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Abstract—In this paper an innovative approach to keyboard
user monitoring (authentication), using keyboard dynamics and
founded on the concept of time series analysis, is presented. The
work is motivated by the need for robust authentication mecha-
nisms in the context of on-line assessment such as those featured
in many online learning platforms. Four analysis mechanisms are
considered: analysis of keystroke time series in their raw form
(without any translation), analysis consequent to translating the
time series into a more compact form using either the Discrete
Fourier Transform or the Discrete Wavelet Transform, and a
“benchmark” feature vector representation of the form typically
used in related previous work. All for mechanisms are fully
described and evaluated. A best accuracy of 99% was obtained
using the wavelet transform.

I. INTRODUCTION

It has been well established that the way that individuals
use (interact with) keyboards is unique to each individual
[1]. Individuals have unique “typing patterns” associated with
them. These patterns are a form of biometric that can be used
to identify, or authenticate, keyboard users, in an automated
manner; a process known as keystroke or typing dynamics
[2], [3]. Authentication using keystroke dynamics can be
conducted in either a static or a continuous manner, depending
on the nature of the application domain under consideration.
Static authentication is typically used in the context of one-
off authentication, for example authenticating users entering
passwords or pin numbers using access control keypads; in
other words users typing predefined (known) text [4], [5].
Dynamic authentication is typically used where individuals are
typing free (not predefined) text and there is a requirement to
continuously monitor (authenticate) the user’s identity [6], [7],
[81, [9], [10]. One application where continuous authentication
is applicable, and that of interest with respect to this paper,
is in the context of individuals completing online assessments
such as those featured in many online learning platforms.

The focus of the work presented in this paper is continuous
authentication. The reasons for this are as follows: (i) there
is little reported work concerning continuous authentication
using keystroke dynamics due to the challenges involved, and
(ii) the increasing prevalence of internet facilitated distance
learning (eLearning, Massive Open Online Courses and so on)
where continuous authentication is desirable.

In this paper, we introduce a novel mechanism for keystroke
continuous authentication, namely Keystroke Continuous Au-
thentication based Spectral Analysis (KCASA) model. The
proposed model is motivated by conceptualizing the process

of keyboard usage as a continuous stream of keystroke events,
thus as a time series which can be transformed into the spectral
domain to extract typing patterns. More specifically, the idea
is to convert a given keystroke stream from the temporal
domain (raw data) to the sinusoidal (frequency) domain. The
intuition is that such transformations for time series streams
lead to faster, and more accurate, detection of patterns [11],
[12]. Therefore, keystroke streams can be effectively employed
for real-time/continuous user authentication. In this study, two
types of spectral transform are considered: (i) Discrete Fourier
Transformation (DFT) and (ii) Discrete Wavelet Transform
(DWT).

The remainder of this paper is structured as follows. In
Section II, we provide a problem statement and discuss current
issues with respect to keystroke continuous authentication.
This is followed with Section III where definitions and pre-
liminaries concerning the proposed model are given. Section
IV then discusses the proposed process of finding similarity
between keystroke sinusoidal signals, while in Section V the
proposed KCASA model is presented. The evaluation of the
proposed approach is given in Section VI. Finally, the paper
is concluded with a summary of the main findings and some
recommendations for future work in Section VII.

II. PREVIOUS WORK

The fundamental approach of using keystroke dynamics
for user authentication is founded on two keystroke timing
features: (i) key hold time (K H?), the elapsed time between
a key press and a key release; and (i) flight time (),
the time between n consecutive key presses (releases), also
sometimes referred to as flight time latency or simply latency
[13]. Both can be indexed using either a temporal or a
consecutive numeric reference. Whatever the case both flight
time and hold time can be used to construct a distinctive typing
profile associated with individual users [2]. These profiles are
typically encapsulated using a feature vector representation
of some form. In other words, typing profiles are frequently
constructed using vectors of statistical values, such as the
average and standard deviation of hold times, or the digraph
flight time latency of selected frequently occurring digraphs.
Authentication is then operated by comparing the similarity
between stored feature vector represented typing (reference)
profiles, which are known to belong to a specific user, and
a previously unseen profile that is claimed to belong to a
particular user. Although there has been only limited reported



work directed at keystroke continuous keystroke authentica-
tion, what reported work there has been has used a feature
vector representation; this has met with some success.

