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Abstract. A discriminative dictionary-based approach to supporting
the classification of 3D Optical Coherence Tomography (OCT) retinal
images, so as to determine the presence of Age-related Macular Degener-
ation (AMD), is described. AMD is one of the leading causes of blindness
in people aged over 50 years. The proposed approach is founded on the
concept of a uniform 3D image decomposition into a set of sub-volumes
where each sub-volume is described in terms of a “spatial gradient” his-
togram, which in turn is used to define a set of feature vectors (one per
sub-volume). Feature selection is conducted using the maximum sum
of the squared values of each feature vector for each sub-volume. Af-
ter that, a “coding-pooling” framework is applied so that each image is
represented as a single feature vector. The “coding-pooling” framework
generates a representative subset of feature vectors called a dictionary,
and then use this dictionary as a guide for the generation of a single
feature vectors for each volume. Experiments conducted using the pro-
posed approach, in comparison with range of alternatives, indicated that
the approach outperformed other existing methods with an accuracy of
95.2%, sensitivity of 95.7% and specificity of 94.6%.

Keywords: Data mining, Image decomposition, Spatial gradient his-
tograms, diactioanry learning, Medical image processing, Optical Coher-
ence Tomography

1 Introduction

Age-related Macular Degeneration (AMD) is an eye condition that results in
vision loss that typically effects people over fifty years of age. AMD can be
identified by inspection of retinal imagery. Traditionally this is conducted using
2-dimensional (2D) colour fundus images and a number of techniques for au-
tomating this process have been proposed. Of note in this context is the work of
Hijazi et al. [1], Zheng et al. [2], Liu et al. [3] and Gossage et al. [4] where data
mining techniques (more specifically classification techniques) have been pro-
posed to support 2D retinal image analysis. However, the “traditional” 2D fun-
dus photography for AMD detection has been superseded by three-dimensional
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(3D) Optical Coherence Tomography (OCT) imaging techniques. The use of 3D
OCT retinal imagery can provide detailed cross-sectional information for better
diagnostic purposes. However, ophthalmologists find that they are now over-
whelmed by the large amount of 3D image data in their clinical practice. There
is thus a requirement for automated (or semi-automated) decision-support sys-
tems for the analysis of 3D OCT retinal image data (with respect to both AMD
and other eye conditions).

In order to address the above challenge a new volumetric analysis technique
is proposed in this paper for the automated diagnosis (classification) of AMD
using 3D OCT retinal image data. The main challenges of this work is how
best to extract and represent OCT image features so that a minimal amount of
discriminative information will be lost, while at the same time the ensuring com-
patibility with the generation of effective classifiers. A method for representing
3D OCT images for classification purposes is therefore presented. The proposed
method features a 3D decomposition into a collection of sub-volumes such that
each sub-volume is defined in terms of a “gradient histogram” vector. We then
sum the squared values of each histogram vector and sort them in descending or-
der. We then select the top k vectors. These selected vectors are then translated
into a feature vector representation using a coding-pooling framework. The cod-
ing part of this mechanism comprises the application of “sparse coding” to form
a dictionary (a dictionary is a subset of feature vectors that is representative of
a complete set of feature vectors). In the pooling part “spatial max” pooling [5]
is applied to the selected feature vectors so as to combined them into a single
feature vector to represent a given 3D volume.

The main contributions of the work described are: (i) a mechanism for repre-
senting 3D OCT retinal data, using image decomposition and a coding-pooling
framework, to support volumetric classification; and (ii) a framework to support
automated retinal disease detection using 3D OCT image data.

The remainder of this paper is organised as follows. A brief review of previous
research is presented in Section 2. An overview of the application domain is
described in Section 3. The design of the proposed approach is described in
Section 4. Section 5 then assesses the performance of the proposed approach.
Finally, this paper is concluded in Section 6 with a summary of the main findings.

2 Related Work

There has been some previous work directed at feature extraction for 3D image
classification. The most common approaches rely on the use of statistical feature
extraction and representation such as: (i) Local Phase Quantization (LPQ) [6],
(ii) Local Binary Patterns (LBP) [7], and (iii) Scale-invariant feature transform
(SIFT) [8]. These methods are used to extract low level image features such
as: the frequency of intensity values, changes in the image intensity values and
the spatial relationships between neighbouring intensities. LPQ uses the local
Fourier transform where by a histogram of the quantised Fourier transform at
low frequency is computed [6]. LBPs compute the relationship between each
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pixel and its immediate neighbours. However, the generation of 3D rotation in-
variant LBPs are computationally expensive. Zhao and Pietikainen [7] proposed
the use of Three Orthogonal Plane LBPs (LBP-TOP). The LBP-TOP repre-
sentation considers the calculation of LBPs only with respect to neighbouring
voxels located in the XY , XZ and Y Z planes. SIFT computes the orientation
histograms of the image gradient directions. Most of these methods use a global
feature vector which is produced by concatenating a range of feature values. This
strategy has the disadvantage that some features may be redundant.

