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Abstract—This paper investigates the use of three alternative approaches to classifying retinal images. The novelty of these 
approaches is that they are not founded on individual lesion segmentation for feature generation, instead use encodings focused on 
the entire image. Three different mechanisms for encoding retinal image data were considered: (i) time series, (ii) tabular and (iii) 
tree based representations. For the evaluation two publically available, retinal fundus image data sets were used. The evaluation 
was conducted in the context of Age-related Macular Degeneration (AMD) screening and according to statistical significance tests. 
Excellent results were produced: Sensitivity, specificity and accuracy rates of 99% and over were recorded, while the tree based 
approach has the best performance with a sensitivity of 99.5%. Further evaluation indicated that the results were statistically 
significant. The excellent results indicated that these classification systems are ideally suited to large scale AMD screening 
processes. 
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I. INTRODUCTION 

In this paper the authors propose and compare three 
different mechanisms for representing retina images in such 
a way that classification techniques can be applied to these 
images so as to support retina screening activities. The idea 
is to avoid or minimize the use of segmentation techniques, 
the technology on which retina image analysis normally 
relies, see for example [1], [2], [3], [4], [5], but instead use 
alternative whole image representation techniques that do 
not rely on segmentation. The first technique represents 
images in terms of histograms which are in turn conceived 
of as time series curves. The curves associated with a pre-
label training set of images are then stored in a Case Base to 
which a Case Based Reasoning (CBR) tool is applied. The 
second representation comprises a purely statistical 
approach whereby a collection of statistics are extracted 
from an image training set and stored in a tabular (feature 
vector) format to which established classification techniques 
can be applied. The third techniques uses a hierarchical 
decomposition mechanism to generate a set of trees, one per 
image in the training set, which are then processed using a 
frequent subgraph mining technique to produce a feature 
representation (to which established classification 
techniques can again be applied).   

The distinctions between the techniques described in this 
paper and those found in the literature is that: (i) lesion 
feature identification is not required in order to perform 
screening, (ii) novel forms of retinal image representations 
(histograms and trees) are employed, and (iii) image mining 
approaches are applied so as to allow for the discovery of 
patterns (or knowledge) that indicate if AMD is featured 
within given retinal images. 

For evaluation purposes the proposed mechanisms were 
applied to the detection of Age-related Macular 
Degeneration (AMD). AMD is a condition where the 
delicate cells of the macula become damaged (and stop 
functioning properly) in the later stages of life. AMD is the 
leading cause of adult blindness in the UK, typically 
affecting people who are aged 50 years and over. In the UK, 
it is estimated that in 2020 this age group will comprise a 
population of 25 million people and more than 7% of these 
are expected to be affected [6]. AMD is currently incurable 
and causes permanent total blindness. However, there are 
new treatments that may stem the onset of advanced AMD 
if detected at a sufficiently early stage [7]. The diagnosis of 
AMD is typically undertaken through the careful inspection 
of retinal images by trained clinicians. Fig. 1 shows some 
example images. Fig. 1(a) presents a normal retina image, 
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Fig. 2(b) a retina that displays signs of early stage AMD and 
(c) a retina that features neovascular AMD. 

The rest of the paper is organized as follows. Section 2 
presents the background of the work described in this paper. 
Data preparation is presented in Section 3. The three 
proposed image classification approaches for AMD 
screening are described in Sections 4, 5 and 6 respectively.  

 

 
 

Figure 1. Examples of retinal images: (a) normal retina, (b) retina 
displaying features (drusen) of early AMD, and (c) retina featuring 

advanced neovascular AMD. 

 
Section 7 presents a comparison between the proposed 
approaches and other approaches found in the literature. 
Some conclusions are provided in Section 8. 

II. LITERATURE REVIEW 

There has been much reported work on image 
classification of all kinds. Typical applications include the 
classification of photo banks and satellite imagery. Image 
classification has also been applied to many medical 
applications. A good example is work on functional 
Magnetic Resonance Imaging [8]. The challenge of image 
classification (as also demonstrated in this paper), is not the 
classification techniques themselves, these are well 
understood; but the representation of the images in such a 
way that classification techniques can be applied. This 
processing typically includes many elements such as 
deblurring, colour and intensity equalisation, image 
enhancement of all kinds, noise removal and so on. Much 
existing work on automated AMD detection using retina 
images has not been directed at classification, but at the 
identification of features in retina images which can then be 
used for prediction purposes. This feature identification is 
often founded on some form of segmentation, a subject of 
much continuing investigation and research. 

The diagnosis of AMD is typically undertaken by 
manual inspection of retinal images by trained clinicians. In 
most cases, an early indicator of AMD is the presence of 

drusen, yellowish-white subretinal deposits, on the macula 
as shown in Fig. 1(b). The presence of large and numerous 
drusen indicate an early sign of AMD. Drusen can be 
categorised into hard and soft drusen. Hard drusen have 
well-defined borders, while soft drusen tends to blend into 
the retinal background.  

The earliest work reported in the literature concerning 
the automated or semi-automated diagnosis of AMD is that 
of [5] who used mathematical morphology to detect drusen. 
Other work on the identification of drusen in retina images 
has focuses on segmentation coupled with image 
enhancement approaches [3], [4], [9]. The work described in 
[4] adopted a multilevel histogram equalisation technique to 
enhance the image contrast followed by drusen 
segmentation using both global and local thresholds. A 
different concept, founded on the use of histograms for 
AMD screening is also proposed in this paper. In [3], [9] a 
two phased approach was proposed involving inverse drusen 
segmentation within the macular area. In [10] a signal based 
approach called AM-FM was proposed to generate multi-
scale features to represent drusen signatures. Images were 
partitioned into sub-regions; features were then extracted 
from each sub-region. A wavelet analysis technique to 
extract drusen patterns, and a multilevel classification for 
drusen categorisation were described in [1]. A set of rules 
were used to identify potential drusen pixels. In [11], a 
content-based image retrieval technique was employed to 
get a probability of the presence of a particular pathology. 
Segmentation of objects was first conducted; features were 
then extracted from the identified objects. A recent work in 
[12] used greyscale features extracted from the fundus 
images, which includes fractal dimensions, Gabor wavelet 
and entropy. 

