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Abstract In this paper we describe a random walk clustering technique to address
the Website Boundary Detection (WBD) problem. The technique is fully described
and compared with alternative (breadth and depth first) approaches. The reported
evaluation demonstrates that the random walk technique produces comparable or
better results than those produced by these alternative techniques, while at the same
time visiting fewer ‘noise’ pages. To demonstrate that the good results are not simply
a consequence of a randomisation of the input data we also compare with a random
ordering technique.

1 Introduction

There have been numerous studies that perform analysis of the web at the web-page
level [8, 2, 6]. A web page can be considered as a low level element on the web.
There is potential benefit to studying the web on a higher level, that level being
the level of a website. A website can be considered as a single high level entity
that is made up of a collection of lower level resources. These resources can in-
clude text/html web pages, images, video etc, which together collectively represent
a website. Studying the web at this abstract level can have many possible applica-
tions, including; web archiving [21, 1], web search and information retrieval [20]
and web analysis [7, 10, 17, 8]. The Web-site Boundary Detection (WBD) problem
is concerned with discovering all web resources within the boundary of a particular
website given some “seed(s)” resources from that website. WBD is an open problem
[7] and can be difficult to solve [14].

In this work we follow [5] in postulating that a set of resources contained in
a website is, by definition, ‘intended’ by the author/publisher of the content to be
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deemed related using the high level notion of a website. It is this concept of intention
that is used in this paper to define a website, in that the resources featured in the
website share similar attributes, and also they are more highly connected.

The WBD problem can be addressed in a static manner by first collecting all
pages connected to a given seed page up to a certain distance (depth) from the seed
page. If the depth is sufficiently large the resulting collection can be expected to
contain both pages belonging to the target web site and noise pages. Typically, so
as to ensure that the entire target web site is included in the collection the distance
moved from the seed page has to be substantial, hence a significant number of noise
pages will be included in the collection. The task is then to differentiate the target
pages from the noise pages, i.e. identify the web site boundary. The static WBD
problem can thus be argued to be a binary clustering problem where we wish to
divide the collection of web pages into a web site cluster and a noise cluster.

An alternative approach, which aims to limit the number of noise pages visited,
is to proceed in a dynamic manner and attempt to identify the web site boundary
using some form of incremental clustering. There are a number of ways whereby
this may be achieved. For example we can proceed in a Breadth First (BF) or Depth
First (DF) manner, stopping whenever it is determined that the web site boundary
has been identified. In this paper we advocate a random walk based approach. As
will be demonstrated the Random Walk (RW) technique produces comparable or
better performance than the BF or DF approaches, while at the same time visiting
far fewer nodes.

The evaluation is conducted using synthetic data sets generated using the web
modelling technique proposed in [15] and [16]. The reason that we elected to use
artificial data sets is that, for experimental purposes, we have much greater control
over the ratio of web pages against noise pages. We compared the operation of the
RW approach with the BF and DF approaches. We also compare the operation of
RW with an alternative random walk approach, Random Ordering (RO), to demon-
strate that the effectiveness of RW is not simply a result of the randomisation of the
input data (which has been shown to have a positive effect with respect to K-means
[23, 19]).

2 Preliminaries

The RW approach advocated in this paper is directed at a portion of the world-wide
web. We may think of this as a graph G = (V,E), where V is a collection of web-
pages, and the set E keeps track of all directed links between pairs of elements of V .
Without loss of generality assume that G is connected. Each page has a numerical
feature vector associated with it. Technically this can be determined once the page
has been downloaded from the internet. Thus, there exists a function f : V → IRk,
for some fixed integer k ≥ 1, such that for any P ∈ V , f (P) is an ordered sequence
of k real numbers characterising the page P. In what follows we will denote the
elements of V using italicised capital letters. We will use the terms page, web-page,
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node, and vertex interchangeably, but in all cases we will actually be referring to
the pair formed by an element of V and its corresponding feature vector. Given a
specified web-page P ∈ V (G), our purpose is to define a set W = W (P) ⊆ V (G)
called the web-site of P, containing all pages of G that are similar to P.

