
T-Trees, Vertical Partitioning
and Distributed Association Rule

Mining

Frans Coenen, Paul Leng and Shakil Ahmed
Department of Computer Science, The University

of Liverpool
Liverpool, L69 3BX, UK

{frans,phl,shakil}@csc.liv.ac.uk

Overview and Motivation
• An approach to distributed/parallel ARM

(DATADATA--VPVP) is presented that makes use of a
vertical partitioning strategy to distribute the
input data set.

• Features:
1. Founded on a compressed set enumeration tree (the

TT--treetree) together with an associated ARM algorithm
(AprioriApriori--T)T).

2. Partitions can be mined in isolation.
3. Partitioning is such that the possibility of the

existence of large itemsets dispersed across partitions
is taken into account.

The Total Support Tree (T-tree)

A B C D E

B C D E

C D E

D E

E

The Total Support Tree (T-tree)

Support Threshold = 25%

Number of frequent sets = 15

B
2

4

2

C
3

B
2

D
4

B
2

5

2

E

B C
3

B
2

D

B C
3

B
2

C
3

B
2A B C D E

B C D E

C D E

D E

E

5

E

Ø 4

D

2 3

C

Ø

A B

Ø 4

D

2 3

C

Ø

A B

Ø 2 3

C

Ø

A B

Ø 2
Ø

A B

Ø 2
Ø

A B

Ø 2 3

C

Ø

A B

Ø 2
Ø

A B

Ø
2
Ø

A B

T-tree Internal
Representation

The Apriori-T Algorithm
• Combines classic Apriori algorithm with T-tree

data structure, i.e. tree generated level by level.
• Candidate K itemsets are produced using

“downward closure property of itemsets”.
• Includes “X-checking” --- neighbouring

branches of the T-tree (sofar) inspected to
determine if a given K-1 subset is supported.

• X-checking has a corresponding overhead.

Note: Authors have developed other tree based ARM algorithms, e.g.
Apriori-TFP.

Advantages
1. Fast traversal of the tree using indexing

mechanisms, and
2. Reduced storage, in that itemset labels are not

required to be explicitly stored; thus no sibling
references/pointers are required (although this is
partially offset by storage required for array
elements associated with roots of unsupported
branches).

Distributed/Parallel ARM
• Still a desire to (i) analyse increasingly larger data

sets and (ii) achieve better computational
effectiveness.

• One possible solution is distributed/parallel ARM

Distributed ARM algorithms may be classified according
to two categories

1. Data distribution (segmentation and partitioning).
2. Candidate set distribution (also called task

distribution).

Distributed Apriori-T Algorithm with
Data Distribution (DATA-DD)

Features horizontal segmentation of data
DATA-DD Algorithm

• Each process generates a level K local T-tree for its allocated
segment.

• Processes share level K details so that each has a complete T-
tree up to level K.

• Processes prune their versions of the T-tree sofar.
• Repeat for further levels until no more candidate sets.

Principal Disadvantage: Messaging Overhead in
terms of (i) number of messages and (ii) size of
content of messages.

Distributed Apriori-T Algorithm with
Task Distribution (DATA-TD)

Each process has access to the entire data set and candidate
sets distributed amongst processes

DATA-TD Algorithm
• Each process generates its level K candidate sets according to some agreed

approach (“round robin”, partitioning).
• Process generates a level K local T-tree for their candidate sets.
• Processes share level K details so that each has a complete T-tree up to level K.
• Processes prune their versions of the tree sofar.
• Repeat for further levels until no more candidate sets.

Principal Disadvantage: Messaging Overhead in terms of (i)
number of messages and (ii) size of content of messages
(but less than DATA-DD which shares data about all
candidate sets).

Distributed Apriori-T Algorithm with
Vertical Partitioning (DATA-VP)

Features “vertical” partitioning of data.

DATA-VP Algorithm
• Each process generates an entire T-tree for its partition (X-

checking only within partitions)
• On completion processes share T-tree details so that each

has a complete global T-tree.