In more advanced approaches, feature selection strategies are employed to
select only the most discriminative features. For instance, the concept of Dictio-
nary Learning (DL) has drawn the attention of many researchers in computer
vision and image classification [9, 5, 10]. To use DL a subset of a given set of
feature vectors is selected to form a dictionary (or codebook). The challenge of
DL is the identification of a highly discriminative subset of the available vec-
tors. There are two ways to address this challenge. The first is to use a sparse
representation. For instance, in the Maximisation of Mutual Information (MMI)
method [11] a Gaussian Process (GP) is combined with k-means Singular Value
Decomposition (K-SVD) to optimise the dictionary learning. The second is to
use a coding-pooling framework. This framework is argued to be one of the most
robust ways to represent images for classification in domains such as face recog-
nition [12]. In the coding part of this framework vectors with similar features
are clustered (using, for example, the k-means algorithm), an approach called
“vector quantisation” [13]. Alternatively, sparse coding may be used to select a
subset of vectors, in this case the selected vectors are said to form a “dictionary”
or “codebook”. Sparse coding tries to find a vector that represents a group of
vectors by measuring the “response” of the vector to the group. The basic idea is
to apply sparse coding on a random sample of extracted image descriptors such
as SIFT [13], in order to identify a highly discriminative set of features. Then
multi-scale spatial max pooling is used to form a single feature vector from a set
of sparse feature vectors. These feature vectors can be input into a traditional
classifier such as a Support Vector Machine (SVM). An example method that
uses the coding-pooling framework is Linear Spatial Pyramid Matching Using
Sparse Coding (ScSPM) described in [5] for 2D image classification. Alterna-
tively, Locality-constrained Linear Coding (LLC) may be used instead of sparse
coding to achieve the same goal [14]. In this paper, a coding-pooling framework
is adopted with respect to the work described in this paper (see below).

3 Application Domain

The work described in this paper is directed at the detection of retinal disease
and in particular the identification of Age-related Macular Degeneration (AMD)
in 3D OCT images. Analogous to ultrasound, OCT is a relatively new imag-
ing technique that can capture cross-sectional information of the retina. OCT
employs low-coherence light and ultrashort laser pulses to detect the spatial po-
sition of tissue and resolve depth information. The employment of light waves
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enables acquisition of images (volumes) with very high resolution that can reveal
precise details of internal structures. A series of 2D “slices” are acquired to form
a 3D cross-sectional volume.

AMD is a condition, typically contracted in old age, which leads to irreversible
vision loss at its advanced stages. This loss of vision for AMD patients is due to
the damage to the macula, the centre of the retina that facilitates high level visual
activities such as reading and recognition of faces [15]. There are some distinct
features of AMD that can be readily identified in OCT image data such as:
(i) disturbance of the Retinal Pigment Epithelium (RPE) layer underneath the
neuro-retina due to the presence of “drusen” (fatty deposits), pigment epithelium
detachment or geographic atrophy; (ii) disruption of layered neuro-retinal tissue;
(iii) the presence of intra- and sub-retinal fluid and (iv) retinal thickening.

Two example OCT volumes, one normal and one featuring AMD, are pre-
sented in Figure 1. Figure 1(a) shows a 3D image of a normal OCT volume and
Figure 1(b) shows a 3D OCT volume that features AMD. From these figures
it can be seen that there are notable distinctions between the normal and the
AMD volumes. The normal volume features smooth and connected layers. How-
ever, the AMD volume features disrupted layers and other abnormal patterns,
such as thickening of the RPE layer, the presence of intra-retinal fluid, pigment
epithelium detachment and some unusual texture patterns.

(a) A normal retina

	  

(b) An AMD retina

Fig. 1. The 3D OCT of a “normal” and an AMD retina.