However, there are some limitations regarding the utilization
of the feature vector representation in the context of keystroke
continuous authentication. One of the main limitations is that
the size of the feature vectors, a significant number of digraphs
and/or trigraphs has to be considered which is infeasible in
the context of real-time continuous authentication. In [7] the
feature vectors were composed of the flight time means of all
digraphs in the training dataset. The continuous authentication
was then conducted by repeatedly generating “test” feature
vectors for a given user, one every minute, and comparing
with stored reference profiles. If a statistically similar match
was found, then this was considered to be an indication of
user authentication. Although the typing profile was composed
of all digraph features, the overall reported accuracy was
a surprising 23%. Similarly, in [8] the mean and Standard
Deviation (SD) of the flight times for all digraphs and trigraphs
in the training dataset were used. Thus, an average of 6,390
digraphs was needed to make up a sufficient typing profile.

Some researchers have attempted to use an abstraction of
features to decrease the size of feature vectors. In [9] the flight
time, for frequent n-graphs, was used, although the approach
was used in the context of user identification, as opposed to
authentication. Thus, given a previously unseen sample, the
shared n-graphs in the sample and the stored n-graphs were
identified and collected in separate arrays. The elements in
the arrays were then ordered according to flight time and
the difference between the arrays computed by considering
the orderings of the elements; a measure referred to as the
degree of disorder was used (an idea motivated by Spearman’s
rank correlation coefficient [14]). Identifying a new sample
required comparison with all stored sample profiles (reference
profiles), a computationally expensive process. In the reported
evaluation, 600 reference profiles were considered (generated
from 40 users, each with 15 samples); the time taken for a
single match, in this case, was 140 seconds (using a Pentium
IV, 2.5 GHz). However, construction typing profile using the
average flight time of only shared n-graphs contained in the
training data might not be representative of the n-graphs in
the samples to be authenticated. This can, in turn, affect the
authentication accuracy, especially in the context of real-time
continuous authentication where typing patterns are extracted
from free text; thus a substantial amount of n-graphs are
expected to be typed in the current session. Furthermore, it
can be observed from the study presented in [9] that the
authentication of one sample relies on all other samples in the
training data. This can also lead to an efficiency issue where,
in the context of continuous authentication, the current sample
needs to be compared against the claimed user’s reference
profile.

In [10] an Artificial Neural Network classifier was used to
build a prediction model to overcome the limitation of [9]
work. Key-down time was used together with average digraph
and monograph flight times to predict missing digraphs based

on the limited information in the training data; thus no need to
involve a great number of keystroke features while construct-
ing the typing profile. This mechanism worked reasonably
well in the context of static authentication in a controlled
setting (homogeneous); typing of the same text using the
same keyboard layout in an allocated environment. Thus the
work on continuous authentication remains an open area for
further investigation. A general criticism of the feature vector
approach is that the feature vector values are either typing
pattern abstractions (for example average hold times) or only
represent a subset of the data (for example only frequently
occurring digraphs).

It is argued in this work that the feature vector representation
may not be the most appropriate representation for keystroke
continuous authentication. Therefore, it is conjectured that
representing keystroke features as time series signals, and
transforming these signals to the frequency domain, can lead
to a better understating of typing patterns with respect to real-
time continuous authentication using keystroke dynamics. To
the best knowledge of the authors, no prior work in the liter-
ature has considered the concept of sinusoidal representation
for keystroke dynamics in the context of continuous keyboard
authentication. Note that in [3] the authors first proposed
the idea of keyboard continuous authentication using time
series, but with respect to static text. In [15] it was suggested
that this could also be applied in the context of continuous
text, although only hold time was considered. This paper
presents a much more sophisticated realisation and analysis
of the approach encompassing: (i) the idea of transforming
the keystroke timing features into the sinusoidal (frequency)
domain, (ii) using additional keystroke timing features to
enhance the effectiveness of the authentication, (iii) usage
of a transformed sinusoidal sliding windows to achieve the
desired continuous authentication, (iv) a process for cleaning
keystroke streaming data before authentication is conducted
and (iv) a dynamic method for calculating similarity thresholds
calibrated to individual users.