In the work described in this paper we focus on iterative clustering processes
founded on the template presented in Table 1. The graph G is assumed to model a
portion of the web. For the purpose of our experiments (see Section 3.1) we may
assume that it resides on some secondary memory storage device and bits of it are
retrieved as needed. If the algorithms were to be used on the real web, G would
be distributed at different sites across the internet and its content would have to be
downloaded through http requests. Note that the well known k-means [11, 13, 22,
24] clustering method fits this template, however the template can equally be used
to represent a host of different algorithms. In the forthcoming sections we provide
details concerning the proposed iterative clustering processes proposed in this paper.

Algorithm clustering template (P)
W = {P}; N = {};
set up the process internal state;
repeat

select a page Q from G;
add Q to W or N;
update the process state;

until convergence;
return W ;

Table 1 Clustering algorithm template.

2.1 k-means clustering

The classical k-means clustering algorithm is obtained from the template given in
Table 1 by assuming that the state of the process contains information about the
(two) clusters centroids, that the pages in G are inspected one at a time in some
given order (which may vary over subsequent iterations) and that the state update
is only performed after a complete sweep of the data has been performed. Also, it
is assumed that the graph G = (V,E) is not initially available. It is retrieved from
the web incrementally as different pages get requested inside the process main loop.
The loop is then further repeated until the system state does not change from one
sweep of the graph to the next one.

This paper considers two variants of this process, named Breadth-First (BF) and
Depth-First (DF) clustering. They are obtained by assuming that the order in which
the pages of G are examined is determined by the way in which they are retrieved
from the web, and is given by a fixed and bound breadth-first (resp. depth-first)
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traversal of the web starting at P, including all pages up to a certain bounded distance
from P.

2.2 Clustering based on random crawling

Many different processes fit the template described above. The order in which the
pages are considered needn’t be fixed or deterministic. The way in which the web-
graph is explored can be quite arbitrary. Furthermore the process state may be up-
dated every time a new page is considered, rather than at the end of a whole sweep of
the given dataset. Finally the periodical state update might include major modifica-
tion of the retrieved web-graph content. In the remainder of this section we describe
two possible processes of this type: Random Walk (RW) clustering and Random
Ordering (RO) clustering. The first is appealing because of its simplicity, the second
will be used to critically analyse the other processes. Other variants, not reported
in this paper, were tested but the results were found not to be significantly different
from those of the two methods considered.

Fig. 1 Example web dataset displayed as a
graph; vertices’s indicate web pages, dashed
edges indicate hyperlinks (directions omit-
ted so as to maintain clarity)

Fig. 2 Sample run of RW (numbered di-
rected edges indicate progress of the random
walk)

2.3 Random Walk (RW) Clustering.

Given an arbitrary graph G, the sequence of vertices visited by starting at a vertex
and then repeatedly moving from one vertex to the next by selecting a neighbour
of the current vertex at random is termed a random walk on the graph G (see for
instance [18]). Random walks arise in many settings (e.g. the shuffling of a deck of
cards, or the motion of a dust particle in the air) and there’s a vast literature related
to them (the interested reader is referred to the classical [12], or the very recent [3]
and references therein). In particular they can be used [4] as a means for exploring
a graph.

The process RW is the variant of the clustering process in Table 1 based on the
idea of performing a random walk on G. A pure random walk is not easily simulated