Of the reported work found in the literature that the 
authors are aware of, only five reports [1], [10], [11], [13], 
[12] extend drusen detection and segmentation to 
distinguish retinal images according to whether they exhibit 
AMD or not. However, most of the work (unlike the work 
described in this paper) first required the identification 
(segmentation) of AMD pathologies (drusen) using image 
processing and content based image retrieval techniques. 
The distinctions between the techniques proposed in this 
paper and the above four methods are: (i) that drusen 
identification (segmentation) is not required in order to 
perform AMD screening, and (ii) that image mining 
techniques are utilised to allow the discovery of patterns that 
indicate if AMD exists or not. The work presented in this 
paper is similar to [12] where drusen identification is not 
required. The differences are colour and spatial information 
are considered in this paper to support the classification. 

III. DATA PREPARATION 

To evaluate the proposed approaches described above, 
two publicly available retinal image datasets were used: (i) 
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the ARIA1 and (ii) the STructured Analysis of the Retina2 

(STARE) datasets. Both data sets featured normal retinae, 
retinae that showed signs of AMD and retinae that feature 
Diabetic Retinopathy (DR). DR is another retina condition 
that leads to blindness which is typically identified through 
screening. Thus the data sets could be used for binary 
classification purposes (AMD vs. non-AMD) or multi-class 
classification purposes. ARIA is an online retinal image 
archive produced as part of a joint research project between 
St. Paul’s Eye Unit at the Royal Liverpool University 
Hospital (RLUH) and the Department of Eye and Vision 
Science (previously part of School of Clinical Sciences) at 
the University of Liverpool. ARIA has a total of 220 
manually labeled images. Of these, 101 featured AMD, 59 
featured DR and 60 were normal. The STARE dataset was 
generated as part of a joint project between the Shiley Eye 
Center at the University of California and the Veterans 
Administration Medical Center (both located in San Diego, 
USA). A total of 174 STARE images were acquired for the 
work described, of these, 64 featured AMD, 72 DR and 38 
normal. Both image sets were acquired using similar fundus 
camera equipment. Thus, with respect to the evaluation 
described below, the datasets were combined to produce a 
single large dataset comprising 394 images, of which 165 
featured AMD, 131 DR and 98 neither AMD nor DR. The 
pre-processing that was applied to the image data sets is 
considered, in this section under two headings: image 
enhancement and noise removal (see below). 

A. Image Enhancement 

The image enhancement process applied to the collected 
retina data comprised four components. 

1. Region Of Interest (ROI) identification. 
2. Colour normalisation. 
3. Illumination normalisation. 
4. Contrast enhancement. 
Before any enhancement could be applied to the digital 

retinal images the Region Of Interest (ROI) had to be 
delimited. The reason for this was that enhancement should 
only be applied to the retina (the ROI) and not to the dark 
background introduced as part of the image acquisition 
process. The retina comprises mostly coloured pixels, while 
the surrounding background comprises mostly black (or 
dark coloured) pixels (see Figure 1). ROI identification was 
achieved by applying an image mask to the retinal images 
so as to isolate and remove the dark background pixels from 
the original coloured retinal images. 

Once the ROI had been identified, the next step was to 
normalise the colour variations. The aim was to standardize 
the colours across the set of retinal images. Colour 
normalization was achieved using the Histogram 
Specification (HS) approach described in [14]. This 
approach operates by mapping the colour histograms of 

                                                           
1 http://www.eyecharity.com/aria_online 

2 http://www.ces.clemson.edu/~ahoover/stare 

each image to a reference image colour histograms [14], 
[15]. The task thus commenced with the selection of a 
reference image that represented the best colour distribution 
determined through visual inspection on the set of retinal 
images by a trained clinician. Next, the RGB channel 
histograms of the reference image were generated. Finally, 
the RGB histograms of other images were extracted and 
each of these histograms was tuned to match the reference 
image’s RGB histograms. 

Colour normalisation does not eliminate illumination 
variation. In most of the acquired retinal images, the region 
at the centre of the retina tends to be brighter than those that 
are closer to the retina periphery. Illumination variation is of 
less importance for AMD screening than DR screening as 
drusen tends to appear in the macula region (centre of the 
retina); however, luminosity normalisations will enhance the 
detection of retinal structures such as blood vessels. 
Illumination normalisation was conducted using an 
approach, originally proposed in [16], that estimates 
luminosity (and contrast) variations according to the retinal 
image colours. 

The final stage of the image enhancement pre-processing 
was contrast enhancement. To this end a Histogram 
Equalisation (HE) method, called Contrast Limited 
Adaptive Histogram Equalisation (CLAHE) [17], [18], was 
applied. HE is a common technique used to enhance 
contrast. The idea is to distribute colour intensities by 
spreading out the most frequent intensity values so as to 
produce a better colour distribution of an image. It improves 
the contrast globally but unfortunately it may cause bright 
parts of the image to be further brightened and consequently 
cause edges to become less distinct. Thus the CLAHE 
method, that locally equalises the colour histograms, was 
adopted. 

B. Noise Removal 

Common retinal anatomical structures often serve to 
“confound” any desired retina image analysis. In the context 
of the work described here retinal blood vessels were 
considered to fall into this category. Blood vessel removal 
commenced with the segmentation of the blood vessels. 
Various techniques have been proposed for retinal blood 
vessel segmentation, for the purpose of the work described 
here an approach that used wavelet features and a 
supervised classification technique, as suggested in [19], 
[20], were employed. 