III. KEYSTROKE TIME SERIES REPRESENTATION

As already noted, the process of typing produces a
Keystroke time series K;s = {e1,ea,...,e,} where e, is an
independent data event, and n € N is the length of the time
series. Each data event e; represents a tuple of the form of
(t;, k;) where: (i) ¢; is a temporal index of some form, and
(ii) k; denotes some associated attribute (feature) value. Thus,
Kis = {{t1, k1), (t2, k2), ..., (t;, k;)}. Such a time series can
be viewed as a 2D plot with ¢ along the x-axis and attribute
value k along the y-axis (Figure 1). With respect to the work
presented in this paper, the value for ¢; is set to be a sequential
ID number (sequence of key presses), whilst k records either
flight time (F*) or hold time () H?). Note that in this paper
only univariate time series representation is considered, that
is, in the evaluation section, we have adopted F'* and K H*
features independently to determine the effectiveness of each
on the proposed model. Figure 1 shows four pairs of Ky
sequences, each featuring n = 300 keystrokes using F*
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Fig. 1: K;, examples (n = 300) for four subjects, two examples per subject, writing unspecified free text.

feature. The figure shows four (random) subjects selected
from the datasets used for evaluation purposes as reported on
in Section VI. Inspection of the figure clearly indicates that
individual subjects have distinct keystroke streams and thus
that they can be used to generate distinct typing profiles. Note
that we also represent typing streams using K H*, in the same
manner; however, because of space limitations these are not
included in the figure.

The generated keystroke time series can be used directly
as described in [3]. However, as already noted, the usage of
such “raw” time series is expensive in terms of efficiency and
storage capacity [16]. Thus the idea presented in this paper
is to use some forms of transformation of the time series;
it is conjectured that this will yield accurate results more
efficiently. As noted in the introduction to this paper, two
transformations are considered: (i) Discrete Fourier Transform
(DFT), and (ii) Discrete Wavelet Transform (DWT). Each is
discussed in further detail in the following two sub-sections.

A. DFT for Keystroke Time Series

The Discrete Fourier Transform (DFT) has been widely
adopted with respect to time series data of all kinds (see for
example [16]). In this paper, DFT has been used to transform
keystroke time series data from the temporal domain to the
frequency domain. The idea is then to compact the keystroke
data points without losing any salient information. The com-
pression is conducted by representing the keystroke stream
as a linear combination of sinusoidal coefficients. Then the
similarity is computed between the transformed coefficients
for any pairs of corresponding signals.

Let’s assume that we have a keystroke time series, such
that K;s = {e1,€2,...,€,}, where k; € e, is either a F* or a
K H value, and n is the length of the keystroke time series.
The DFT transform then compresses K, into a linear set of
sinusoidal functions with amplitudes p, ¢ and phase w:

N
= Z(piCos(Qﬂkaf) + ¢:Sin(2mw; F}))

i=1

Kis (D
Note that the time complexity to transform (each) K, is O(n
log n) using the radix 2 DFT algorithm [17], [18].

Using the DFT transform, the obtained K, is composed of a
new magnitude (the amplitude of the discrete coefficients) and

phase spectral shape in which the similarity can be computed
between pairs of transformed K, frequencies. Similarity
measurement will be discussed in further detail in Section IV.
For further detail concerning the DFT, interested readers are
referred to [19].

B. DWT for Keystroke Time Series

The Discrete Wavelet Transform (DWT) is an alternative
form of time series representations that considers the time span
over which different frequencies are present in a time series.
DWT is sometimes claimed to provide a better transformation
than DFT in that it retains more information [11]. DWT
can be applied to time series according to different scales,
orthogonal [20] and nonorthogonal [21]. In this paper, an
orthogonal scale is used for the DWT, more specifically the
well known Haar transform was adopted [20] as described in
[11]. Fundamentally, a Haar Wavelet is simply a sequence of
functions which together form a wavelet comprised of a series
of square shapes. The Haar transform is considered to be the
simplest form of DWT; however, it has been shown to offer
advantages with respect to time series analysis where the time
series feature sudden changes. The transformation is usually
described as per Equation 2 where, in the context of this paper,
x is a keystroke timing feature.

