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Abstract

Two mechanisms for classifying Magnetic Resonance Image (MRI) brain scans according
to the nature of the corpus callosum are described. The first mechanism uses a hierar-
chical decomposition approach whereby each MRI scan is decomposed into a hierarchy
of “tiles” which can then be represented as a tree structure (one tree per scan). A fre-
quent sub-graph data mining mechanism is then applied so that sub-graphs that occur
frequently across the image set are identified. These frequent sub-graphs can be viewed
as describing a feature space; as such the input images can be translated, according to
this feature space, into a set of feature vectors (one per image) to which standard classi-
fication techniques can be applied. The second approach uses a time series mechanism
to represent the corpus callosum in each image. Using this representation a pre-labelled
training set was used to define a Case Base (CB) to which Case Based Reasoning (CBR)
techniques can be applied so as to classify new cases. Extremely accurate results were
obtained with respect to datasets used for evaluation purposes.

1 Introduction

This paper describes and compares two approaches to classifying (catagorising) MRI brain
scans according to the nature of the corpus callosum, a structure within the mammalian
brain that connects the two hemispheres. The first approach is founded on the concept of
graph mining and the second on time series analysis. Both approaches, although operating
in very different manners, are essentially supervised learning mechanisms whereby a pre-
labelled training set is used to build a “classifier” which can then be applied to unseen data.
The first approach uses a hierarchical decomposition technique coupled with a tree based
representation, one tree per image. A graph mining technique is then applied to identify
frequently occurring sub-graphs (sub-trees) within this tree representation. The identified
frequent subtrees can be viewed as defining a feature space which can be used to represent
the image set. The image set is thus recast into this format so that each image is represented
by a feature vector whose elements are some subset of the global set of identified frequent
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sub-trees making up the feature space. Standard classifier generation techniques can then
be applied to build a classifier that can be applied to unseen data. The second approach is
founded on a time series representation coupled with a Case Based Reasoning (CBR) mech-
anism. In this approach the features of interest are represented as time series, one per image.
These time series are then stored in a Case Base (CB) which can be used to categorise unseen
data using a Case Based Reasoning (CBR) approach. The unseen data is compared with the
categorisation in the CB using a Dynamic Time Warping (DTW) similarity checking mecha-
nism, the categorisation associated with the most similar time series (case) in the CB is then
adopted as the categorisation for the unseen data. The work described builds upon earlier
work reported in [Elsayed et al., 2010a].

The rest of this paper is organised as follows. Section 2 describes the MRI application
domain in the context of the corpus callosum. The start point for the two described tech-
niques is a segmented Region Of Interest (ROI), the corpus callosum in this case. It should
be noted that the objective of this paper is not to propose a new segmentation algorithm,
indeed any appropriate ROI segmentation algorithm will suffice. However, for complete-
ness, the segmentation algorithm used by the authors (a graph-based algorithm) is outlined
in Section 3. The two proposed classification approaches are then described in Sections 4
and 5 respectively. The two approaches are then evaluated and compared in Section 6 and
some conclusions are drawn in Section 7. The most noteworthy aspect of the work is the
high accuracy obtained by both techniques.

2 Application Domain

The work described in this paper is directed at the classification of MRI brain scan data
according to the corpus callosum. This is a highly visible structure in MR images whose
function is to connect the left and right hemispheres of the brain, and to provide the com-
munication conduit between these two hemispheres. In Figure 1, the left-hand image gives
an example MRI scan; the corpus callosum is located in the center of the image, the corpus
callosum has been highlighted in the right-hand image for ease of understanding 1. A re-
lated structure, the fornix is also indicated. The fornix often “blurs” into the corpus callosum
and thus presents a particular challenge in the context of the segmentation of these images.

The corpus callosum is of interest to medical researchers for a number of reasons. The
size and shape of the corpus callosum have been shown to be correlated to sex, age, neu-
rodegenerative diseases and various lateralized behaviour in people. It is also conjectured
that the size and shape of the corpus callosum reflects certain human characteristics (such as
mathematical or musical ability). Several medical studies indicate that the size and shape of
the corpus callosum, in humans, are correlated to (for example) brain growth and degenera-
tion [Hampel et al., 1998], handedness [Cowell et al., 1993] and epilepsy [Conlon and Trim-
ble, 1988, Riley et al., 2010, Weber et al., 2007]. Although the work described in this paper
is directed at representations (models) to support the application of classification processes,
some work on modelling the corpus callosum with respect to other applications has been
reported. For example [Stegmann et al., 2004, 2006] described a method for automatically
analysing and segmenting the corpus callosum using Active Appearance Models (AAMs).