Another common retinal structure that could be removed 
from retinal images is the Optic Disc (OD). However, it is 
difficult to achieve high OD localisation accuracy in the 
case of retina images that feature severely damaged retinae 
or images of low appearance quality. Thus, the routine 
localisation and removal of the OD was omitted from the 
image pre-processing task as standard. However, as will be 
noted later in this paper, one of the proposed approaches 
does adopt OD removal under certain conditions. 
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IV. TIME SERIES APPROACH 

This first proposed retina image classification method, 
founded on a time series based representation derived from 
colour histograms, is presented in this section. A CBR 
approach [21] was employed to achieve the desired 
classification. Three histogram based time series generation 
process were considered: (i) Colour Histograms (CH), (ii) 
Colour with Optic disc removed Histograms (COH) (ii) and 
Spatial Colour Histograms (SCH). These were coupled with 
two CBR approaches 

(CBR1 and CBRplus); the first utilised a single Case 
Base (CB), while the second used two CBs. An overview of 
the time series approach is given in the following four sub-
sections, readers interested in a much more detailed 
description of the proposed time series base approach are 
referred to [8]. 

A. Histogram Generation 

The histograms used with respect to the time series 
based approach were generated using the RGB colour 
model. As stated above, three different categories of 
histogram were considered: (i) CH, (ii) COH and (iii) SCH. 
All channels in the RGB colour model were considered as 
this was found to produces better results than when using 
individual colour channels [22]. 

The first strategy extracted CH directly, conceptualised 
them as a time series (one per image) and stored them in a 
CB together with their class labels. Previous work had 
indicated that the removal of irrelevant objects that are 
common across an image set may improve classification 
performance. Earlier findings [22], [23] also indicated that, 
with respect to the retinal images, the OD can obscure the 
presence of features such as drusen. Hence the second 
strategy, COH, removed the OD pixels prior to histogram 
generation. This required identification and segmentation of 
the OD. There is a significant amount of reported work that 
has been conducted on OD identification. The adopted 
approach with respect to the work described in this paper 
was to localise the OD, by projecting the 2-Dimensional (2-
D) retinal image onto two 1-Dimensional (1-D) signals 
(representing the horizontal and vertical axis of the retinal 
image) in a similar manner to that proposed in [3], [24]. 

Given two different images it may still be possible to 
generate two identical colour histograms. Thus, using colour 
information alone may not be sufficient for image 
classification. The third strategy, SCH, adopted a spatial-
colour histogram [25], [26] based approach, a technique that 
features the ability to maintain spatial information between 
groups of pixels. A region-based approach was employed, 
whereby the images were subdivided into regions and 
histograms generated for each region. Feature selection was 
also applied to the SCH so as to eliminate less 
discriminative regions and reduce the overall number of 
SCH to be considered. 

Whatever the case, all the generated histograms were 
conceptualized as time series where the X-axis represents 

the histogram bin number, and the Y-axis the size of the 
bins (number of pixels contained in each). Note that the 
histograms were normalised so as to avoid the 
misinterpretation of the distances between the points on two 
time series caused by different offsets in the Y-Axis.  

B. Case Based Generation 

To facilitate classification, a CBR approach was adopted 
whereby a collection of labelled cases (examples) was 
stored in a CB. A new case to be classified (labelled) could 
thus be compared with the cases contained in the CB and the 
label associated with the most similar case selected. Two 
CBR approaches were considered. The first approach 
(CBR1) used a single CB for classification. The second 
approach (CBRplus) used two CBs, a primary CB and a 
secondary CB. The idea here was that the secondary CB acts 
as an additional source for classification to be used if the 
primary CB does not produce a sufficiently confident result. 
For the work described in this section the CH representation 
was used for the primary CB, while the COH representation 
was used for the secondary CB. The intuition here was that 
one drawback of histograms that exclude the OD pixels is 
that it may result in the removal of pixels representing 
significant features; especially where the features are close 
to, or superimposed over, the OD. To reduce the effect of 
such errors on the classification performance, the utilisation 
of COH was thus limited to the secondary CB only. 

C. Case Retrieval 

The fundamental idea of CBR is that we resolve a new 
case according to previously experienced cases contained in 
a CB. In the classification analogy we wish to classify a new 
case (image) according to previously classified cases 
(images) contained in the CB. To achieve this, the new case 
(described by a time series) needs to be compared with the 
time series associated with the previous cases and the most 
similar case or cases identified. The label associated with 
the most similar case can then be used to categorise the new 
case. A similarity checking mechanism is therefore required. 
To this end Dynamic Time Warping (DTW) [27], [28] was 
adopted because it has been shown to be an effective time 
series comparison technique [29] and has been successfully 
applied in a wide range of applications [30], [31]. Further 
details concerning case retrieval using DTW, as advocated 
in this paper, can be found in [32]. 

D. Initial Experiments 

A sequence of experiments was conducted to: (i) identify 
the ideal number of histogram bins (W) to represent images, 
(ii) compare the performance of the proposed representation 
using the CBR1 and CBRplus approaches, (iii) to evaluate 
the overall use of the proposed histogram based feature 
selection process. Evaluation was conducted using both a 
binary (AMD vs. non-AMD) data set and a multi-class data 
set. Some results of initial experiments have been reported 
in [32], [33]; the distinctions with the experiments presented 
in this paper are that in this earlier work: (i) a smaller 
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number of retinal images was used and/or (ii) evaluation 
was conducted on binary classification problems only. 

The results demonstrated that the histograms extracted 
from all three RGB channels, combined and quantised to W 
colours, produced slightly better overall results than using 
histograms generated from the green channel alone. 
Previous work [4], [34] has suggested that the green channel 
is the most informative channel, but this view was not 
supported by the experiments conducted by the authors, no 
particular channel consistently produced a better 
performance than any other. The suggested explanation for 
this results is that histograms representing all channels are 
more informative, and therefore more discriminative (in the 
context of retina image classification), than the green 
channel histogram alone. With respect to the W parameter 
the results clearly indicate that the W ≤ 64 performed better 
on all evaluation metrics used (note that the maximum 
number of colours produced by the RGB colour model is 16 
777 216). With respect to the performance of individual 
histogram generation processes, CH produced the best 
performance. The CBRplus approach tended to produce a 
comparable performance to the CBR1 approach. However, 
the CBRplus approach incurred higher computational cost. 
The results also indicated that by applying feature selection 
to SCH improved the classification performances, 
particularly in the multi-class setting. 