1, if 0<t<3
(r) = ¢ —1, if <t<l1 (2)
0, otherwise

The time complexity for the Haar transform is O(n) for each
K,s. For space limitations, we omit the full mathematical
explanation of the Haar transform; however interested readers
may refer to [22] and [23] for further detail.

IV. SIMILARITY MEASUREMENT

To compare transformed keystroke streams, it is necessary
to use some kind of similarity measure. Typically, given two
keystroke streams (time series), S; and So of the same length,
the simplest way to compare them is to find the Euclidean
absolute distances between all pairs of corresponding points
in S and S and compute the average distance. If the average
distance is 0, S; and Sy are identical. However, this simple
approach does not take into account offsets (phase shifts). For



the process of the KCASA model, discussed in the follow-
ing section, Dynamic Time Warping (DTW) was therefore
adopted. The reason is that DTW takes into consideration
phase shifting between pairs of signals more accurately than
Euclidean distance measurement [24].

DTW operates as follows. For two given (transformed)
keystroke time series S1 = {ai,as2,...,a;,...,a,} and
Sy ={b1,ba,...,b;,...,by}, where z and y are the length of
the two series respectively, and (a; and b;) are DFT or DWT
coefficients, the elements of each series are constructed in a
matrix M of size x X y. The value for each element m;; € M is
then computed by calculating the distance from each element
a; € S1 to each element b; € Sy:

(ai —bj)? 3)

A Warping Path (WP = {m;, j,,mi, j,,...}) is then a
sequence of matrix elements (locations), m;;, such that each
location is immediately above, to the right of, or above and
to the right of, the previous location. For each location, the
next location is chosen so as to minimise the accumulated
warping path length. The “best” warping path is the one that
serves to minimise the distance from mq ; to m, ,. The idea
is then to find the path with the shortest “warping distance”
(wd) between the two series calculated as follows:

wd:ZmeWP “4)

mij =

The value of wd is thus an indicator of the similarity between
two keystroke signals; if wd = 0 the two keystroke signals
are identical.

V. KEYSTROKE CONTINUOUS AUTHENTICATION BASED
SPECTRAL ANALYSIS (KCASA) OPERATION

The proposed KCASA model operates using a window-
ing approach, continuously sampling keystroke stream sub-
sequences K,, C K;s;. The window size w is predefined by
the user. Thus K,, = {e;,€;+1,...,€y} Where i is a “start”
time stamp. The keystroke stream subsequences can be made
up of either flight time (F*) or hold time (K H?) values and
can be processed simply as a straight forward time series, the
Keystroke Time Series (KTS) representation. Alternatively, as
proposed in this paper, the time series can be transformed,
using the DFT or DWT representation as described above. In
the evaluation presented later in this paper, the effectiveness
of the DFT and DWT representations is compared with the
operation of the straight-forward KTS representation.

A. User Profile Calculation

A user profile U, is a set of m non-overlapping keystroke
streams (windows), or simply keystroke sinusoidal windows,
U, = {W1,Ws,...,W,,}, where each window W has a
length of w. Note that |If,| needs to be substantially greater
than the window length w, so that a number of subsequences
(windows) can be extracted. Note also that the generated
windows are prepared for the next transformation using DFT
and DWT. Note also that w is user defined. For the experiments

reported on later in this paper, a range of w values was
considered from 25 to 150 key presses increasing in steps
of 25, that is w = {25, 50, 75,100, 125,150}. By doing so,
we can examine the effect of w on performance in terms of
accuracy. It was anticipated that a small window size would
provide efficiency gains; that is desirable in the context of
real-time continuous authentication.