Web-Site Boundary Detection Using Incremental Random Walk Clustering

(at least initially) if we want to keep the constraint that the process does not require
access to the full dataset to start off with. The sequence of pages to be (re-)clustered
is thus given by the order in which they are visited by performing a random walk on
the known portion of G. Initially the walk has to choose a neighbour of P. In general,
given the current page Q, the page to be visited next is selected at random among
those pointed at by a link of Q and the set of pages seen so far that point to Q. For
example, with reference to the example graph given in Figure 1, the first four steps of
the process might be as shown in Figure 2, with clustering performed at every step.
Note that the walk can revisit nodes multiple times, even before having completed a
full sweep of G. It is therefore convenient to re-compute the centroids after each step
of the walk, rather than at the end of a sweep. It is well-known [4] that any random
walk on a finite connected graph eventually visits all vertices in it. Thus, in principle,
the process could run until convergence as in the standard k-means algorithm. It
will turn out, however, that stopping the process after a given maximum number
of “steps” (MAXITERATIONS) is more effective and still results in good quality
clusters. Some pseudo code describing the RW technique is presented in Table 2.
The decision on whether to add Q to W or the noise cluster N is based on the
computation of the Euclidean distance between Q’s feature vector and the centroids
of the two clusters W \{Q} and N \{Q}.

Algorithm RW (P)
W = {P}; N = {};
set Q to P; set a counter to one;
set up the process internal state;
repeat

redefine Q to be a random neighbour of Q in G;
add Q to W or N;
increase the counter;
update the process state;

until counter goes past MAXITERATIONS;
return W ;

Table 2 Pseudo code for RW

2.4 Random Ordering (RO) clustering.

Random walks, as defined above, are examples of so called Markov stochastic pro-
cesses [12]. The evolution of a process of this type is fully determined by its current
state: in the example in Figure 1, and assuming perfect information, every time we
visit vertex A we have a 50-50 chance of moving to B or D and no chance at all to
visit vertex C next.

The process RW, strictly speaking, already breaks this framework. In this section
we describe a simpler process (RO) that moves even further from a pure random
walk process. The process traverses the graph vertices in a random order in a similar
manner as in the case of RW. However in the case of RO, all vertices are picked with
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equal chance, irrespective of edges. In Figure 1, again assuming perfect knowledge
(In reality a deterministic crawl can identify all nodes in the structure to a certain
depth). Every time we visit vertex A, there is a 1 in 4 chance of visiting either vertex
A,B,C or D. In this process edges are disregarded, and thus we produce a complete
random ordering of the graph.

Algorithm RO (P)
W = {P}; N = {};
set Q to P; set a counter to one;
set up the process internal state;
repeat

redefine Q to be a random vertex in G;
add Q to W or N;
increase the counter;
update the process state;

until counter goes past MAXITERATIONS;
return W ;

Table 3 Pseudo code for RO

It is this selection of nodes, chosen in a random order that is the key difference
between RO and RW. The traversal of RW is influenced by the graph based on its
structural properties. For instance if a graph contains a highly connected sub set of
nodes, then RW is more likely to re-visit this locality, in contrast to less connected
nodes. The RO method would visit vertices of the graph at random, and would not
be effected by any structural properties of the graph.

3 Experimentation and Evaluation

To assess the quality of RW we tested it on a number of artificial data sets. Graphs
G = (V,E) containing a particular set of pages similar to some chosen element of
V were put together by first creating artificial host graphs using the well established
web-graph model proposed by Kumar et al. [15]. One of the generated host graphs
was then selected to be the target graph (web site). The graphs were then represented
using a standard feature vector representation that included noise words randomly
selected from a “bag” of noise words. The generation of the experimental data is
described in further detail in Section 3.1. To evaluate the operation of RW we used
a number of measures, these are given in Section 3.2. The results are presented in
Section 3.3.

3.1 Experimental Data

As noted above, for experimental purposes, we modelled a collection of web pages
using the process described in [15], but with case 3 (see below) derived from [16].
Given a positive integer m, the process generates a synthetic model of the world
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wide web starting from a graph GK,m
0 having a single vertex with m links pointing

to itself. Then, for t ≥ 1, GK,m
t is derived from GK,m

t−1 according to the following
procedure (here α , β , and ν are real numbers between zero and one):

1. With probability α×β add a new vertex to GK,m
t−1 with m links pointing to itself.

2. With probability α× (1−β ) choose a random edge in GK,m
t−1 and make its source

point to P.
3. With probability (1−α)×β , pick a random copying vertex Qc; a new vertex P

will point to m vertices chosen as follows:

Uniformly At Random - with probability ν , choose a random vertex Q and
add (P,Q) to the graph.
Preferential Attachment - with probability 1−ν , add (P,R) to the graph, where
R is a random neighbour of Qc.