Most of the current macular disease diagnosis tools have been directed at 2D
images. Instances can be found in [1], [2], [3] and [4]. In [1] and [2], a graph based
image representation method was proposed. The image data is decomposed into
a set of quadtrees. These quadtrees are analysed using frequent sub-graph min-
ing. Discriminative frequent sub-graphs are selected and used for generating a
feature vector for each image. These feature vectors are then used to generate a
classifier. In [3] Liu et al. designed a method for automatic detection of retinal
diseases including AMD. A Multi-Scale Spatial Pyramid (MSSP) representation,
with different levels, was used. The histograms of the LBPs were applied on each
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sub-block of the MSSP at each level. Dimensionality reduction using Principal
Component Analysis (PCA) was also utilised. All the generated LBP’s were con-
catenated together so as to build a global feature vector descriptor. The Radial
Basis Function (RBF) kernel based SVM classifier was then used for categorising
the feature vectors. In [4] a texture based method was employed using a com-
bination of two methods, namely the Spatial Gray-Level Dependence Matrix
(SGLDM) and the Discrete Fourier Transform (DFT) for extracting the OCT
image features. Then a statistical method was used to extract the features of
the SGLDM such as energy, entropy, correlation, local homogeneity, and inertia.
A Mahalanobis distance based method was applied to measure the similarities
between image features and then a Bayesian classifier was used to differenti-
ate between features. Using SGLDMs different matrices are typically computed
according to selected directions, which leads to long feature vectors with some
similar values, which may in turn adversely affect classifier performance.

Recently, a 3D method for the classification of OCT was proposed [16] where
a 3D decomposition was employed to support image classification which is similar
to the proposed approach in this paper. The image is first decomposed into a
set of sub-volumes and then a combination of LBP and Histogram of Oriented
Gradients (LBP-HOG) used. First the LBP features were computed for every
sub-volume. Following this, the gradient of the LBP features were calculated and
the complete set of features normalised. These features were then concatenated
forming a single feature vector for every image. Principal Component Analysis
(PCA) was used to reduce the dimensionality of the feature vector. A classifier
was then applied to categorise the feature vectors. In this research, instead of
using PCA as in [16], a coding-pooling framework is adopted. In addition, an
extension of the graph based methods for 3D classification described in [17, 18]
was used.

4 PROPOSED APPROACH

The proposed method relies on the coding-pooling framework described in Sec-
tion 2. The proposed approach comprises the following stages: (i) preprocessing,
(ii) image decomposition and feature extraction, (iii) feature vector coding, (iv)
pooling, and (v) classification. Each of these stages is discussed in further detail
in the following five sub-sections. Note that the input to the proposed process
is a set of 3D OCT images I = {i1, ...., in}, in ∈ I, associated with a set of
class labels C = {c1, ..., cn}, cn ∈ {−1, 1}. The process of feature vector gener-
ation is described in Algorithm 1. In the first stage (line 2) the current volume
is enhanced forming a Volume of Interest (VOI) and then (stage 2, line 3) this
VOI is decomposed to form a set of sub-volumes. Then feature extraction (low
level feature extraction) is applied to form a set of Feature Vectors (FV ) for
each sub-volume in I (lines 4 to 6). The feature vectors are then ranked, using
a “max-sum” calculation, and the top k selected (line 8). A dictionary is then
built using sparse coding (stage 3, line 9). Following this, pooling is used to form
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the final feature representation (stage 4, lines 10 to 12) which is then fed into a
classifier generator (stage 5).

Algorithm 1 Pseudocode for the proposed feature vector generation approach

Input: Volumes I
Output: FeatureVector fvzi
1: for each Volume in do
2: VOI ← preprocessing(Volume in)
3: Sub-Volumes ← decomposition(VOI)
4: for each Sub-Volume j do
5: FV ← feature-extraction(Sub-Volume j )
6: end for
7: end for
8: Xn ← MaxSum(FV)
9: (V , U) ← Coding(Xn) Using algorithm 2

10: for each Volume in do
11: fvzi ← pooling (Xn(in) , V , U(in))
12: end for

4.1 Preprocessing

The quality of OCT 3D images is usually affected by factors such as unwanted
structures and alignments. The preprocessing stage is thus intended to improve
the quality of the image and reference the images to a uniform coordinate system.
Three steps are applied during the preprocessing stage. First of all, in order to
remove unwanted structures from the input retinal images, two steps are used.
Firstly a Split Bregman Isotropic Total Variation (ITV) algorithm, developed by
[19], is applied to every slice of the 3D volume. Secondly, morphological operators
are used: (morphological opening is applied in order to remove small objects not
connected to the main retina and morphological closing to fill gaps).