The set U, is also used to generate a bespoke o threshold
value. This is calculated by comparing all subsequences in 4,
using DTW, and obtaining an average warping distance wd
which is used as the value for o:

[Up|
- 1
o =wd= A ZDTW(WFM W;) )]
Pl =2

It has been shown that averaging the warping distances of time
series lead to fast and accurate classification of streaming data
[25].

B. Subsequence Preprocessing and Noise Reduction

Before the KCASA authentication process can commence,
each newly collated keystroke time series must be cleaned. The
issue here is that F'! values can be large, for example when
the subject has paused typing or as a consequence of (say)
an “away from keyboard” event. A limit is therefore placed
on F* values using a maximum flight time threshold value .
Given a F* value in excess of ¢, the value will be reduced
to . For the evaluation presented later in this paper, a range
of values for ¢ were considered, ranging from 0.750 to 2.00
seconds increasing in steps of 0.25 seconds, that is:

¢ = {0.75,1.00,1.25, 1.50, 1.75, 2.00}

With respect to key hold time K H?, the time whereby a key
is held down is normally no longer than 1 second. Inspection of
the datasets used in the study presented in this paper indicated
that the highest recorded value of K H® was 0.950 seconds.
Consequently, it was felt that no maximum hold time threshold
was required in this case.

C. The KCASA Algorithm

The pseudo code for KCASA process is presented in
Algorithm 1. As already noted, the principle idea is, as typ-
ing proceeds, to collect non-overlapping keystroke sinusoidal
windows, each of length w, and compare these to previously
obtained keystroke sinusoidal signals. On start up, it is first
necessary to confirm that the user is who they say they are by
comparing the first collected sinusoidal windows with the user
profile U, as described in Sub-section V-A. As the session pro-
ceeds, continuous authentication is undertaken by comparing
the most recent sinusoidal windows W,; with the previously
collected sinusoidal windows W,_;. Algorithm 1 takes the
following inputs: (i) window size w, (ii) a similarity threshold
o (derived as described above in Sub-Section V-A) and (iii)
a ¢ threshold for F'*. The process operates continuously in a
loop until the typing session is terminated (the user completes
the assessment, times out or logs-out) (lines 4-6). Values for k



Algorithm 1 KCASA algorithm

Input: w, g, .
Output: Continuous authentication commentary.
1: counter =0

2: Kus = 0

3: loop

4 if terminated signal received then

5 break

6: end if

7 k = keystroke feature (e.g. F'* or KH?)

8 if Flight time & k£ > ¢ then

o: k= > Noise reduction.

10: end if

11: Kis = Kis U {counter, k)

12: counter + +

13: if REM (counter/w) == 0 then

14: W; = subsequence {Kis, v o Kisownion}

15: if counter = w then > Start up situation

16: Transform(W) > Transform W to
(DFT)/(DWT)

17: Start up: authenticate W; w.r.t U, and o, and
report

18: else

19: Authenticate W; w.r.t. W,;_; and o, and report

20: end if

21: end if

22: end loop

KCASA approach, and the usage of the simple KTS
representation (as prposed in [3]), in terms of accuracy,
FAR and FRR.

2) Effect on Authentication Performance using Different
Parameters: To determine the effect of using different
values for w (the sampling window size) and ¢ (the
maximum flight time threshold value).

3) Efficiency: to compare the run time efficiency of
KCASA in the context of the three representations
considered (DFT, DWT and KTS).

4) Comparison with Feature Vector Approach: To com-
pare the operation of KCASA with the established
feature vector based approach for keystroke continuous
authentication.

Note that the evaluation was conducted using flight time and
hold time so as to also analyse which feature yielded the better
results.

The rest of this section is organised as follows. The datasets
used for the evaluation are introduced in Sub-section VI-A.
The results with respect to the first set of experiments are
considered in Sub-section VI-B, while those with respect to
the second set of experiments in Sub-section VI-C. Efficiency
is considered in Sub-section VI-D; and the comparison with
the feature vector based approach is presented in Sub-section
VI-E.