4. With the remaining probability (1−α)× (1−β ) no new vertex is generated and
a random edge is added to GK,m

t−1 .

In our experiments we used values of m mirroring the fact that the average page
on the world wide web contains some 40-50 links [9]. Also α = 0.01, β = 0.9 and
ν = 0.2. So, most of the time, new vertices will be generated to which 50 neigh-
bours will be linked according to the procedure described in 3 above. The resulting
graph shared many features with the real web, in particular: (i) in and out degree
distribution, (ii) the diameter, and (iii) the presence of small bipartite “cliques”. For
the purpose of our experiments, we generate GK,m

T and then remove GK,m
0 from it.

Because of the copy mechanism by which we add edges to GK,m
t−1 , the single page in

GK,m
0 contains a large number of links and is linked by a large number of “younger”

pages. Removing it from the graph used for our experiments makes the resulting
graph, which we denote by KT more realistic.

The use of a synthetic version of the web has many advantages. However Ku-
mar’s graphs have one disadvantage: the lack of the “clustery” nature of the real
web. To complete the definition of our artificial data we need to identify a web-site
W within KT (and then complete the definition of G by adding some noise cluster,
N ). To this end we performed the following steps:

1. Given KT , we picked a random node X from this graph. Such node will represent
the home-page in W .

2. To create the set of pages in W we then performed a breadth-first crawl of KT
starting from X , up to a certain maximum depth. The nodes visited by such pro-
cess are then added to W with some fixed probability p.

3. The noise cluster N is created by continuing the breadth-first crawl until a fur-
ther maximum depth, it contains all nodes reachable from X that have not been
added to W in the previous step.

4. The graph G is then defined as the subgraph of KT induced by the set W ∪N .

For the experiments reported in this paper we generated datasets of four types,
which we identify as sets A, B, C and D. In each case the data set included 10 distinct
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graphs G. All sets were generated from copies of KT using m = 40 and p = 0.8. Sets
of type A were derived from graphs that included in W all nodes (pages) at a distance
of at most three links (with p = 0.8) from the seed page X , while continuing to a
distance of 5 links from the initial page so as to define the noise cluster N . Sets B,
C, and D used the same distance of three links for set W , and distance six, eight and
nine links respectively to define N . In Table 4 some graph-theoretic statistics are
presented the values reported in the table are averages over the 10 graphs included
in each set. From the table it can be observed that the size of noise clusters steadily
increases from set A to D, while the size of the target cluster W remains fairly
constant. Also W has many more internal links than links to N (modelling the
fact that the elements of W represent homogeneous web-pages). Furthermore W is
popular in the sense that many links from the noise cluster N point back to W .

Given a particular graph structure G, we may generate several instances of this
structure by changing the feature vectors that we associate with the various pages
(vertices). In general, for any page P ∈W (resp. in N , the feature vector f (P) can
be chosen from the superposition of two k-dimensional normal multivariate distri-
butions, having different means, µW and µN , and equal deviations σ . The vectors
associated with the elements of W may be chosen from the Nk(µW ,σ) distribution,
those for N from Nk(µN ,σ). Varying the relative position of the means results in
datasets of differing complexity.

For our experiments we simulated such process in a very simple way. Given P
in V (KT ), f (P) contains k = 20 integer numbers, corresponding to the number of
occurrences of the elements of a pool of words S in a bag associated with P. The
pool S is split in two disjoint groups of equal size, SW and SN . The bag of P is
defined by sampling, independently, k elements of S. If P is in W , each chosen
word has a chance π = 0.7 (resp. 1− π) of belonging to SW (resp. SN ), and is
selected uniformly at random with replacement, from the chosen group. If P ∈N ,
the selection is symmetrically biased towards SN .