Vertical Partitioning
Single attributes in the data set split so that each process

has its own allocationItemSet (AIS).

allocationItemSet =
{n¦startColNum<n<=endColNum}

VP Algorithm
∀records in input data

if (record ∩ allocationItemSet ≡ true)
record={n¦n in record & n<=endColNum}

else delete record in input data

DATA-VP Example 1
A B C D E
B C D E
C D E
D E
E

DATA-VP Example 1
A B C D E
B C D E
C D E
D E
E

Data Partitioning

AIS = {A,B,C} AIS = {D,E}

DATA-VP Example 1

A B C
B C
C
-
-

A B C D E
B C D E
C D E
D E
E

Data Partitioning

AIS = {A,B,C} AIS = {D,E}

DATA-VP Example 1

A B C
B C
C
-
-

A B C D E
B C D E
C D E
D E
E

A B C D E
B C D E
C D E
D E
EData Partitioning

AIS = {A,B,C} AIS = {D,E}

DATA-VP Example 1

A B C
B C
C
-
-

A B C D E
B C D E
C D E
D E
E

A B C D E
B C D E
C D E
D E
EData Partitioning

B
2

C
3

B
2

Num. frequent sets = 3

Support
Threshold

= 25%

AIS = {A,B,C} AIS = {D,E}

DATA-VP Example 1

A B C
B C
C
-
-

A B C D E
B C D E
C D E
D E
E

A B C D E
B C D E
C D E
D E
EData Partitioning

4

2

D
4

B
2

5

2

E

B C
3

B
2

D

B C
3

B
2

C
3

B
2

B
2

C
3

B
2

Num. frequent sets = 12Num. frequent sets = 3

Support
Threshold

= 25%

AIS = {A,B,C} AIS = {D,E}

DATA-VP Example 2 (With Data Reordering)

A B C D E
B C D E
C D E
D E
E

DATA-VP Example 2
E D C B A

E D C B
E D C

E D

E

(With Data Reordering)

A B C D E
B C D E
C D E
D E
E

Data Reordering

DATA-VP Example 2
E D C B A

E D C B
E D C

E D

E

(With Data Reordering)

A B C D E
B C D E
C D E
D E
E

Data Reordering

AIS = {E,D,C} AIS = {B,A}

DATA-VP Example 2
E D C B A

E D C B
E D C

E D

E

(With Data Reordering)

A B C D E
B C D E
C D E
D E
E

Data Reordering

E D C
E D C
E D C
E D
E

AIS = {E,D,C} AIS = {B,A}

DATA-VP Example 2
E D C B A

E D C B
E D C

E D

E

E D C B A
E D C B
-
-
-

(With Data Reordering)

A B C D E
B C D E
C D E
D E
E

Data Reordering

E D C
E D C
E D C
E D
E

AIS = {E,D,C} AIS = {B,A}

DATA-VP Example 2
E D C B A

E D C B
E D C

E D

E

E D C B A
E D C B
-
-
-

Support
Threshold = 25%

(With Data Reordering)

A B C D E
B C D E
C D E
D E
E

Data Reordering
E

5
D

4

E
4

C
3

E
3

D
3

E
3

Num. frequent sets = 7

E D C
E D C
E D C
E D
E

AIS = {E,D,C} AIS = {B,A}

DATA-VP Example 2
E D C B A

E D C B
E D C

E D

E

E D C B A
E D C B
-
-
-

Support
Threshold = 25%

(With Data Reordering)

A B C D E
B C D E
C D E
D E
E

Data Reordering
E

5
D

4

E
4

C
3

E
3

D
3

E
3

Num. frequent sets = 7

2

2

2

2

B

E D
2

E
2

C

E D
2

E
2

Num. frequent sets = 8

E D C
E D C
E D C
E D
E

AIS = {E,D,C} AIS = {B,A}

Some Results (T20.I10.D500K.N500)

Implementation: Java, JavaSpaces

DATA-DD
Apriori-T

DATA-VP
DATA-TD

13
15

3
9

16
19

4
9

25
31

10
16

99
95

31
66

Processing time (Seconds)

5
1

5
5

2.0 1.5 1.0 0.5
Support % # Proc-

essesALGORITHM

Advantages of DATA-VP

• Minimal amount of message passing compared
to DATA-DD and DATA-TD.

• Minimal message size, especially with respect to
DATA-DD.

• Enhanced efficiency as the number of processes
increases, unlike DATA-DD.

Summary and Conclusions

1. Experiments show that the DATA-VP approach
performs much better than those methods that use data
and task distribution (especially if we order the data).

2. This is largely due to the T-tree data structure which: (a)
facilitates vertical partitioning of the input data, and (b)
readily lends itself to distribution/parallelisation.

3. More generally we have demonstrated that both the T-
tree data structure and the Apriori-T algorithm are good
generic mechanisms that can be used effectively to
implement many approaches to distributed/parallel
ARM.