V. TABULAR FEATURES APPROACH 

In this section the second proposed image classification 
approach is presented. The approach is founded on a tabular 
representation that utilises the basic 2-D array image format. 
The work described in the foregoing section demonstrated 
that the combination of colour and spatial information 
(spatial colour histograms) tends to produced better 
classification performance than when using colour 
information alone. Therefore, the proposed tabular 
representation presented in this section utilised both colour 
and spatial information to identify image features (defined 
them in terms of statistical parameters) which can be 
extracted either directly or indirectly from the 
representation. Two parameter extraction strategies were 
considered: (i) global extraction where the entire image is 
taken into consideration, and (ii) local extraction by 
partitioning the image down to some level of decomposition 
(Dmax) and extracting parameters on a region by region 
basis. We refer to the first strategy as S1 and the second as 
S2. In both cases a feature selection process was applied 
where the top K features were selected, partly so that the 
most discriminating parameters are used for the 
classification and partly so that the overall number of 
parameters to be considered was reduced. The rest of this 
section is arranged as follows. Section 5.1 considers the 
adopted features, 5.2 the feature selection process and 5.3 
the results and conclusions from some preliminary 
experiments.  

A. Feature Extraction 

The most common statistical image parameters are those 
that can be derived from colour, texture or shape 
information. With respect to the work described in this 
paper only colour and texture information were considered 
as we are interested in the composition of the entire image 
and not individual shapes within it. A total of fifteen 
features were used in the proposed tabular based image 
representation categorised as follows: 

 Features generated directly from the pixel colour 
information contained in the image (six features). 
The six colour features extracted were the average 
values or each of the RGB colour channels (red, 
green and blue) and the HSI components (hue, 
saturation and intensity). These values were 
computed directly from a 2-D array colour 
representation of each image. 

 Features generated from a colour histogram 
representing the colour information contained in 
the image (two features). The two histogram based 
features were: (i) histogram spread and (ii) 
histogram skewness. In this case only the green 
channel colour histogram was used as this has been 
demonstrated to be more informative than the other 
channels in the context of retina image analysis [4], 
[34], although this was not fully supported by our 
own experiments (see above). Once extracted, each 
histogram was normalised with respect to the total 
number of pixels of the ROI in the image. The 
histogram spread (also known as variance), hspread, 
and skewness, hskew, were computed as follow: 

 

 

(1) 

 

(2) 

 
where |h| is the number of histogram bins,  is the 
normalised histogram and   is the histogram mean. 

 Features generated from the co-occurrence 
matrices representing the image (three features). 
A co-occurrence matrix is a matrix that represents 
image texture information in the form of the number 
of occurrences of immediately adjacent intensity 
values that appear in a given direction P [14], [35]. 
Fig. 2 shows an example of a 6 x 6 image I and its 
corresponding co-occurrence matrix, L. To construct  
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Figure 2. An example of image and its corresponding co-occurrence matrix 

(P = 0ᵒ). 

 
L, a position operator, P, has to be defined. Four 
possible different directions can be used to define 
P:0ᵒ; 45ᵒ; 90ᵒ or 135ᵒ (see Fig. 3 where X is the pixel 
of interest). With reference to the co-occurrence 
matrix, L, in Fig. 2, the number of different intensity 
values is in the range of 0 to 7, thus a matrix of size 
8 x 8 is produced. P is defined as 0ᵒ, which means 
that the neighbour of a pixel is the adjacent pixel to 
its right. As shown in Fig. 2, the position (2, 1) 
contains a value  of 2 as there are two occurrences 
of pixels with an intensity value of 1 positioned 
immediately to the right of a pixel with an intensity 
value of 2 in I (as indicated by oval shapes in Fig. 
2). The same applies to the element (6, 4) of L that 
holds a value of 1 as there is only one pixel with an 
intensity value of 6 with a pixel with an intensity 
value of 4 immediately to its right in I, and so on. 
With respect to the approach described in this 
section, four co-occurrence matrices (one for each P 
direction) were generated for each image. Three 
textural features were then extracted from each 
matrix: (i) correlation, (ii) energy and (iii) entropy. 

 Features generated using a wavelet transform 
(four features). A single level 2-D Discrete 
Wavelet Transform (DWT) was employed to 
generate the four wavelet based features used. The 
features were extracted by computing the average of 
four types of DWT coefficient: 
1)  
2)  

3)  

4)  
5) The first wavelet based feature is a scale based 

DWT; while the remaining features correspond 
to the wavelet response to intensity variations in 
three different directions: horizontal, vertical 
and diagonal respectively. To generate 

and , 

assume an image f(x, y) of size  . The 
DWTs were then computed as follows [14]: 

 
 

 
 
 
 
 
 
 
 
 

Figure 3. Position operator values. 

 
 

 (3) 
 

 
            (4) 

 
where j = 0, 1, . . ., J - 1 is the scaling value, m = n 
= 0, 1, . . ., 2j - 1 are the translation parameters, 

 and   are the scaling and translation 

basis functions respectively and . 

Both functions are defined as [14]: 
 
            (5) 

 
             (6) 
 

The 2-D scaling, , and translation, , 
functions were derived from their corresponding 1-
D functions as follow [14]: 

 
                         (7) 

 
                        (8) 

 
                        (9) 

 
                        (10) 

 
The values of  and  were determined by 
the types of wavelet filters used. In this chapter, the 
most common Haar wavelet filter was employed 
and defined as: 
 

                       (11) 

 

                     (12) 
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The overall feature generation process is illustrated in 
Fig. 4. Each of the pre-processed colour images was first  

 
Figure 4. Block diagram of features extraction steps. 

 
represented in a 2-D array form. The size of the array was 
equivalent to the size of the image it represented; each 
element of the array contained a pixel intensity value. The 
colour-based features were extracted directly from this 
array. The other categories of feature (histograms, co-
occurrence matrix and wavelet) were extracted from the 
green channel representation of the images. Thus, a 2-D 
array of the green channel image representation was 
generated from each image. The colour (green channel) 
histogram, co-occurrence matrix and wavelet-based features 
were then extracted from this array. The resulting features 
were kept in a tabular form where each column represents a 
feature, and each row an image. 