Set Cluster W Cluster N
Average #
nodes

Intra edges Inter
edges

Average #
nodes

Intra edges Inter
edges

A 100 389.5 128.2 198.8 224.2 260.7
B 100.8 409.3 159.6 405.4 729.6 692
C 102.1 422.6 145.8 405.4 2015.3 1702.1
D 103.1 392.6 188.4 1440.4 4329.1 2734.4

Table 4 Data set graph-theoretic statistics. Intra edges are links connecting two pages in the same
cluster. Inter edges are links connecting pages in different clusters.

For experimental purposes, using the above described mechanism, 40 graphs
were generated and divided into four sets as shown in Table 4. The distinction be-
tween the four sets is that they feature an increasing amount of noise. The scenario
created by a set reflects a portion of the web containing a particular website, which
also contains an amount of noise. In a perfect scenario, this portion of the web would
contain only pages from a single website. Then the task of identifying this website
would trivially be the whole set. In reality the amount of noise that can be collected
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is substantial, as a website that resides on the www is surrounded by a large amount
of pages that are not part of the website itself. Therefore each of the four data sets
must contain a restricted amount of noise. Set A simulates a scenario where the por-
tion of the web graph is restricted to a noise to class ratio of 1:2, for each set there
after the amount of noise is double that of the previous set.

An ever increasing amount of noise in the data to be clustered, has the effect of
increasing the complexity of the clustering process in that large numbers of noise
items increases the likelihood of outliers thus blurring the distinction between W
and N . Also, in the deterministic BF and DF processes, each of the sets simulates
an increasing uncertainty in the amount of the web to collect to ensure all class items
are contained.

3.2 Evaluation Criteria

We used a number of measures to compare the performance of the various clustering
methods considered in this paper. Given an instance (G, f ) generated as described
in Section 3.1, the output (W,N) of a particular clustering algorithm A on (G, f )
can be expressed as:

W =Wt ∪Wf N = Nt ∪N f

where Wt (resp. Wf ) is the collection of class items (noise items) that are correctly
(resp. incorrectly) identified as being within the target web site, and, similarly, Nt
(resp. N f ) is the collection of noise items (resp. items in W ) that are correctly (resp.
incorrectly) identified as noise. The accuracy γ = γ(A ,(G, f )) of algorithm A on
input (G, f ) is given by the expression:

|Wt |+ |Nt |
|W |+ |N |

which measure the proportion of correctly classified items.
For completeness we will also track two obvious coverage parameters:

χW =
|Wt |+ |N f |
|W |

χN =
|Wf |+ |Nt |
|N |

,

the number of steps ς = ς(A ,(G, f )) (i.e. iterations of the main algorithm loop)
performed and the average CPU time to complete a single step, denoted by θ =
θ(A ,(G, f )) calculated as the total execution time to terminate a particular run
divided by how many steps the algorithm took to terminate.
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3.3 Results

Table 5 shows the performance of RW, in comparison with DF, BF and RO, using
data generated as described in Section 3.1. The results show the performance of
each method with respect to the test data SetA to SetD. Each of the methods were
run 50 times on each group of graphs in each test set.

Table 5 Table shows the average performance of each method (RW, RO, BF and DF) run 50 times
on each graph in sets A to D. Accuracies and coverages are reported as percentages

Algorithm Accuracy Class Cov-
erage

Noise Cov-
erage

Execution End Steps

SetA

BF 77.21 100 100 0.89 1001
DF 93.77 100 100 0.85 1001
RO 10k 94.02 100 100 0.16 10k
RW 10k 94.66 89.85 66.84 0.12 10k

SetB

BF 81.24 100 100 1.41 1600
DF 92.12 100 100 1.48 1600
RO 10k 84.53 99.92 99.93 0.28 10k
RW 10k 94.04 83.42 48.12 0.15 10k