1The highlighting has been included simply to help readers identify the corpus callosum, it does not indicate
the result of the application of some segmentation technique.
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Figure 1: corpus callosum in a midsagittal brain MR image.

3 Registration and Segmentation

MRI brain scans comprised a sequence of “image slices”, we refer to this as a bundle. The
raw dataset used to evaluate the techniques described in this paper consisted of collections of
MRI scan bundles. For the mechanisms described in this paper to operate we only required
the middle slice from each bundle. This is referred to as the midsagittal slice and is the slice
that separates the left and the right hemispheres of the brain. It should be noted that as a
part of the collection process, all slices in all bundles were aligned so that each bundle was
centered on the same axes. The alignment (registration) was conducted manually by trained
physicians using the Brain Voyager QX software package [Goebel et al., 2006]. Figure 2
shows a typical MRI brain scan registered to a “standard” coordinate system using the Brain
Voyager QX software package.

When attempting to categorise images according the nature of a ROI, regardless what
technique is to be used, the first task is to identify and isolate the feature of interest. In the
case of the corpus callosum we know, approximately, where it is located with respect to the
boundaries of an MRI brain scan. Thus we can apply a segmentation algorithm to iden-
tify the corpus callosum pixels. As noted above the nature of the segmentation algorithm
used is not the focus of this paper. This paper is directed at the evaluation of two mech-
anisms for classifying MRI brain scans according to a particular ROI (the corpus callosum
in this case). Although different results may be obtained using different segmentation tech-
niques, it is the relative performance of the two techniques that is of interest here. However,
for completeness this section briefly describes the segmentation techniques used (a graph-
based approach) and suggests some alternative segmentation techniques that can be usefully
employed.

For the work described in this paper the Efficient Graph-based Segmentation (EGS) algo-
rithm proposed in [Felzenszwalb and Huttenlocher, 2004] was used. This method is based
on Minimum Spanning Trees (MST). All pixels of the original image are viewed as separate
components. Two components are merged if the external variation between the components
is small compared to the internal variation. Note that the segmentation can be problematic
as a related tissue structure, the Fornix (also shown in the example given in Figure 1) is
often included together with some other spurious pixel clusters. Some data cleaning must
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Figure 2: MRI brain scan registration.

therefore be undertaken. A smoothing technique was first applied to the MR images before
the application of segmentation but so as to preserve the boundaries between regions. This
smoothing operation is fully described in [Elsayed et al., 2010b]. In summary the smoothing
was founded on the observation that the corpus callosum pixel intensity values follow the
normal distribution with mean X = 160 and standard deviation s = 20. With a threshold
interval set at X ± 3s it was found that the corpus callosum was clearly defined. The sig-
nificance of this was that although the threshold values may differ depending on individual
images, the high intensity property of the corpus callosum can be exploited to yield a seg-
mentation algorithm that is both effective and efficient across the input image set. Therefore
the interval X ± 3s was used to exclude intensity values outside the interval. This strat-
egy was incorporated into EGS segmentation algorithm and used to successfully extract the
corpus callosum

Although with respect to this paper we have used the EGS algorithm, alternative seg-
mentation techniques could have been applied such as the Normalized Cuts [Shi and Ma-
lik, 2000] or Multiscale Normalized Cuts [Cour et al., 2005] graph-based algorithms, or ap-
proaches popularised in computer vision systems such as the active contour or snake model
[Kass et al., 1988].

4 Graph-Based Approach

The proposed graph based classification process commences with a segmentation phase, as
described above, so as to isolate the corpus callosum in each image. The pixel represented
corpus callosum is then tesselated into homogenous sub-regions. The tessellation process en-
tails the recursive decomposition of the ROI, into quadrants. The tesselation continues until
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Figure 3: Hierarchical decomposition (tesselation) of Corpus Callosum.