The next step is to flatten the retina object. Flattening is applied using a
second order polynomial least-square curve fitting procedure [3] according to
the nature of the mean surface of the retina (defined according to the top and
bottom retina surfaces). In order to do this we select the slice where the top and
bottom surfaces of the volume (retina) are furthest apart and consider these two
layers in terms of two vectors made up of voxel values. These two vectors are
used to define the “middle” vector which is then used as a reference for flattening
the entire retinal volume.

Finally, after flattening, a Volume of Interest (VOI) is defined. The basic
idea is to select the top and bottom surface for every slice. These surfaces are
then used to define the minimum value for the top and the maximum value
for the bottom of the VOI. Figure 2 shows two sets of images describing a 3D
OCT retina volume before preprocessing (Sub-figure 2(a)) and the VOI after
preprocessing (Sub-figure 2(b)).
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(a) Giving 3D image

	  

(b) After pre-processing

Fig. 2. Example of preprocessed image.

4.2 Image Decomposition and Feature Extraction

During the image decomposition and feature extraction stage each volume is
decomposed into a set of sub-volumes with a “patch size” of 16× 16× 16 voxels.
For each sub-volume the gradients ∇x, ∇y, ∇z are computed in three dimensions
and then normalised to give the sum of the gradients using Equation 1. The
“angles” are extracted using Equation 2 [8] to give values of between 0 and 2π,
the number of angles was set to 8. For each voxel, an orientation histogram is
computed, hist(angle) = hist(angle)×magnitude.

magnitude =
√
∇x2 +∇y2 +∇z2 (1)

angle = atan−1(
∇z√

∇x2 +∇y2
) (2)

In order to identify AMD ophthalmologist usually inspect an OCT scan cen-
tred on the area around the fovea (the centre of the retina) as this area tends to
show more diagnostic information than the remainder of the retina. In order to
consider the importance of spatial location, in our approach each sub-volume is
given a weight according to its spatial 3D distance from the centre of the retina
to the centre of it using Equation 3 where dtc is the sub-volume distance to the
centre of the volume and ε is a small constant value. A feature vector fv is then
formed for each sub-volume: fv = weights×hist. In each case the generated fv
is then normalised.

weight =

√
width

2 + height
2 + depth

2

abs(dtc) + ε
(3)
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4.3 Feature Vector Coding

During stage 3 of the feature vector generation process, sparse coding is applied
to the complete set of feature vectors (FV = {fv1, . . . ., fvm}, where m is the
total number of feature vectors for all images) describing the entire image set,
produced during the previous stage. The objective is to create a dictionary com-
prised of a representative subset of FV ; the feature vectors in the dictionary
should be selected so as to maximise the discriminative power of the eventual
image classifier. One of the issues with the sparse coding based methods is that
they have a high time complexity associated with them, thus in our approach a
subset Xn of the FV for a given image n is used. Sparse coding is then applied
to Xn. In [5], the authors proposed to generate the set Xn in a random man-
ner. However, it is conjectured in this paper that random sampling may include
feature vectors with less discriminative power which could adversely affect the
performance of the eventual classifier. In order to address this problem, in the
proposed approach, the sum of the squared value of each feature vector in FV
is calculated (Equation 4). The set FV is then ranked, in descending order, and
the top k selected to form the set Xn.

max
n

m∑
i=1

FVi (4)

Recall that the basic idea behind the concept of sparse coding is to represent
a set of feature vectors in terms of a representative sub-set of these vectors.
Thus, after the subset of feature vectors Xn has been identified, sparse coding
is applied to Xn to form a dictionary V . More specifically the feature vectors
in Xn are combined into k representative feature vectors which then defines our
dictionary V (V = {rfv1, . . . , rfvk} ⊂ Xn). For each rfvi ∈ Xn we associate
a “feature vector indicator” ui (ui ∈ U , where U is the complete set of feature
vector indicators) so that each fci is linked to the dictionary V (an approach
informed by the work of [5]). The problem of optimising the selection of V
and U are solved iteratively using a feature-sign search [20]. At the end of this
process each feature vector in Xn is associated with its indicator in U and
the final dictionary V . Algorithm 2 illustrates how the dictionary V and the
complete set of feature vector indicators U are generated. In the algorithm,
the dictionary size is set to 1024. The algorithm commences by selecting an
initial dictionary randomly initialV from the subset of vectors Xn (line 6).
Then the mean values of initialV are subtracted (line 7). In each iteration, in
our experiment the number of iterations was set to 5, another random subset
of feature vectors initialB is selected (line 12). The gradient is then computed
(line 16), which is for measuring the change between the two sets initialV and
initialB. The gradient is the multiplication of the sparse value of the initialV
minus the new set initialB. The maximum values of the gradient are selected.
The associated indicator U is computed by getting the vectors that minimising
the error and maximising the gradient while ensuring the maximum gradient is
less than a given threshold (lines 20 to 25). Eventually, dictionary V is generated
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by considering the best set of feature vectors from the initial dictionaries initialV
andinitialB (line 31). Each vector in V is linked to U where the minimum error
is reached (lines 26 to 33)).