SetC

BF 74.97 100 100 3.66 5290
DF 77.08 100 100 3.46 5290
RO 10k 69.59 97.05 95.96 1.92 10k
RW 10k 92.04 79.38 19.68 0.21 10k

SetD

BF 51.17 100 100 6.24 11266
DF 51.55 100 100 6.21 11266
RO 10k 66.32 79.36 77.76 7.03 10k
RW 10k 91.75 84.16 08.64 0.24 10k

The effect of an incremental increase in noise on the performance of each of the
techniques can be seen in the plots given in Figures 3, 5 and 4. In the accuracy plots
(Figure 3) we can observe a sharp decrease in the accuracy of the BF and DF tech-
niques as the noise increases. This is due to the fact that both the BF and DF methods
consider all nodes in the graph (Figures 5 and 4) and thus as the amount of noise is
increased the performance decreases. RO also displays a decreasing accuracy trend,
but is much more resilient to the increasing presence of noise than BF and DF. This
is due to the fact that RO effectively randomises the ordering of nodes. This pro-
duces a clustering that is much less susceptible to a “bad” initial starting conditions
than in the case of the BF and DF methods. As shown in the accuracy plot given in
Figures 3, RO has a much more subtle decrease in accuracy. RO also covers slightly
less noise nodes than BF and DF (Figure 5), but displays a decreasing trend with
respect to the amount of class items that are covered (Figure 5).

The accuracy of RW is only slightly effected by the increasing amount of noise.
RW achieves a consistently better accuracy than the RO, BF and DF methods. The
reasons for this improved accuracy are: (i) RW has the advantages of covering a
smaller percentage of noise nodes, which can make it easier for the clustering algo-
rithm to determine clusters; and (ii) RW randomises the ordering of nodes, which
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serves to improve the clustering accuracy by over-coming a possible bad initial con-
ditions.

RW tends not to cover the entire graph (in reasonable time). It is also slower than
the DF and BF which both cover all nodes. The performance of RW is relative to
its run time. However we argue that, in the context of web-site boundary detection
(where the aim is to identify all pages belonging to a website), it is satisfactory to
correctly classify 95% of the website page if 40% of noise is not accessed at all. It
should also be noted that the overall run time is not a very meaningful measure; the
average running time per step is a better comparative measure of the effectiveness
of the methods considered.

Fig. 3 Accuracy

In summary RW offers the following advantages: (i) it does not need to be re-
run several times to overcome a bad initial clustering condition, because it ran-
domises the nodes while traversing the hyperlink structure of the graph; (ii) it visits
fewer noise pages thus reducing the resources used for downloading, parsing and
pre-processing of web pages; and (iii) produces comparable or better accuracy in
relation to the website boundary detection problem.
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Fig. 4 Class coverage

Fig. 5 Noise coverage

4 Conclusion

In this paper we have described a random walk approach (RW) as a solution for the
Website Boundary Detection (WBD) problem. The operation of RW was evaluated
with respect to three comparator approaches: BF, DF and RO. The main findings are
as follows:

The BF and DF methods give accuracies that decrease when the amount of noise
increases. This is due to the fact that the inclusion of an increasing amount of noise
items make clustering more difficult as noise items blur the distinction between the
target web site cluster and the noise cluster.

The RO method covers the elements of a graph in a random ordering, irrespec-
tive of previously selected nodes or the link structure. This method does have the
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advantage of randomising the node ordering so as to enhance the clustering pro-
cess. As demonstrated by the results obtained, randomising the node ordering can
improve the clustering, thus RO has consistently improved accuracy over BF and
DF. However the RO method is also susceptible to noise, as the accuracy decreases
when more noise is included in the graph. The RO method could, of course, not
realistically be used for the dynamic resolution of the WBD problem.

The RW method offers the advantage of improved clustering accuracy (obtained
by randomising the ordering of nodes) over the other methods included in the eval-
uation. However, because RW utilises the link structure of the graph, it also reduce
the number of noise nodes visited. Thus requiring less resources in the context of
the WBD problem, while giving the best performance over RO, BF and DF.
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