TABLE I: Summary of datasets.

are recorded as soon as the typing session starts (line 7). Note
that in the case of flight time the value will be checked, and if
necessary replaced, according to ¢ (lines 8 to 10). The k& value
is then appended to the keystroke stream K. The counter
is monitored, and sub-sequences are extracted whenever w
keystrokes have been obtained. For the first collected window
(W1 € Kis) this is the startup time series; each subsequent
sinusoidal window W; is then compared, using DTW, with
the previous W,_; sinusoidal window.

VI. EVALUATION

A series of experiments were conducted to evaluate the
proposed KCASA model to determine how well it performed
in terms of the detection of impersonators. Comparisons were
also undertaken with respect to a Feature Vector Represen-
tation (FVR), the established approach from the literature to
keystroke continuous authentication. The metrics used for the
evaluation were: (i) authentication accuracy (Acc.), (ii) the
False Acceptance Rate (FAR) and (iii) the False Rejection
Rate (FRR)!. In more detail, the objectives of the evaluation
were:

1) Authentication Performance using the KCASA

Model: To compare the effectiveness of the DFT and
DWT representations in the context of the proposed

IFAR and FRR are the traditional metrics used to measure the performance
of Biometric systems [26].

[ Dataset [[ #Sub. | Env. | Lang. | Features | Ave.size | SD |

ACB 30 Free | English FtKH? 4625 1207

GP 31 Free | Italian Ft 7157 1095

VHHS 39 Lab English Ft KH? 4853 1021
A. Datasets

Three datasets were used with respect to the reported
experiments [9], [27], [3] to conduct. For ease of presentation
the three data sets are identified here using acronyms made up
of the authors’ surnames: GP [9], VHHS [27] and ACB [3].

GP dataset comprised 31 subjects typing free text in Italian
(that used in [9] had 40 subjects, but some records are
not available in the public version). The VHHS dataset was
collected in laboratory conditions. The subjects were asked to
type both predefined text and free text (in English); however,
only the free text part was used with respect to the experiments
reported on in this paper. Note also that for the GP dataset
only the I feature was available, whilst for the remaining
two datasets both F'* and K H® were collected. Therefore the
performance of KCASA using K H! could not be evaluated
using the GP dataset.

The ACB comprises 30 subjects although the original
dataset consisted of 17 subjects, but the number of subjects has
increased to 30 in the public version. Each subject provided
free text samples (in English) in a simulated online assessment
environment; the aim being to mimic the mode of typing when
using an eLearning platform. Thus, the subjects used whatever
keyboard they had at hand.



TABLE 1II: Accuracy results obtained using the three
different KCASA representations when using F*® (best
results in bold font).

Flight time F'*

Dataset Accuracy

KTS [ DFT | DWT
ACB 96.20 | 97.43 | 99.22
GP 9547 | 96.94 | 98.41
VHHS 94.83 | 97.43 | 97.09
Average 95.50 | 97.27 | 98.24
SD 0.68 0.28 1.07

TABLE IV: FAR and FRR results obtained using the three
different KCASA representations when using F*® (best
results in bold font).

Flight time F?

Dataset FAR FRR
KTS [ DFT [ DWT KTS | DFT [ DWT
ACB 0.050 0.030 0.026 1.96 1.50 1.37
GP 0.039 0.034 0.035 1.98 1.72 1.48
VHHS 0.030 0.022 0.016 1.97 1.85 1.65
Ave. 0.040 0.029 0.026 1.97 1.69 1.50
SD 0.010 0.006 0.010 0.01 0.17 0.14

Table I provides a summary of the three datasets used; the
table also includes some statical measurements concerning the
average length of the time seres in each data collection and the
associated Standard Deviation (SD). For evaluation purpose,
each record in each data set was divided into two where the
first half was used to generate the typing profile I/, and the
second half for the continuous authentication evaluation.

B. Authentication Performance using the KCASA Model

The results obtained with respect to the evaluation directed
at comparing the DFT, DWT and KTS KCASA representa-
tions, using either F* or K H!, are given in Tables II to V;
Tables II and IV show the accuracy (Acc.), FAR and FRR
results obtained using F*, while Tables III and V presents
the results, using the same metrics, obtained using K H¢. For
the reported experiments, w = 75 keystrokes and ¢ = 1.25
seconds were used as default settings. These parameters were
used because experiments, reported on in the following sub-
section, had indicated that these produced best results.

