A Weighted Utility Framework for Mining Association Rules

Muhammad Sulaiman Khan¹ Maybin Muyeba¹ Frans Coenen²

¹Liverpool Hope University ²The University of Liverpool

Overview

Organised as follows:

- Introduction
 - Association Rule Mining (ARM)
 - Downward Closure Property (DCP)
 - Weighted ARM
- Our Contribution
 - Weighted Utility Hybrid Framework
- Methodology
- Simulated Example
- Evaluation
 - Dataset
 - Quality Measures
 - Performance Measures
- Conclusion

Introduction

- Data Mining
- Association Rule Mining (ARM)
- Qualitative vs Quantitative
 - Database count
 - Items' significance
 - Items' frequencies
- Standard ARM only deals with database count
- Standard AR's may contribute only a small portion of the overall company profit
- Anti-monotonic property does not hold

Introduction

Table 1. Weighted items table

D	Item	Profit	Weight	
1	Shirt	£10	0.1	
2	Jean	£25	0.3	
3	Jacket	£50	0.6	
4	Suit	£80	0.9	

Tid	Shirt	Jean	Jacket	Suit
1	1	1	0	1
2	0	2	1	0
3	1	1	2	1
4	1	0	1	1

[jeans \rightarrow suit, 50%]

[shirt \rightarrow suit, 75%]

Association Rule Mining

Association Rules Mining

- Data Mining Technique
- Determine customer buying Patterns from market basket data/Transactions.
- Association rules are of the form

 $X \rightarrow Y$

- where X and Y are item sets and
- Measures

Support: Supp $(X \rightarrow Y) =$ Supp $(X \cup Y)$

Confidence: Conf $(X \rightarrow Y) = \text{Supp} (X \cup Y)/\text{Supp} (X)$

Downward Closure (DCP)

Downward Closure Property (DCP)

- Subsets of a frequent set are also frequent.
 e.g. if {A,B,C} is a frequent set then {A,B}, {A,C} and {B,C} will also be frequent.
- Applications
 - Help algorithms to generate large itemsets of increasing size by adding items to itemsets that are already large.
 - we assume that if AB and BC are not frequent, then ABC and BCD cannot be frequent so we don't consider generating the supersets that contain non-frequent itemsets.

Weighted Association Rule Mining

Standard ARM model assumes that all items have the same significance without taking account of their weight within a transaction or record.

For example rules:

A: [computer \rightarrow monitor, 5%, 80%], B: [printer \rightarrow scanner, 13%, 80%]

In standard ARM rule **B** is more important than rule **A** because rule **B** has higher support than rule **A**.

But in weighted ARM with weighted settings rule **A** may be more important than rule **B**, even though the former holds a lower support.

This is because those items in the first rule usually come with more profit per unit sale, but the standard ARM simply ignores this difference.

Our Contribution

- Weighted Utility ARM (Hybrid Framework)
- WUARM as extension of weighted and Utility ARM
 - Significance of itemsets
 - Frequency of itemsets
- Weighted Utility of an itemset
 - Transactional Utility:
 - It is the frequency of occurrences or quantity of an item in a transaction.
 - Item significance:
 - It is the value representing significance of an item (value, profit etc) and it holds across the dataset.
- Item sets holds DCP
- WUARM: modified Apriori algorithm

Proposed Methodology

- Item Weight $w(i_j)$ Weighted TableWT(I,W)Item Utility $t_q(i_j,u)$ Item Weighted Utility $t_i[(w(i_j),u)]$ Transaction Weighted Utility $twu(t_i) = \frac{\sum_{j=1}^{|t_j|} t_i[(u_j),u_j]}{|t_j|}$
- Weighted Utility Support

 $t_i[(w(i_i), u)]$ $twu(t_{i}) = \frac{\sum_{j=1}^{|t_{i}|} t_{i}[(w(i_{j}), u)]}{|t_{i}|}$ $wus(XY) = \frac{\sum_{i=1}^{|S|} twu(t_i)}{\sum_{i=1}^{|T|}}$ $\sum_{i=1}^{|I|} twu(t_i)$ $S = \{S \mid S \subseteq T, X \cup Y \in S\}$

Simulation

Table 3. Weighted items table

Items i	Profit	Weights w
Α	£60	0.6
В	£10	0.1
С	£30	0.3
D	£90	0.9
E	£20	0.2

Table 4. Transaction database with transactional weighted utilities of items

Items	Α	В	С	D	E	twu
1	1	1	4	1	0	0.700
2	0	1	0	3	0	1.400
3	2	0	0	1	0	1.050
4	0	0	1	0	0	0.300
5	1	2	0	1	3	0.575
6	1	1	1	1	1	0.420
7	0	2	3	0	1	0.433
8	0	0	0	1	2	0.650
9	7	0	1	1	0	1.800
10	0	1	1	1	1	0.375
	Weighted Utility count					7.703