Figure 4: Tree representation of hierarchical decomposition.

either sufficiently homogenous quadrants are identified or some user specified level of gran-
ularity is reached. The result is then stored in a quadtree data structure such that each leaf
node represents a tile in the tesselation. Nodes nearer the root of the tree represent larger tiles
than nodes further away. Thus the tree is “unbalanced” in that some root nodes will cover
larger areas of the ROI than others. It is argued that tiles covering small regions are of greater
interest than those covering large regions because they indicate a greater level of detail (as
expected these are located on the boundary of the ROI). The advantage of the representation
is thus that it maintains information about the relative location and size of groups of pixels
(i.e. the shape of the corpus callosum). The decomposition process is illustrated in Figure 3
and Figure 4. Figure 3 illustrates the decomposition (in this case down to a level of 3). Figure
4 illustrates the resulting quadtree.

A weighted frequent sub-graph mining technique was developed to identify commonly
occuring sub-trees within the quadtree represented image set. Frequent sub-graph mining is
a branch data mining concerned with the identification of sub-graphs that frequently occur
across a graph represented data set. The input to a frequent sub-graph mining algorithm
is a collection of graphs G (in our case G comprises a collection of trees each representing
a corpus callosum). The sub-graph is considered to be frequent if its occurrence count, s
(referred to as its support) is greater than or equal to some user specified support threshold
σ. The value s for a specific candidate frequent sub-graph is the number of graphs in G in
which it occurs (a maximum count of one per graph). The value of σ is then expressed as a
percentage of the number of graphs in G, typically the value of σ is low (1% or 2%) so that no
significant sub-graphs are missed. Frequent sub-graph mining algorithms typically proceed
in an “Apriori manner” starting with one edge candidate sub-graphs, and proceeding to two
edge sub-graphs and so until there are no more sub-graphs to be discovered. At each iter-
ation k, the s values are determined for each k sized candidate sub-graph and those graphs
whose s value is less than σ are removed (pruned). On the next k + 1 iteration knowledge of
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the identified k sub-graphs is used to generate the k + 1 set of candidate sub-graphs.

Note that the lower the value of σ the greater the number of frequent sub-graphs that
will be identified. Because low values of σ are typically used a great number of frequent
sub-graphs may be identified. In many cases the number of sub-graphs is unmanageble.
However, many of the discovered subgraphs are often found to be redundant (subsets of
other graphs). To address this issue weighting schemes have been produced so that only
significant frequent sub-graphs are discovered. In our case the weightings were calculated
according to the reverse distance of individual nodes to the root node in each tree. This
weighting concept was built into a variation of the well known gSpan algorithm [Yan and
Han, 2002]. The algorithm operates in an Apriori manner, level by level, following the
“generate, calculate support, prune” loop described above. A detailed description of this
weighted sub-graph mining algorithm adopted with respect to the work described in this
paper can be found in [Jiang and Coenen, 2008] and [Jiang et al., 2010]. Frequent sub-graph
mining is a substantial topic within the domain of data mining and any more detailed dis-
cussion is beyond the scope of this paper. However a detailed review of the subject can be
found in [Jiang et al., 2013].

The identified frequent sub-trees (graphs) each describing, in terms of size and shape,
some part of a corpus callosum that occurs regularly across the data set, are then used to
form the fundamental elements of a feature space. In this context a feature space is an N
dimensional space where N is equivalent to the number of features and each feature is a
numerically valued attribute. In our case each feature is a frequently occurring sub-graph
with the values 0 and 1 associated with it (0 if it is absent in a particular image, and 1 if
it is present), we say that the attributes are “binary valued”. Using this feature space each
image (corpus callosum) can be described in terms of a feature vector of length N, with each
element corresponding a particular feature (sub-graph) and having either the value 0 or 1
(thus the image set can be described in terms of a set of binary valued vectors) .

As noted above the graph mining process typically identifies a great many frequent sub-
graphs; more than that required for the desired classification. Therefore a feature selection
strategy is applied to the feature space so that only those sub-graphs that serve as good dis-
criminators between classes are retained. A straightforward wrapper method was adopted
whereby a decision tree generator was applied to the feature space. Features included as
“choice points” in the decision tree were then selected2, while all remaining features were
discarded. For the work described here, the well established C4.5 algorithm [Quinlan, 1993]
was adopted, although any other decision tree generator will suffice. On completion of the
feature selection process each image is described in terms of a reduced binary-valued fea-
ture vector indicating the selected features (sub-graphs) that appear in the image. Once the
image set has been represented in this manner any appropriate classifier generator may be
applied. For additional information regarding the graph based approach, including the tes-
selation process, interested readers are referred to [Elsayed et al., 2010b]. With respect to
the work described here, the C4.5 decision tree generator was again used to produce the de-
sired classifier. Readers wishing to gain an additional insight to decision tree classifiers are
referred to [Rokach and Maimon, 2008].

