0.222±0.007 0.440±0.008
4 PD 0.427±0.009 0.143±0.006 0.431±0.007
4 SH 0.463±0.010 0.123±0.006 0.414±0.009
5 PD 0.632±0.012 0.060±0.005 0.308±0.009
5 SH 0.632±0.011 0.058±0.004 0.310±0.009
6 PD 0.361±0.009 0.193±0.007 0.446±0.007
6 SH 0.376±0.010 0.190±0.007 0.433±0.007
7 PD 0.211±0.007 0.497±0.011 0.293±0.009
7 SH 0.220±0.007 0.494±0.011 0.286±0.010

Table 5: Proportions of outcomes converged to with 99%
confidence intervals, for each Scenario (S) and each Game
(G), using the Agent State.

helps to prevent the spread of defection.
Hypothesis H3 was confirmed as higher levels of MA in-

crease the level of cooperation. The differences between
the level of cooperation in the Stag Hunt and Prisoner’s
Dilemma show that lower levels of MA are required, to
yield a high proportion of cooperation in the Stag Hunt. The
difference is due to the payoff structure (Table 1), as in the
Stag Hunt mutual cooperation gives a higher payoff than the
non mutual action does for the defector. The value of MA
gives a higher guarantee than cooperation will be mutual so
it is in the interest of the agent to cooperate, which is re-
flected in their Q Values, whereas in the Prisoner’s Dilemma
the temptation to defect is still there as the individual payoff
for defecting is higher than mutual cooperation.

Finally we can see that we can achieve high levels of co-
operation in the Stag Hunt and a majority of cooperation in
the Prisoner’s Dilemma. Next we will be looking at the sec-
ond way to measure success, which is through the payoffs
received by the agents. Figures 2, 3, and 4 show the average
score of an agent through each run, for each type of state
definition. We have chosen average scores rather than total
scores as the number of interactions per run is not consistent
across agents. The number of runs is different as the time
to convergence is different. We look at differences between
scenarios 7 (Sarsa, Figure 2), 1 (Memory only, Figure 3),
and 6 (Variable Mood, Figure 4) in the Prisoner’s Dilemma.

We can see from the three figures that the most successful
agents were in the mood scenario, which is reflected by the
higher levels of cooperation as noted previously. There are
only minor differences between the different types of state.
An exception is shown in the stateless scenario for Sarsa,
where the average score is much lower when compared to
the agent and mood states, which is reflected by the lower



S G Coop Defect Non Mutual
1 PD 0.213±0.006 0.484±0.012 0.303±0.010
1 SH 0.216±0.008 0.481±0.011 0.302±0.009
2 PD 0.246±0.007 0.379±0.008 0.375±0.008
2 SH 0.236±0.007 0.384±0.010 0.380±0.008
3 PD 0.314±0.008 0.244±0.006 0.442±0.008
3 SH 0.319±0.008 0.234±0.005 0.447±0.007
4 PD 0.454±0.009 0.135±0.007 0.411±0.007
4 SH 0.481±0.011 0.110±0.006 0.409±0.009
5 PD 0.623±0.011 0.066±0.005 0.311±0.007
5 SH 0.627±0.012 0.061±0.005 0.312±0.009
6 PD 0.365±0.008 0.194±0.005 0.441±0.008
6 SH 0.371±0.009 0.189±0.006 0.440±0.008
7 PD 0.211±0.007 0.483±0.012 0.306±0.010
7 SH 0.213±0.007 0.495±0.011 0.292±0.010

Table 6: Proportions of outcomes converged to with 99%
confidence intervals, for each Scenario (S) and each Game
(G), using the Mood State.
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Figure 2: Average scores for Sarsa in the Prisoner’s
Dilemma over each run, with 99% confidence interval of fi-
nal average score.

cooperation levels.
When the game is changed to the Stag Hunt as shown in

Figures 5, 6, 7, we see that the same scenarios are success-
ful. Figure 7 shows an exception, here stateless is the most
successful by a large margin. To see why this is the case
we need to look at the form of the games themselves, how
actions are chosen, and how they converge for our agents.