Table 5. Weighted utility mining comparison

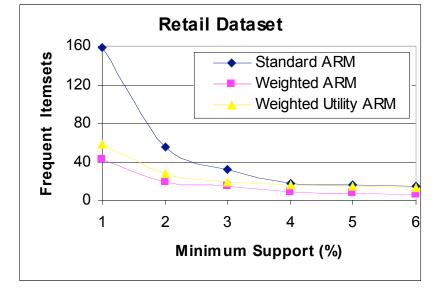
#	Standard ARM	Weighted ARM	Weighted Utility
			ARM
1.	A (50%)	A (30%)	A (0.59)
	A→B (30%)	A→B (21%)	A→B (0.22)
	A→B→C (20%)	A→B→C (20%)	A→B→C (0.14)
	A→B→C→D (20%)	A→B→C→D (38%)	A→B→C→D (0.14)
5.	$A \rightarrow B \rightarrow C \rightarrow D \rightarrow E(10\%)$	$A \rightarrow B \rightarrow C \rightarrow D \rightarrow E(21\%)$	$A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$ (0.05)
	A→B→C→E (10%)	A→B→C→E (12%)	A→B→C→E (0.05)
	A→B→D (30%)	A→B→D (48%)	A→B→D (0.22)
	A→B→D→E (20%)	A→B→D→E (36%)	A→B→D→E (0.13)
	A→B→E (20%)	A→B→E (18%)	A→B→E (0.13)
10.	A→C (30%)	A→C (27%)	A→C (0.38)
	A→C→D (30%)	A→C→D (54%)	A→C→D (0.38)
	A→C→D→E (10%)	A→C→D→E (20%)	A→C→D→E (0.05)
	A→C→E (10%)	A→C→E (11%)	A→C→E (0.05)
14.	A→D (50%)	A→D (75%)	A→D (0.590)
	A→D→E (20%)	A→D→E (34%)	A→D→E (0.13)
	A→E (20%)	A→E (16%)	A→E (0.13)
	B (60%)	B (6%)	B (0.51)
	B→C (40%)	B→C (16%)	B→C (0.25)
	B→C→D (30%)	B→C→D (39%)	B→C→D (0.19)
	B→C→D→E (20%)	B→C→D→E (30%)	B→C→D→E (0.10)
21.	B→C→E (30%)	B→C→E (18%)	B→C→E (0.16)
22.	B→D (50%)	B→D (50%)	B→D (0.45)
	B→D→E (30%)	B→D→E (36%)	B→D→E (0.18)
24.	B→E (40%)	B→E (12%)	B→E (0.23)
25.	C (60%)	C (18%)	C (0.52)
26.	C→D (40%)	C→D (48%)	C→D (0.43)
	C→D→E (20%)	C→D→E (28%)	C→D→E (0.10)
	C→E (30%)	C→E (15%)	C→E (0.16)
	D (80%)	D (72%)	D (0.90)
	D→E (40%)	D→E (44%)	D→E (0.26)
31.	E (50%)	E (10%)	E (0.32)

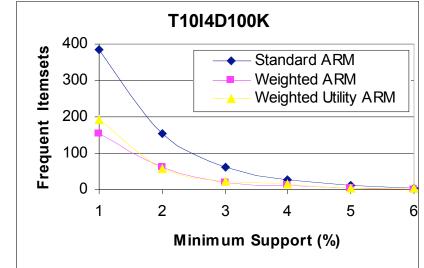
Dataset

Dataset	No. of Transactions	Distinct Items	Avg. Transaction Size	Max. Transaction Size
Retail	88,162	16,469	10.3	76
T10I4D100K	100,000	1000	10.1	30

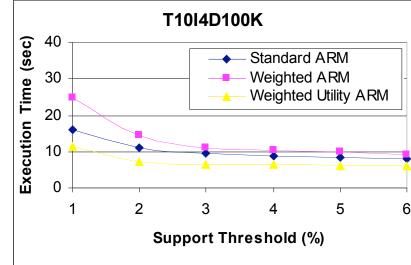
- Table characterises the two datasets in terms of
 - number of transactions
 - number of distinct items
 - average transaction size
 - maximum transaction size
- It is worth mentioning that both datasets contains sparse data, since most association rules discovery algorithms were designed for these types of problems.

Quality Measures





Performance Measures



Applications

Proposed approach is widely applicable, e.g.

- In identifying high profit items with frequent sales, significant weight and high utility, which could be helpful for retail owners and managers to determine
- valuable items
- and in decision making for
 - shelf re-arrangements
 - promotional offers
 - catalogue design
 - cross marketing
 - loss leader analysis etc.

Conclusion

In this paper, we have presented

- Hybrid framework for mining Weighted Utility ARs
- Items significance and frequencies
- Itemsets holds DCP
- Methodology
- Experimental evaluation
 - Real and Synthetic datasets
 - Quality Measures
 - Performance Measures
 - WUARM: efficient modified Apriori algorithm
 - The experiments also show that the algorithm is scalable.
- Application
- Future work