2Decision trees are a type of decision support tool that use a tree model of decisions and their possible out-
comes. The nodes in the decision tree are referred to as “choice points”.
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Figure 5: Conversion of corpus callosum into time series.

5 Time Series Based Approach

As in the case of the graph based approach, the time series based approach commences with
the segmentation and registration of the input images. Note that in the context of this pa-
per the precise nature of the ROI segmentation technique is not significant, although for the
work described we used graph based image segmentation technique proposed by Felzen-
szwalb and Huttenlocher [Felzenszwalb and Huttenlocher, 2004]. Once the ROI have been
segmented and identified the next step is to derive a time series according to the boundary
line circumscribing the corpus callosum. Note the phrase "time series" is used with respect to
the adopted representation because the proposed corpus callosum classification technique is
founded on work in time series analysis, not because the representation includes some tem-
poral dimension.

Using the proposed technique the time series is generated using an ordered sequence
of M “spokes” radiating out from a single reference point. The derived time series is then
expressed as a series of values (one for each spoke) describing the size (length) of intersection
of the vector with the ROI. The representation thus maintains the structural information
(shape and size) of the corpus callosum. It should also be noted that the value of M may
vary due to the differences of the shape and size of the individual ROI within the image data
set.

With respect to the corpus callosum application the time series generation procedure is
illustrated in Figure 5. The midpoint of the lower edge of the Minimum Bounding Rectangle
(MBR) was selected as the reference point. This was chosen as this would ensure that there
was only one intersection per spoke. The vectors were derived by rotating an arc about the
reference point pixel. The interval between spokes was one pixel measured along the edge
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Table 1: Details of datasets used.
Data Set TE TR Flip FOV # Voxel

(ms) (ms) Ang.◦ (mm2) Slices Size (mm)
Musicians 9.0 34 30 200 192 0.781× 0.781× 1.6
& Epilepsy

Handedness 5.57 2040 8 256 176 1× 1× 1

of the MBR. For each spoke, the distance Di (where i is the spoke identification number) was
measured over which the spoke intersected with the corpus callosum pixels. The result was
a time series with the spoke number i representing time and the value Di, for each spoke,
the magnitude. By plotting Di against i a time series was derived as shown in Figure 5.

Each time series is then conceptualised as a proto-type or case contained in a Case Base
(CB), to which a Case Based Reasoning (CBR) mechanism can be applied. CBR is a branch
of Artificial Intelligence (AI) founded on the idea that humans solve problems according to
their experience, i.e. CBR conjectures that humans solve problems by attempting to match
previous successfully addressed problems to the current problem. As such a CBR system
comprises a Case Base (CB) and some matching strategy to align a new problem (case) with
with previously solved problems (cases) in the CB. Typically it will not be possible to find an
exact match and thus the matching strategy will have to find the most relevant case or cases.
The CBR community has proposed many techniques to identify the desired best match, and
derivation of optimum matching strategies remains a topic of research with the domain of
CBR. Case Based Reasoning (CBR) has a well established body of literature associated with
it. Recommended reference works include [Leake, 1996] and [Kolodner, 1993]. For a review
of the application of CBR in medical domains see [Bichindaritz and Marling, 2006] or [Holt
et al., 2005].

CBR can be used for classification purposes [Pal et al., 2011] where, given an unseen
record (case), the record can be classified according to the “best match” discovered in the
CB. With respect to the corpus callosum application, the CB comprises a set of pre-labelled
(classified) time series, each describing a corpus callosum record. A time series matching
strategy was then adopted to identify a best match with a new (“unseen”) corpus callosum
time series. More specifically a Dynamic Type Warping (DTW) time series analysis technique
for comparing curves [Berndt and Clifford, 1994] has been adopted. The advantage offered
by DTW is that it is able to find the optimal alignment between two time series Q and C, of
length n and m respectively where n does not necessarily have to be equal to m.