The first strategy (S1) was to extract these features with 
respect to the entire image. The second strategy (S2) was to 
first partition each image into R sub-regions using a quad-
tree image decomposition technique, the features of interest 
were then generated from each sub-region. Note that in the 
context of the work presented in this paper, the 
decomposition of an image was conducted until some 
predefined maximum depth, Dmax, was reached. Since quad-
trees are more suited to square images, the image size was 
first expanded so that both the height and width of the 
images were identical. In the context of the work described 
in this thesis, the dimensions of each retinal image were 
fixed to 768 × 768 pixels. This was achieved by expanding 

the images with zero valued pixels. The extracted feature 
vectors were then arranged according to the order of the       

 
 
 
 
 
 
 
 
 
 

Figure 5. Ordering of sub-regions produced using a quad-tree image 
decomposition (Dmax = 2). 

 
sub-regions that they represent in an ascending manner, 
such that the features of the first sub-region formed the first 
15 features, the second sub-region formed the next 15 
features, while the Rth sub-region formed the last 15 
features. Fig. 5 shows the sub-region ordering of an image 
using a quad-tree of depth, Dmax = 2. The value of R is thus 
determined by the value of Dmax such that R = 4Dmax. 

B. Feature Selection 

The next step was to reduce the number of extracted 
features; the aim being to prune the feature space so as to 
increase the classification efficiency (through removal of 
redundant or insignificant features) while at the same time 
maximising the classification accuracy. The adopted feature 
selection process comprised a feature ranking strategy based 
on the discriminatory power of each feature and selection of 
the best top K performing features. By doing this, only the 
most appropriate features were selected for the classification 
task and consequently a better classification result could be 
produced. The feature ranking mechanism employed used 
Support Vector Machine (SVM) weights to rank features 
[36]. The main advantage of this approach was its 
implementational simplicity and effectiveness in identifying 
relevant features. 

C. Preliminary Experiments 

The final stage in the tabular representation process was 
the classification stage. The nature of the tabular feature 
space representation permitted the application of many 
different classification algorithms. In this section, three 
classification algorithms were used: k-NN, Naïve Bayes 
(NB) and SVM. A number of preliminary experiments were 
conducted to: (i) identify the most appropriate strategy, S1 
or S2 (partitioning or non-partitioning) and (ii) determine 
the most appropriate value for the K parameter. With respect 
to S1, using all features produced a better performance, with 
regards to accuracy and AUC, than when using a reduced 
number of features. However, with respect to strategy S2, 
using a reduced number of features (50 ≤ K ≤ 400) produced 
the best overall performance with respect to all the 
considered evaluation metrics. Thus, overall, strategy S2 
performed better than S1, irrespective of the classification 
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algorithms used. The conjectured reason for this is that the 
localized features extracted using S2 are likely to be more 
informative. With respect to Dmax values, the classification 
tends to performed the best when Dmax = 3 and Dmax = 4. 

VI. TREE BASED APPROACH 

This section presents the third image classification 
approach considered in this paper. The approach is founded 
on the idea of representing retina images using a quad-tree 
based approach. This representation was deemed 
appropriate for retinal images as the utilisation of spatial 
based features tends to produce better classification 
performances (as illustrated by the two previously proposed 
techniques described in Sections 4 and 5 above). A similar 
idea has also been used with some success in the context of 
analysing MRI brain scan data [8]. 

The proposed approach comprised three steps: (i) image 
decomposition, (ii) weighted frequent sub-graph mining and 
(iii) feature selection and classification. The generation of 
hierarchical trees to represent each image was done by 
decomposing the image into regions (a similar idea was 
adopted in some cases with respect to the tabular technique 
described above) that satisfied some condition, which then 
resulted in a collection of tree represented images (one tree 
per image). Next, a weighted frequent sub-graph (sub-tree) 
mining algorithm was applied to the tree represented image 
data in order to identify a collection of weighted sub-trees 
that frequently occur across the image dataset (an idea 
suggested by the work presented in [37], [38]). The 
identified frequent sub-trees were then defined the elements 
of a feature space that may be used to encode the individual 
input images in the form of feature vectors itemising the 
frequent sub-trees that occur in each image. A feature 
selection strategy was applied to the identified set of 
frequent sub-trees so as to reduce the size of the feature 
space. The pruned feature space was then used to define the 
image input dataset in terms of a set of feature vectors, one 
per image. Once the feature vectors were generated, any one 
of a number of established classification techniques could 
be applied. With respect to the work described in this paper 
two classification algorithms were used: NB and SVM. 
Each stage is described in further detail in the following 
sub-sections. 

A. Image Decomposition 

A number of image decomposition techniques have been 
proposed in the literature. The mechanism proposed by the 
authors, and first suggested in [39], proceeds in a recursive 
manner as commonly used by other established image 
decomposition techniques. The novelty of the proposed 
approach was that a circular and angular interleaved 
partitioning was used. In the angular partitioning the 
decomposition was defined by two radii (spokes) and an 
angle describing an arc on the circumference of the image 
“disc”. The circular decomposition was defined by a set of 
concentric circles with different radii radiating out from the 

centre of the retinal disc. Individual regions identified 
during the decomposition were thus delimited by a tuple 
comprising a pair of radii and a pair of arcs. The technique 
is illustrated in Fig. 6 which, from left to right, shows four 
iterations of the decomposition process together with the 
tree structure produced. The main advantage of the 
technique (with regard to retinal images) is that it allows for 
the capture of different levels of detail. Dense detail from 
the central part of the retina disc image (where the most 
relevant image information can be found) and sparse detail 
from the periphery; consequently contributing to the 
production of a better classifier. 

