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Overview and Motivation
• An approach to distributed/parallel ARM 

(DATADATA--VPVP) is presented that makes use of a 
vertical partitioning strategy to distribute the 
input data set.

• Features:
1. Founded on a compressed set enumeration tree (the 

TT--treetree) together with an associated ARM algorithm 
(AprioriApriori--T)T).

2. Partitions can be mined in isolation.
3. Partitioning is such that the possibility of the 

existence of large itemsets dispersed across partitions 
is taken into account.
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The Total Support Tree (T-tree)

Support Threshold = 25%
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The Apriori-T Algorithm
• Combines classic Apriori algorithm with T-tree 

data structure, i.e. tree generated level by level.
• Candidate K itemsets are produced using 

“downward closure property of itemsets”.
• Includes “X-checking” --- neighbouring 

branches of the T-tree (sofar) inspected to 
determine if a given K-1 subset is supported.

• X-checking has a corresponding overhead.

Note: Authors have developed other tree based ARM algorithms, e.g. 
Apriori-TFP.



Advantages
1. Fast traversal of the tree using indexing 

mechanisms, and 
2. Reduced storage, in that itemset labels are not 

required to be explicitly stored; thus no sibling 
references/pointers are required (although this is 
partially offset by storage required for array 
elements associated with roots of unsupported 
branches).



Distributed/Parallel ARM
• Still a desire to (i) analyse increasingly larger data 

sets and (ii) achieve better computational 
effectiveness.

• One possible solution is distributed/parallel ARM

Distributed ARM algorithms may be classified according 
to two categories

1. Data distribution (segmentation and partitioning).
2. Candidate set distribution (also called task 

distribution).



Distributed Apriori-T Algorithm with 
Data Distribution (DATA-DD)

Features horizontal segmentation of data
DATA-DD Algorithm

• Each process generates a level K local T-tree for its allocated 
segment.

• Processes share level K details so that each has a complete T-
tree up to level K.

• Processes prune their versions of the T-tree sofar.
• Repeat for further levels until no more candidate sets.

Principal Disadvantage: Messaging Overhead in 
terms of (i) number of messages and (ii) size of 
content of messages.



Distributed Apriori-T Algorithm with 
Task Distribution (DATA-TD)

Each process has access to the entire data set and candidate 
sets distributed amongst processes

DATA-TD Algorithm
• Each process generates its level K candidate sets according to some agreed 

approach (“round robin”, partitioning). 
• Process generates a level K local T-tree for their candidate sets.
• Processes share level K details so that each has a complete T-tree up to level K.
• Processes prune their versions of the tree sofar.
• Repeat for further levels until no more candidate sets.

Principal Disadvantage: Messaging Overhead in terms of (i) 
number of messages and (ii) size of content of messages 
(but less than DATA-DD which shares data about all
candidate sets).



Distributed Apriori-T Algorithm with 
Vertical Partitioning (DATA-VP)

Features “vertical” partitioning of data.

DATA-VP Algorithm
• Each process generates an entire T-tree for its partition (X-

checking only within partitions)
• On completion processes share T-tree details so that each 

has a complete global T-tree.



Vertical Partitioning
Single attributes in the data set split so that each process 

has its own allocationItemSet (AIS).

allocationItemSet = 
{n¦startColNum<n<=endColNum}

VP Algorithm
∀records in input data

if (record ∩ allocationItemSet ≡ true)
record={n¦n in record & n<=endColNum}

else delete record in input data
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DATA-VP Example 2 (With Data Reordering)
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Some Results (T20.I10.D500K.N500)

Implementation: Java, JavaSpaces
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Advantages of DATA-VP

• Minimal amount of message passing compared 
to DATA-DD and DATA-TD.

• Minimal message size, especially with respect to 
DATA-DD.

• Enhanced efficiency as the number of processes 
increases, unlike DATA-DD.



Summary and Conclusions

1. Experiments show that the DATA-VP approach  
performs much better than those methods that use data 
and task distribution (especially if we order the data).

2. This is largely due to the T-tree data structure which: (a) 
facilitates vertical partitioning of the input data, and (b) 
readily lends itself to distribution/parallelisation. 

3. More generally we have demonstrated that both the T-
tree data structure and the Apriori-T algorithm are good 
generic mechanisms that can be used effectively to 
implement many approaches to distributed/parallel 
ARM.