From Table II, it can be observed that the DWT represen-
tation produced the best overall accuracy (average accuracy
of 98.24% with an associated Standard Deviation-SD of 1.07)
when using F. With respect to FAR, we can observe from
Table IV that DWT also produced best results, except in the
case of the GP datasets where DFT was recorded as producing
the best result. It can also be noted from Table IV that the
DWT representation gave the best FRR results with an average
of 1.50 and an associated SD of 0.14.

With respect to KX H® (Tables III and V), a best accuracy
results of 95.66% was obtained using DFT (with an associated
SD of 2.40). Inspection of Table V shows that the best average
FAR result was 0.04 when using the DFT representation, and
the best average FRR result was 1.56 using DWT. Recall that

TABLE III: Accuracy results obtained using the three
different KCASA representations when using K H? (best
results in bold font).

Key hold time K H?
Dataset Accuracy
KTS | DFT [ DWT
ACB 96.15 | 97.36 | 95.09
VHHS 94.33 | 93.69 | 95.75
Average 9524 | 95.66 | 95.42
SD 1.29 2.40 0.47

TABLE V: FAR and FRR results obtained using the three
different KCASA representations when using K H? (best
results in bold font).

Key hold time K H?
Dataset FAR FRR
KTS [ DFT [ DWT KTS [ DFT [ DWT
ACB 0.06 0.04 0.45 2.01 1.61 1.38
VHHS 0.03 0.02 0.04 1.97 1.91 1.74
Ave. 0.05 0.04 0.25 1.99 1.76 1.56
SD 0.02 0.01 0.29 0.02 0.22 0.25

evaluation using K H* could not be conducted using the GP
dataset because K H® was not recorded in this case.

To support a comparison summary, the results listed in
Tables II to V are presented in summary form in Table VI.
From this summary table, it can be observed that the simple
KTS representation did not perform well compared to the DFT
and DWT representations. Also, from the results presented in
this table, an argument can be made in favor of the DWT
representation, coupled with ¢, which gave the best overall
performance in terms of Acc, FAR and FRR.

TABLE VI: Summary of results presented in Tables II to V.

Metric Ft Feature K HY Feature

KTS [ DFT [ DWT KTS [ DFT [ DWT
Acc 95.50 | 97.27 98.24 95.24 | 95.66 95.42
FAR 0.040 | 0.029 | 0.026 0.050 | 0.040 0.25
FRR 1.97 1.69 1.50 1.99 1.76 1.56

C. Effect on Authentication Performance using Different Pa-
rameters

The results presented in the previous sub-section assumed
a window size w of 75 and a maximum F? threshold value
¢ of 1.25. Recall that the latter is only applicable in the
context of F. To evaluate the effect of these parameters,
experiments were conducted using a range of values for w
and ¢; {25,50,75,100,125,150} key presses for w, and
{0.75,1.00,1.25,1.50,1.75,2.00} seconds for ¢.

The accuracy obtained results using K H®, as the keystroke
dynamics, demonstrated that w = 75 produced better accuracy
for VHHS and ACB datasets in terms of all three KCASA
representations, with the exception of the KTS representation
in the ACB dataset where w = 100 has produced better
accuracy. Similarly, the accuracy results obtained using F*, as
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Fig. 2: Runtime (seconds) comparison using flight time and the three KCASA representations with respect to each of the three

datasets, (a) GP, (b) VHHS and (c) ACB.

the keystroke dynamics, showed that w and ¢ values of 75 and
1.25, respectively, tended to produce better results, although
the selection of ¢ does not have had as much impact as the
selection of w.