From Fig. 6 the decomposition commences with an 
angular decomposition to divide the image into four equal 
sectors. If the pixels making up a sector have approximately 
uniform colour intensity no further decomposition is 
undertaken. All further decomposition is then undertaken in 
a binary form by alternating between circular and angular 
decomposition. In the example, sectors that are to be 
decomposed further are each divided into two regions by 
applying a circular decomposition. The decomposition 
continues in this manner by alternatively applying angular 
and circular partitioning until uniform sub-regions are 
arrived at, or a desired maximum level of decomposition, 
Dmax, is reached. Fig. 7 shows the tree generated from Fig. 6. 

 
 

 
 

Figure 6. Angular and circular retina image decomposition, iterations 1 to 4 
(from top right to bottom left) 

 
 
 
 
 
 
 
 
 
 

Figure 7. Tree data structure generated from the example hierarchical 
decomposition shown in Fig. 6 
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Before the partitioning is commenced, the centre of the 
retina disc has to be defined and the background and blood 
vessel pixels removed. This was achieved using a “mask” as 
described previously in Section 3.1. The image background, 
imbg, is defined as: 
 
                                 imbg = M ∩ RV                               (13) 

 
where M(x) is 1 if x is a retinal pixel and 0 otherwise; and 
RV(x) is 0 if x is a blood vessel pixel and 1 otherwise. Using 
the mask the image ROI was identified and the partitioning 
commenced. Throughout the process the tree data structure 
was continuously updated such that each identified region 
was represented as a “node” in the tree, whilst the 
relationship between each node and its parent node was 
represented by edges. The average intensity value of the 
region was stored at the associated node. The RGB (red, 
green and blue) colour model was used to extract the pixel 
intensity values, thus each pixel had three intensity values 
(red, green, blue) associated with it, hence three trees were 
generated initially and then merged at the end of the 
process. 

The nature of the termination criterion is important in 
any image decomposition technique. For the work described 
here a similar termination criterion as described in [40] was 
adopted. The homogeneity of a parent region, ω, was 
defined according to how well a parent region represents its 
child regions’ intensity values. If the intensity value, which 
is derived from the average intensity values of all pixels in a 
particular region, of a parent is similar (less than a 
predefined homogeneity threshold, τ) to all of its child 
regions, the parent region is regarded as being homogeneous 
and is not decomposed further. Otherwise, it will be further 
partitioned. Calculation of the ω value for a child region i of 
a parent region p was formulated as: 

 

                                (14) 

 
where μp is the average intensity value for the parent region 
and μi is the average intensity value for child region i. Note 
that a lower τ value will make the decomposition process 
more sensitive to colour intensity variations in the image, 
and will produce a larger tree as more nodes will be 
generated (but limited to some maximum number of nodes 
that can be produced by a predefined maximum level of 
decomposition,Dmax). The decomposition process is 
performed iteratively until Dmax is reached or all sub-regions 
are homogeneous. Further details of the image 
decomposition process can be found in [32]. 

On completion the intensity values stored at nodes in a 
tree using a label set {equal, high, low}, while the edges 
were labelled according to the set {nw, sw, ne, se, inner, 
outer}. If the original intensity values were used as node 
labels very few frequently occurring sub-graphs would have 
been found (see below). 

B. Weighted Frequent Sub-Graph Mining 

A Weighted Frequent Sub-graph Mining (WFSM) 
algorithm was applied across the tree dataset. Frequent Sub-
graph Mining (FSM) is concerned with the discovery of 
frequently occurring sub-graphs in a given collection of 
graphs D. A subgraph g is interesting if its support 
(occurrence count), sup(g), in D is greater than a predefined 
support threshold. Given a graph dataset, D, the support of a 
sub-graph g in dataset D is formalised as: 

 

                               (15) 

 
                       (16) 
 

A sub-graph g is frequent if and only if sup(g) ≥ the 
support threshold. The FSM problem is directed at finding 
all frequent sub-graphs in D. There are many different FSM 
algorithms that have been reported on in the literature. With 
respect to the proposed tree based approach described in this 
section the popular gSpan [41] FSM algorithm was used as 
the foundation for the proposed WFSM algorithm. The idea 
behind the proposed WFSM algorithm was the observation 
that some objects in an image can generally be assumed to 
be more important than others. With respect to the work 
presented in this paper it was conjectured that, nodes that 
are some “distance” away from their parent are more 
informative than those that are not. In the context of the 
work described here, such distance is measured by 
considering the difference of average colour intensity 
between a parent and its child nodes, normalised to the 
average colour intensity of the parent. The intuition here 
was that normal retinal pixels have similar colour intensity, 
while a substantial difference in intensity may indicate the 
presence of drusen. Thus, the quality of the information in 
the un-weighted tree representation can be improved by 
assigning weights to nodes and edges according to this 
distance measure. 

The specific graph weighting scheme adopted with 
regard to the WFSM algorithm advocated in this chapter is 
based on the work described in [42]. In the context of the 
proposed approach, two weights were assigned to each sub-
graph g: 

1) Node weights: Since abnormalities in retinal images 
commonly appear to be brighter than normal retina, 
higher value weights are assigned to such nodes (as 
these nodes are deemed to be more important). 

2) Edge weights: The edge weight (that defines the 
relationship between a child and its parent) is defined 
by the distance measure described above. 

Given a graph dataset, D = G1, G2, . . ., Gz , each node of 
a graph contains an average intensity value for a region 
within the image I it represents. A scheme to compute graph 
weights similar to that described in [42] was adopted. The 
node (and edge) weights for g were calculated by dividing 
the sum of the average node (and edge) weights in the 
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graphs that contained g with the sum of the average node 
(and edge) weights of all the graphs in D. 