Algorithm 2 Pseudocode for the dictionary generation approach [5, 20].

Input: Xn

Output: V , U
1: DictSize = 1024
2: β = 1e-5
3: γ = 0.15
4: σ = eye (DictSize).
5: itersNumber = 5
6: initialV = selected randomaly a subset of size DictSize from Xn

7: initialV = initialV - mean (initialV )
8: initialV = initialV × diag(1/

√∑
(initialV.∗initialV ))

9: for each i = 1 to itersNumber do
10: A = initialV T × initialV + 2× β × σ.
11: x = inital a vector with size of A
12: initialB = select randomly from Xn

13: for each j = 1 to number vectors in initialV do
14: bb = initialBj

15: b = −initialV T × bb
16: grad = A× sparse(x) + b;
17: ma = max(abs(grad). ∗ x);
18: x = (γ − grad)/A
19: EPS = 1e− 9
20: while ma ≤ γ × EPS do
21: Uj = min(0.5× xT ×A× x+ bT × x+ γ × |x|)
22: grad = A× sparse(x) + b;
23: ma = max(abs(grad). ∗ x);
24: x = (γ − grad)/A
25: end while
26: bu = initialB × UT

27: uu = U × UT

28: dual = diag(bu− uu)
29: bs =

∑
initialB2

30: uinv = inv(uu+ diag(dual))
31: x = mintrace((bu× uinv × buT ) + bs−

∑
dual)

32: V = (uu× diag(x)/buT )T

33: end for
34: end for

4.4 Pooling

The next stage of feature vector generation (stage 4) is data pooling where a
single feature vector is generated for each 3D OCT retina volume. Data pooling
is a statistical method used to concatenate different feature vectors into a single
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feature vector. To this end a pooling function is used to combine a collection of
different feature vectors into a signal vector. Different factors should be taken
into account such as the spatial location and similarities between vectors. Thus,
given our subset of feature vectors Xn, and the set of feature vector indicators
U linking the elements of Xn with our dictionary V (generated in stage 3 as
described in the previous section) the objective is to build a single discriminative
feature vector for each volume.

With respect to the work described in this paper spatial max pooling [5]
was adopted to encapsulate a set of feature vectors Xi representing a single
volume (Xi ⊂ Xn) into a single feature vector guided by the dictionary V . Max
pooling recursively computes the histograms of the maximum values for a given
set of vectors Xi and their association with elements in V . Equation 5 shows the
pooling function used to derived the maximum values with respect to the set
U which is then used to generate a new histogram zr for each region r with M
sub-volume. Neighbouring regions are recursively united and then Zr is applied
on each one of them until reaching a final feature vector. On completion of the
process a single feature vector fvzi is obtained that describes each data volume
i (retinal volume with respect to the motivation for this paper).

zr = max{|u1r|, ....|uMr|} (5)

4.5 Classification

From the foregoing, a single feature vector (fvzi) is used to describe each data
volume i (retinal volume with respect to the motivation for this paper). For
training purposes each feature vector fvzi was combined with a class label ci
(in our case +1 indicates a retina with AMD, -1 for normal retina, informed by
medical retina experts) to create a training set. The resulting representation is
compatible with a number of classifier generators. However, linear SVM [21] was
used in this paper due to its reasonably good performance in most application.
The results of the evaluation are presented in the next section.

5 RESULTS AND DISCUSSION

To evaluate the effectiveness of the proposed approach experiments were con-
ducted using 140 3D OCT volumes, 68 “normal” and the remainder AMD. The
size of each volume was about (1024 × 496 pixels) × 19 slices representing a
6 × 6 × 2 mm retinal volume. Ten-fold cross validation was used to evaluate
the proposed method. Four metrics were recorded with which to measure the
performance of the proposed algorithm: accuracy (Acc) (Equation 6) , sensi-
tivity (Sen) (Equation 7), specificity (Spec) (Equation 8) and the Area Under
the receiver operator characteristic Curve (AUC). AUC can reflect the trade-off
between sensitivity and specificity.