DTW operates as follows. Given a query sequence Q = {q1, q2, . . . , qi, . . . , qn}, which we
wish to compare with a comparitor sequence C = {c1, c2, . . . , cj, . . . , cm}, with the aim of (say)
classifying Q. These two sequences can be compared by first constructing a n×m grid (ma-
trix) such that the value for element < i, j > is the squared euclidean distance from point cj
on curve C to point qi on curve Q. If Q and C are identical the values at grid points < i, j >,
where i = j, will be zero. The best match between the two sequences Q and C is the warping
path that minimises the total cumulative distance (grid values) from < 0, 0 > to < n, m >.
A warping path is any contiguous set of matrix elements from < 0, 0 > to < n, m >. The
warping cost associated with a particular path is its cumulative distance. Given two identical
series the warping path will be zero.
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6 Evaluation

To evaluate and compare the two proposed approaches three scenarios were considered: dis-
tinguishing between musicians and non-musicians, left-handedness and right-handedness,
and epilepsy patients and healthy subjects. For the musicians study, a data set comprising
106 MR images was used, 53 representing musicians and 53 non-musicians (i.e. two equal
classes). The scans were obtained using a Siemens 1.5 Tesla scanner. The study was of inter-
est because of the conjecture that the size and shape of the corpus callosum reflects human
abilities (such as a mathematical or musical ability). There is significant evidence, amongst
the medical community, that traits such as musical ability, influence the shape and size of
the corpus callosum. It should be noted that a visual inspection of the MR images does not
indicate any discernible distinction between the two categories. For the handedness study,
a data set comprising 82 MR images was used, 42 representing right-handed and 40 left-
handed. The data was obtained using a Siemens Trio 3 Tesla whole body MRI system. The
study was of interest because of the conjecture that the size and shape of the corpus callosum
reflects certain human characteristics (such as handedness). For the epilepsy study, a data
set comprising 212 MR images was used. The data set comprised the 106 MR images used
for the musicians study, augmented with 106 epilepsy cases. The latter were also obtained
using a Siemens 1.5 Tesla scanner. The objective was to seek support for the conjecture that
the shape and size of the corpus callosm is influenced by conditions such as epilepsy ([Con-
lon and Trimble, 1988, Riley et al., 2010, Weber et al., 2007]). In all cases the data sets were
balanced in terms of age, sex etc. To the best knowledge of the authors the musicians study
did not include any epilepsy patients. Some further background details concerning the data
sets is given in Table 1.

Table 2: TCV Classification accuracy (%)
for musicians study using GB and TSB ap-
proaches.

Test set ID GB TSB
1 100 91
2 100 100
3 91 91
4 91 100
5 100 100
6 90 100
7 100 100
8 90 100
9 91 100

10 100 100
Average 95.3 98.2
SD (σ) 4.97 3.79

Table 3: TCV Classification accuracy (%)
for handedness study using GB and TSB
approaches.

Test set ID GB TSB
1 100 100
2 88 100
3 89 100
4 100 89
5 88 88
6 88 88
7 100 100
8 88 100
9 100 100

10 100 100
Average 94.1 96.5
SD (σ) 6.23 5.64

Ten-fold Cross Validation (TCV) was used through out the evaluation. TCV is a well
established statistical evaluation technique on the lines of “leave one out”. Given a data set
we divide it into tenths and then run the evaluation 10 times, testing on a different 1/10th
each time, and training on the remaining 9/10ths. Thus, in the case of the musicians data

http://www.bmva.org/annals/2007/2007-0001.pdf
http://www.bmva.org/w/doku.php?id=annals_of_the_bmva


10 ELSAYED, COENEN, GARCÍA-FIÑANA2 AND SLUMING: CLASSIFICATION OF MRI DATA
Annals of the BMVA Vol. 2007, No. 1, pp 1–14 (2007)

Table 4: TCV Classification accuracy (%) for epilepsy study using GB and TSB approaches.
Test set ID GB TSB

1 91 82
2 86 77
3 90 81
4 86 76
5 95 86
6 81 71
7 90 81
8 86 71
9 77 71

10 81 76
Average 86.3 77.2
SD (σ) 5.46 5.26

Table 5: TCV Classification accuracy (%) using the graph based technique with different
levels of decomposition (musicians study).

Support Threshold (%)
Levels 20 30 40 50 60 70 80 90

4 71 70 69 72 69 62 53 51
5 91 84 80 86 80 81 80 71
6 86 95 85 84 91 84 77 75
7 84 86 90 87 88 75 76 78

set, the test set will comprise 10 or 11 records and the training set the remainder. The idea is
that TCV will smooth out any irregularities in the ordering of the data.