It is suggested that the utilisation of node and edge 
weights together can reduce the computational cost of FSM, 
as less frequent sub-graphs will be identified. To extract 
frequent sub-trees (image features) that are useful for 
classification, a WFSM algorithm, an extension of the well-
known gSpan algorithm, was defined. The WFSM 
algorithm operated in a similar manner to that described in 
[42], but took both node and edge weightings into 
consideration (rather than node or edge weightings). A sub-
graph g is weighted frequent, with respect to D, if it satisfies 
the following two conditions: 

 
         (C1) ,				(C2) 	 (17) 

 
where ND(g) is the node weighting for g in D, ED(g) is the 
edge weighting for g in D, σ denotes a predefined weighted 
minimum support threshold and λ denotes a weighted 
minimum edge threshold. 

The output of the application of the weighted frequent 
subgraph mining algorithm was then a set of Weighted 
Frequent Sub-Trees (WFSTs). In order to allow the 
application of existing classification algorithms to the 
identified WFSTs, feature vectors were built from them. 
The identified set of WFSTs was first used to define a 
feature space. Each image was then represented by a single 
feature vector comprised of some subset of the WFSTs in 
the feature space. In this manner the input set can be 
translated into a two dimensional binary-valued table of size 
z × h; of which the number of rows, z, represented the 
number of images and h the number of identified WFSTs. 
An additional class label column was added. 

C. Feature Selection and Classification 

The number of features discovered by the WFST mining 
algorithm, as described above, is determined by both σ and 
λ values. Previous work conducted by the author, and 
presented in [32], [33], [39], demonstrated that relatively 
low σ and λ values were required in order to generate a 
sufficient number of WFSTs. Setting low threshold values 
however results in large numbers of WFSTs, of which many 
were found to be redundant and/or ineffective in terms of 
the desired classification task. Thus, a feature selection 
process was applied to the discovered features. The input to 
the feature ranking algorithm (similar to the approach 
described in Section 5.2) was the set of identified WFSTs, 
and the output was a ranked list of WFSTs sorted in 
descending order according to their weights. The feature 
selection process was then concluded by selecting the top k 
WFSTs, consequently the size of the feature space was 
significantly reduced. 

The final stage of the proposed tree based retinal image 
classification process was the classification stage. As 
described above, each image was represented by a feature 
vector of WFSTs. Any appropriate classification technique 

could then be applied. In the context of the work described 
here a SVM technique was used. 

Some preliminary evaluation (see [32], [39]), which has 
been conducted using smaller data set and applied to binary 
classification problems, indicated that the best results were 
produced using a maximum decomposition of 7 (Dmax = 7), 
σ = 10% and λ ≤ 40%. Overall, the application of feature 
selection produced a better performance than when feature 
selection was not used, however k was best set at between 
1000 and 4000. 

VII. EVALUATION  

This section presents an overview of the evaluation 
conducted with respect to the three approaches considered 
above. The section is divided into two subsections. The 
evaluation in terms of AMD classification is reported in 
Sub-section 7.1, where five metrics were used to compare 
the operation of the proposed approaches: (i) sensitivity, (ii) 
specificity, (iii) accuracy, (iv) Area Under the receiver 
operating Characteristic Curve (AUC) and (v) the False 
Negative Rate (FNR). Note that the evaluation of the 
proposed approaches was conducted using Ten-fold Cross 
Validation (TCV). The TCV was repeated five times and the 
training and test images for each TCV were randomised. 
Average results are thus presented in Sub-section 7.1. Sub-
section 7.2 then presents a discussion of the statistical 
significance analysis conducted (ANOVA and Tukey 
testing). 

A. Evaluation in Terms of AMD Classification 

Table 1 presents the results using the three proposed 
techniques in the context of a binary classification problem 
(AMD vs. non-AMD). Note that the results were generated 
using the best parameter settings as identified from previous 
experimentation (and as noted above). Table II presents the 
results obtained in the context of a multiple class 
classification setting (AMD, DR and “normal”). The right 
most column shows the FNR produced by the proposed 
approaches. The best results are indicated in bold font. From 
Table 1 it can be seen that the Tabular and Tree approaches 
produced high classification performances of greater than 
85% accuracy and greater than 90% AUC. The best 
recorded accuracy and AUC of 99.9% and the lowest FNR 
value of 1.0% were obtained using the Tree approach. These 
are excellent results. The best sensitivity and specificity 
were also produced by the Tree based approach. The Time 
Series approach produced the worst results. From Table 2 it 
can be seen that, as might be expected, an overall lower 
performance was recorded compared to the binary setting 
with the exception of the sensitivity to identify AMD (Sens. 
AMD) and FNR with respect to the Tree based 
representation. Overall the Tree approach outperformed the 
Time Series and Tabular approaches with respect to all the 
evaluation metrics used. These results indicate that using the 
proposed tree representation, coupled with a weighted 
frequent sub-graph mining algorithm is the most appropriate 
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TABLE I.  CLASSIFICATION PERFORMANCE AMD V. NON-AMD 

Ap. Sens Spec Acc AUC FNR 
Time Series 74.5 60.4 69.3 73.2 25.5 

Tabular 92.3 78.7 87.3 93.2 7.7 
Tree 99.0 100.0 99.9 99.9 1.0 

 
 

TABLE II.  CLASSIFICATION PERFORMANCE MULTICLASS 
SETTING 

Ap. 
Sens-
AMD 

Sens-
other 

Spec  Acc AUC FNR 

Time Series 57.0 48.0 50.5 52.4 70.7 43.0 
Tabular 77.3 75.3 49.2 69.7 84.7 22.7 

Tree 99.5 97.1 96.8 98.1 98.5 0.5 
 

with respect to the classification of the retinal images for the 
purposes of the evaluation. The Tree approach also 
produced the most reliable results, with a high sensitivity 
value that would avoid AMD patients being mistakenly 
screened as being healthy. 