The experiments were directed at analysing the proposed approach in com-
parison to approaches using alternative representations taken from the literature,
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namely: LBP-TOP [7], LPQ [6], SIFT [8], MMI [11], ScSPM [5] and LBP-HOG
[16]. We also compared with MSSP which is a 2D based approach described in
[4]. With respect to MSSP, the middle slices from the training and test data were
used (because these have a high potential for including part of the fovea, the part
of the retina where most indicators of AMD are likely to occur). In addition, the
LBP-HOG based methods for 3D image classification [16] was included in the
experiments. For each different approach, the SVM parameter was tuned for the
best performance.

Acc =
TP + TN

TP + TN + FP + FN
(6)

Sen =
TP

TP + FN
(7)

Spec =
TN

TN + FP
. (8)

The results are presented in Table 1. From the table it can be seen that the
proposed approach produces better results than the other reported methods. If
we compare the accuracy of the proposed method with the other two methods,
the proposed method produced a better performance (with a recorded accuracy
of 95.2%) while for the LBP-TOP, LPQ, SIFT, MMI, ScSPM, MSSP and LBP-
HOG methods accuracy values of 88.6%, 92.9%, 90.4%, 81.3%, 93.8%, 89.8%
and 91.4% were recorded respectively. In the context of sensitivity, as shown
in Table 1, the proposed approach has a similar result with respect to ScSPM
(a recorded sensitivity of 95.7% compared with a recorded sensitivity of 95.3%
for ScSPM). MMI performed less well than the proposed approach. In terms of
the 3D methods LBP-TOP, LPQ and SIFT, the first two produced a recorded
sensitivity of 93.3% compared to 86.0% using SIFT. This sensitivity result for
the 2D based method, MSSP, was 87.3%; which was better than the MMI result.
In terms of specificity, the proposed approach has a good performance with a
recorded specificity of 94.6% with respect to other method: LBP-TOP with
85.0%, LPQ with 91.9%, 3D SIFT with 94.1%, MMI with 79.56%, ScSPM with
92.4% and MSSP with 91.3% and 90.5% for LBP-HOG. The proposed approach
also produces better results than the other methods measured by the AUC. The
proposed method produced a AUC value of 0.95 while the recorded AUC values
with respect to the other methods considered were as follows: LBP-TOP with
0.88, LPQ with 0.92, 3D SIFT with 0.90, MMI with 0.81, ScSPM with 0.93 and
MSSP giving 00.89. The AUC value obtained when using LBP-HOG was 0.94.

The results presented in Table 1 also support the idea that by using some
guided function such as the sum of the squares with the coding-pooling frame-
work to do image classification, is better than using random selection. In addition
it can be noted that discriminative feature extraction methods help to improve
the performance of the classifier. Overall LPQ and SIFT, produce a good per-
formance with respect to our dataset. However, the proposed method indicated
a better performance.
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Table 1. Comparison of the proposed approach with the other methods.

Method Acc Sen Spec AUC

LBP-TOP 88.6% 93.3% 85.0% 0.88

LPQ 92.9% 93.3% 91.9% 0.92

SIFT 90.4% 86.0% 94.1% 0.90

MMI 81.3% 83.3% 79.5% 0.81

ScSPM 93.8% 95.3% 92.4% 0.93

MSSP 89.8% 87.3% 91.3% 0.89

LBP-HOG 91.4% 92.4% 90.5% 0.94

Proposed method 95.2% 95.7% 94.6% 0.95

6 CONCLUSION

In this paper a new approach to classifying 3D OCT volumes has been pro-
posed with an application in the diagnosis of AMD (AMD vs. non-AMD). More
specifically the approach is founded on the use of a coding-pooling framework to
identify discriminative features within OCT sub-volumes. The results obtained
using the proposed approach demonstrated a better performance in comparison
with: LBP-TOP, LPQ, SIFT, sparse based representation methods such as MMI
and ScSPM, and the MSSP 2D based method. This research has also shown that
using a value, such as the sum of the squares, for the selection of a subset of the
available set of feature vectors will improve the performance of the classifier. A
further study will be directed at evaluating our approach with respect to dif-
ferent retinal diseases such as diabetic retinopathy. The authors intend to also
conduct further research to explore the effect of using different feature selection
methods for the coding-pooling framework, and evaluate the proposed approach
in larger datasets.
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