Table 2 presents TCV classification results for the musicians study obtained using the
proposed techniques. The columns labelled GB (Graph Based) and TSB (Time Series Based)
indicate the classification accuracy obtained for each tenth. With respect to the GB approach
a quad tree of depth 6 (decomposition level), coupled with a 30% support threshold for the
graph mining, produced the best classification accuracy. Note that with respect to Table 2
the test set comprised either 10 or 11 records, thus for each test run all or all but one of the
test cases were classified correctly. Table 3 shows the TCV classification results with respect
to the handedness data and Table 4 the results obtained with respect to the epilepsy data.

Table 6: TCV Classification accuracy (%) using graph based technique with different levels
of decomposition (handedness study).

Support Threshold (%)
Levels 20 30 40 50 60 70 80 90

4 67 68 70 71 67 60 51 49
5 78 83 89 84 79 78 78 69
6 84 94 89 84 83 79 76 74
7 83 84 88 87 85 77 74 72
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Table 7: TCV Classification accuracy (%) using graph based technique with different levels
of decomposition (epilepsy study).

Support Threshold (%)
Levels 20 30 40 50 60 70 80 90

4 59 61 63 60 60 52 44 42
5 77 82 77 75 72 68 62 59
6 82 86 80 76 73 67 65 62
7 75 77 79 80 78 70 63 60

From the tables (2, 3 and 4) it can be seen that excellent results were obtained throughout.
The time series based approach produced the best classification results, in terms of accuracy,
with respect to the musicians and handedness studies, while the graph based approach pro-
duced the best results with respect to the epilepsy study. Best overall classification accuracy
results were obtained using the musicians study (Table 2); for the majority of the TCV runs
a 100% accuracy was obtained using the time series based approach. Good results were
also obtained with respect to the handedness study (Table 3) with some TCV runs produc-
ing 100% accuracies (again using the time series based approach). The techniques did not
perform as well for the epilepsy study (Table 4) although the 86% overall classification accu-
racy obtained using the graph based approach was still reasonable (significantly better than
chance). The suspicion here is that results reflect the fact that although the nature of the
corpus callosum may play a part in the identification of epilepsy there are also other factors
involved. Based on the data there is not sufficient statistical evidence to conclusively suggest
that the TSB approach provides better accuracy than the GB approach for the musicians and
handedness data sets (P-values>0.05). On the other hand, statistical comparison indicates
that the GB approach provides better accuracy than than the TSB approach for the epilepsy
data set (P<0.01).

Tables 5, 6 and 7 give some further evaluation results, using the graph based technique,
with respect to the musicians, handedness and epilepsy studies. The tables present the TCV
accuracy results obtained using a variety of quad-tree depths and support thresholds. From
the table it can be seen that a decomposition level of 6 coupled with a support threshold of
30% seem to be the most appropriate values in the context of classification accuracy. These
were also the values used for the experiments reported in Tables 2, 3 and 4).

7 Conclusions

Two approaches to the classification of MRI brain scans according to the nature of the cor-
pus callosum, founded on graph mining and time series analysis respectively, have been
described. The most noteworthy element of the work is the high classification accuracy ob-
tained for both approaches; in terms of accuracy the time series approach out performs the
graph based approach in the case of the musicians and handedness data sets, and the graph
based approach produced the best result in the case of the epilepsy data set. The results were
of particular interest because visual inspection of the segmented images indicated that there
was no discernible distinction between the images. The research team is currently working
on mechanisms whereby “explanations” can be generated to describe the reasons for partic-
ular classifications in terms of the nature of the corpus callosum. The intention is to generate

http://www.bmva.org/annals/2007/2007-0001.pdf
http://www.bmva.org/w/doku.php?id=annals_of_the_bmva


12 ELSAYED, COENEN, GARCÍA-FIÑANA2 AND SLUMING: CLASSIFICATION OF MRI DATA
Annals of the BMVA Vol. 2007, No. 1, pp 1–14 (2007)

explanations so that clinicians can determine why a certain classification arose, not to invent
reasons to justify results. For example we might want to highlight that a particular classifi-
cation occurred because of some feature on the time series curve or because of the presence
of some protuberance on the corpus callosum indicated by a particular type of sub-graph.
Alternative mechanisms to those described in this paper, whereby the quantitative aspects
of the structure of image objects can be described, are reported in the literature; one example
is Geometric Texton Theory (GTT) [Griffin et al., 2004, Griffin, 2005]. These alternative mech-
anisms may provide further fruitful means where by the nature of MRI brain scan objects
can be captured for the purpose of input to classification algorithm, and thus will also merit
further investigation.
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