As already noted in Section 2 there is very little 
comparable reported work on the classification (screening) 
of retina images for AMD. The authors have only been able 
to identify four instances of comparable work, namely: (i) 
Brandon and Hoover [1], (ii) Chaum et al. [11], (iii) Agurto 
et al. [10] and (iv) Cheng et al. [13]. Direct comparison with 
this reported work is not possible because the data sets used 
in each case are not in the public domain, except Brandon 
and Hoover that used the STARE data set. However, with 
respect to this reported work, it can be observed that: 

1) The evaluation presented in Brandon and Hoover was 
applied not only to AMD screening (AMD vs non-
AMD), but also to grade the detected AMD. The 
reported overall accuracy obtained was 90% on 97 
images. The AUC metric was not used. 

2) The work of Chaum et al. was applied in a multiclass 
setting. The overall reported classification accuracy 
was 91.3% on 395 images. In their evaluation, 48 
images (12.2% of the total images used) were 
classified as “unknown” and excluded from the 
accuracy calculation. If this number was included as 
miss-classifications, the accuracy will be lower. 

3) Agurto et al. reported a best recorded AUC value of 
84% to identify AMD images against non-AMD 
images from normal eyes and eyes with DR. They 
also presented the results of applying their approach 
to AMD images that featured only drusen, as a result 
of which the recorded AUC value decreased to 77%. 
No classification accuracy was reported. 

4) The results reported in Cheng et al. were generated 
from the classification of AMD images against non-
AMD; 350 images were used. Only sensitivity and 
specificity were recorded, where the best of each 
were 86.3% and 91.9% respectively. 

5) Mookiah et al. [12] reported an average accuracy of 
95.07% and 95% for ARIA and STARE datasets 
respectively. 

Thus, from the above, it is suggested that the proposed 
approaches presented in this paper, in particular the Tree 
approach, produced a comparable performance to those 
associated with the existing work reported in the literature. 

B. Statistical Comparison 

The comparison with respect to AMD screening reported 
in the foregoing section shows that the best classification 
performance was produced by the third approach, the Tree 
based representation. In this section, the results of an 
Analysis of Variance (ANOVA) test [43] are presented 
which was used to demonstrate that this result is indeed 
significant. The ANOVA test operates in terms of the mean 
of the “accuracies” produced using k different classifiers. 
The means of the accuracies of the compared classifiers are 
said to be different if the between classifiers variability is 
significantly larger than the within classifiers variability; if 
this is the case, the null hypothesis can be rejected [43], 
[44]. This is indicated by the resulting p value; in the 
context of the work presented in this paper the p value 
corresponds to the probability that all classifiers produced 
the same mean. From the literature, classifiers are deemed to 
be significantly different if p ≤ 0.05 [45]. The generated 
accuracy for each run of the cross validation was taken as a 
sample for the statistical testing. Thus, the number of 
samples used, n, was 10 × 5 = 50 for each classifier. 
Experiments were conducted in terms of both binary 
classification and multi-class classification. Although there 
is insufficient space in this paper to present full details of 
the ANOVA testing conducted, in both cases the differences 
in accuracy between the proposed approaches, according to 
the ANOVA test, were highly significant such that the null 
hypothesis was rejected at p < 0.005 for both the binary and 
the multi-class contexts. 
In order to identify the difference in the operation of the 
classifiers the Tukey post hoc test was applied [46]. A 
Tukey test performs multiple pairwise classifier 
comparisons by calculating the differences between the 
means of the compared classifiers. The best performing 
classifier is then identified if the computed differences are 
large enough. In this context the Critical Difference (CD) 
value with respect to the binary classification scenario was 
calculated at CD_B = 3.1, and for the multi-class scenario at 
CD_M = 2.7568. Summaries of the results produced using 
the Tukey test are presented in Tables 3 and 4. In the Tables 

 indicates the difference between the mean accuracy 
using approach A and approach B. From the tables, the 
differences between the approaches were all greater than the 
computed CD_B and CD_M values. Thus it can be 
concluded that the difference between the approaches, in all 
cases, is statistically significant. In the case of binary 
classification (Table 3) the Tabular approach performed 
better than the Time Series approach, while the Tree  
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TABLE III.  TUKEY TEST AMD VS. NON-AMD 

Comparison 
A vs. B  

Tree vs. Tabular 99.9 – 87.3 = 12.6 
Tree vs. Time Series 99.9 – 669.3 = 30.6 

Tabular vs. Time Series 87.3 – 69.3 = 18 
 

 
TABLE IV.  TUKEY TEST MULTICLASS SETTING 

Comparison 
A vs. B  

Tree vs. Tabular 94.8 – 69.5 = 25.4 
Tree vs. Time Series 94.8 – 52.4 = 42.5 

Tabular vs. Time Series 69.5 – 52.4 = 17.1 

 
 

approach produced the greatest difference. In the case of 
multi-class classification (Table 4) the Tree based approach 
produced the greatest differences and hence the best 
performance. Thus, in conclusion, the conducted 
comparisons clearly demonstrated that the proposed Tree 
based approach outperformed the other two approaches. 

VIII. CONCLUSION 

The work described in this paper compared the operation 
of three alternative representations to support retina image 
classification with respect to screening processes. The first 
used a time series representation which was coupled with a 
CBR approach to classification. The second used a tabular 
representation containing purely statistical information to 
which standard classification techniques could be applied. 
The third used a hierarchical decomposition mechanism to 
construct a tree representation (one per image) which was 
coupled with a weighted sub-graph mining technique to 
generate a feature vector representation to which standard 
classification techniques could again be applied. Excellent 
results were produced. Sensitivity, specificity and accuracy 
rates of 99% and over were recorded. Further evaluation 
indicated that the results were statistically significant. 
Overall the tree representation was found to be the most 
effective. The excellent results obtained indicated that 
classification systems are ideally suited to large scale AMD 
screening processes. More specifically that the tree based 
approach produced the most effective results in comparison 
with the time series and tabular approaches also considered. 
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