The main difference in individual payoffs between the
Stag Hunt and the Prisoner’s Dilemma is that in the Stag
Hunt the payoff for defecting against a cooperating agent is
lower than the individual payoff for mutual cooperation. In
the Prisoner’s Dilemma this individual payoff is higher when
defecting against a cooperating opponent. A perfectly ratio-
nal agent will therefore choose to cooperate in the Stag Hunt
if they know the other opponent is cooperating. However in
our scenario choosing cooperation is not guaranteed by the
ε-greedy choice; when an agent inadvertently defects they
receive the temptation payoff. In the Prisoner’s Dilemma the
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Figure 3: Average scores for memory only in the Prisoner’s
Dilemma over each run, with 99% confidence interval of fi-
nal average score.
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Figure 4: Average scores for variable mood in the Prisoner’s
Dilemma over each run, with 99% confidence interval of fi-
nal average score.

agent will then continue defecting which leads to the drop in
average score as more agents choose defection, as their Q
Values reflect the higher value that defection brings. In the
Stag Hunt, agents will continue to choose cooperation as the
Q Value for defection does not rise higher than the Q Value
for cooperation.

When the agents can differentiate between opponents, the
agent that receives the defect payoff will respond to the de-
fecting agent at an individual level, rather than defecting
against all other opponents. This prevents the spread of de-
fection in the Prisoner’s Dilemma. This is shown by the av-
erage scores being higher in the agent and mood states when
compared to the stateless in the memory only and Sarsa sce-
narios. However in the Stag Hunt the cooperation has not
spread for the same reason: cooperation needs to be created
on a individual level first, which is shown by the weaker
agent state and mood state average payoffs.

When using the mood scenario we see that stateless per-
forms just as well as the agent and mood states in contrast
to the memory only and Sarsa scenarios. The reason that
defection does not spread is due to the effects mood has on
action selection. There is a initial drop in average payoff as
defection spreads, however as the mood is going up due to
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Figure 5: Average scores for Sarsa in the Stag Hunt over
each run, with 99% confidence interval of final average
score.
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Figure 6: Average scores for memory only in the Stag Hunt
over each run, with 99% confidence interval of final average
score.

the agents receiving some payoff, the chances of an agent
inadvertently choosing cooperation increases. This increase
also causes more mutual cooperation raising the moods of
those agents even more making it even more unlikely that
defection will be chosen. This shows that our mood agents
are able to break continued mutual defection and can replace
this with sustained mutual cooperation over time.

Conclusion
We have provided a novel adaptation of a classic reinforce-
ment learning algorithm by incorporating within it a model
of mood. We have evaluated this extensively in an experi-
mental setting using the Prisoner’s Dilemma and Stag Hunt
scenarios. We then compared our results to those produced
by a Sarsa implementation to investigate whether there was
any improvement. We used a number of scenarios that var-
ied the amount of information that was available to an agent
in addition to varying the strength of the mood model. We
measured improvement in two different ways, namely pro-
portion of cooperation and average reward received by an
agent per interaction. In contrast to previous work we have
investigated scenarios which have allow agents to be mobile,
introducing uncertainty in the interactions. Our study is of
use to designers of agent societies, by showing how mobility
and mood affect different strategies of the agents.
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Figure 7: Average scores for mood in the Stag Hunt over
each run, with 99% confidence interval of final average
score.

By incorporating mood in reinforcement learning we in-
creased the level of cooperation when compared to Sarsa,
decreased mutual defection, and introduced more non-
mutual actions. We also compared the averages payoffs
showing that using mood increased the average payoff when
compared to Sarsa. There were differences between the two
social dilemmas in regards to how effective the mood model
was. Higher levels of cooperation where shown in the Stag
Hunt when compared to the Prisoner’s Dilemma, due to the
payoffs of the game. Additionally we noted the reduction in
cooperation Sarsa has when compared to prior research, this
is mainly due to the mobility aspect we capture.

The memory aspect can be further developed with ad-
ditional aspects of psychology being incorporated, such as
how recall of past events is affected by the mood (Bower,
1981). The main aim of further research into this area of
psychology-driven reinforcement learning would be to re-
duce the number of non mutual actions so as to give us a
more definitive outcome of what the agent has learned. Fur-
thermore we can supplement this research with a mathemati-
cal study of the model to allow us to show whether the model
is applicable to more social dilemmas. We can extend this
further by incorporating other strategies into our scenarios
and seeing how our model copes with the addition of these
strategies as opponents.
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