D. Efficiency

To compare the efficiency of the considered KCASA repre-
sentations, experiments were conducted in terms of the time to
generate the user profiles in each case. For the experiments,
w was set to a range of values, as described earlier, whilst
¢ was kept constant at 1.25 because earlier experiments,
reported on above, had demonstrated that the value of ¢
was less significant. The efficiency performance using F? is
presented in Figure 2 with respect to each of the three datasets
considered. From the Figure, it can be seen that as w increased
the run time also increased. This was to be expected because
the computation time required for the DTW would increase
as the size of the window w increases. Interestingly, there
are well-known solutions to mitigate against the complexity
of DTW (see for example [28]); however, no such mitigation
was applied with respect to the experiments reported on in
this paper although this could clearly be done. We left this for
further future investigation.

Overall the results indicated that when using the proposed
transformations efficiency gains were made with respect to the
simple KTS representation, with DFT producing better runtime
results than DWT. Furthermore, comparing the runtime perfor-
mance obtained with the feature vector approach to keystroke
authentication, it is interesting to note that in [9] the time
taken to construct a user profile was given as 140 second,
a significant difference to when using the proposed KCASA
method.

Note that in the context of K H!, similar runtime results
were produced to those presented in Figure 2, because both
are using the same DTW similarity measure.

E. Comparison with Feature Vector Approach

From the literature, previous work on keystroke continuous
authentication has been conducted using Feature Vector Repre-
sentation (FVR). It has already been noted that the proposed
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Fig. 3: The obtained average accuracy using the three repre-
sentations (KTS, DFT, DWT and FVR) with respect to the
three datasets used. DWT shows a comparative performance
with respect to KCASA model.

KCASA model has significant runtime advantages over the
feature vector based approach (see above). However, it was
felt appropriate to conduct further experiments comparing the
operation of KCASA with the feature vector based approach
in terms of authentication accuracy. Using both F* and K H*
appropriate feature vectors were generated. Concequently, fur-
ther comparison could be made with the mechanism proposed
in [9] (see Section II). The reason for selecting the mechanism
presented in [9] was that the mechanism, to the best knowledge
of the authors, had produced the best reported FAR and FRR
results to date. However, it should be noted that the code
for that mechanism is not available; thus we encoded the
mechanism ourselves according to the description given in
the original study. So as to conduct a fair comparison only
F! was considered, because the study in [9] used F' values.
The average accuracy results obtained, when comparing the
operation of FVR with the KTS, DFT and DWT representa-
tions, in terms of I, are given in Figure 3. The best accuracy



result obtained for FVR was 90.15%, significantly worse than
the accuracy results obtained using KCASA representations
which yielded a best accuracy result of 98.24% (when using
the DWT representation).

VII. CONCLUSION

In this paper, a novel mechanism for realtime continu-
ous keystroke authentication, called Keystroke Continuous
Authentication using Spectral Analysis (KCASA) has been
proposed, whereby authentication of user typing patterns
is conducted by capturing keystroke dynamics in the form
of spectral (frequency) streams. KCASA efficiently operates
using either flight time F*! or hold time KH'! keystroke
timing features. Two spectral transformations were considered
to represent keystroke timing features: (i) Discrete Fourier
Transform (DFT) and (ii) Discrete Wavelet Transform (DWT).
Keystroke spectral streams similarity was conducted using
Dynamic Time Warping (DTW), although alternative time
series comparison techniques could equally well have been ap-
plied. The KCASA model operates by continuously extracting
non-overlapped keystroke sinusoidal signals captured using a
sliding window of size w. The most appropriate size for w
was found to be 75 keystrokes for both timing features (flight
time F'* and key hold time K H?). In the case of flight time,
an issue was discovered with excessive flight times; flight
times were thus capped with a maximum value defined by
a parameter ¢, the most appropriate value for ¢ was found to
be 1.25 seconds. The reported experimentation and evaluation
indicated that the most accurate representation was DWT using
the F'* keystroke feature, while the most efficient was found
to be DFT. Experiments were also reported on indicating
that the proposed KCASA model outperformed the feature
vector based approach used by comparator systems such as
that reported in [9]. For future work, the authors intend to
investigate the usage of multivariate keystroke time series
(incorporating F'* and K H® timing features together) within
the context of the proposed KCASA model. Furthermore, the
time complexity of DTW, in the context of the proposed
representations, remains an open topic for future work.
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