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Introduction: The archetypal problem 
--- shopping basket analysis

Which items tend to occur together in 
shopping baskets?
– Examine database of purchase transactions
– look for associations

Find Association Rules:
PQ -> X

When P and Q occur together, X is likely to 
occur also



Support and Confidence

• The support support for a rule Afor a rule A-->B is the number (proportion) >B is the number (proportion) 
of cases in which AB occur togetherof cases in which AB occur together

•• The The confidence confidence for a rule is the ratio of support for rule for a rule is the ratio of support for rule 
to support for its antecedentto support for its antecedent

•• The problem: The problem: Find all rules for which support and Find all rules for which support and 
confidence exceed some threshold (the confidence exceed some threshold (the frequent frequent sets)sets)

•• Support Support is the difficult part (confidence followsis the difficult part (confidence follows))



Lattice of attribute-subsets
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Apriori Algorithm

• Breadth-first lattice traversal:
– on each iteration k, examine a Candidate Set Ck

of sets of k attributes:
– Count the support for all members of Ck (one 

pass of the database, requiring all k-subsets of 
each record to be examined)

– Find the set Lk of sets with required support
– Use this to determine Ck+1, the set of sets of 

size k+1 all of whose subsets are in Lk



Performance
• Requires x+1 database passes (where x is the size 

of the largest frequent set)
• Candidate sets can become very large (especially 

if database is dense)
• Examining k-subsets of a record to identify all 

members of Ck present is time-consuming

• So: unsatisfactory for databases with 
densely-packed records     



Computing support via Partial 
support totals

• Use a single database pass to count the sets 
present (not subsets): this gives us m’ 

partial support-counts (m’ < m, the database 
size)  

• Use this set of counts to compute the total 
support for subsets

• Gains when records duplicated (m’ << m)
• More important: allows us to reorganise 

data for efficient computation



Building the tree
• For each record i in database:

– find the set i on the tree;
– increment support-count for all sets on path to i
– if set not present on tree, create a node for it

• Tree is built dynamically (size ~m rather 
than 2n)

• Building tree has already counted support 
deriving from successor-supersets (leading 
to interim support-count Qi)



Set enumeration tree: The P-tree
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Set enumeration tree: The P-tree
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Dummy Nodes
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Dummy Nodes
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Calculating total support
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iTS = iPS+ sum(predessessor nodes of IPS)

BTS = BPS+ABPS



Calculating total support
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Calculating total support
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Computing total supports: 
The T-tree

A B

AB

C

AC

D

ABC

BC AD

ACDABD

BD CD

ABCD

BCD



Itemset Ordering

• Advantages gained from partial computation is not 
equally distributed throughout the set  of candidates.

• For candidate early in the lexicographic order most of 
the support calculation is complete

• If we know the frequency of single items sets we can 
order the tree so that the most common item sets appear 
first and thus reduced the effort required for total 
support counting.



Set enumeration tree: The P-tree
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Computing Total Supports

• Have already computed interim support Qi
for set i

• Total support =                (adding 
support for predecessor-supersets)

∑+ ji PQ



Example
A B C D

AB AC AD

ABC

ABCD

ABD

ACD

BC BD CD

BCD

-To complete total for BC, need to add support stored at ABC



General summation algorithm

• For each node j in tree:
– for all sets i in Target set T:

• if  i is a subset of j and i is not a subset of the parent 
of j, add Qj to total for i



Example (2)
A B C D

AB AC AD

ABC

ABCD

ABD

ACD

BC BD CD

BCD

-Add support stored at ABC to support for AC, BC and C
- No need to add to A, AB (already counted) or to B (will 

have AB added, including ABC)



Modified algorithm

• Problem: still have 2n Totals to count
– So use Apriori type algorithm

• Count C1, C2 etc in repeated passes of tree



Algorithm Apriori-TFP (Total-
from -Partial)

• For each node j in P-tree:
– i is attribute not in parent node
– starting at node i of T-tree:

• walk the tree until (parent of) node j is reached, 
adding support to all subsets of j at the required 
level

• On completion, prune the tree to remove 
unsupported sets

• Generate the next level and repeat



Illustration
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Pass 1: C not supported, so do not add AC,BC,CD to tree
Pass2: (eg) Item ABD from P-tree added to AD and BD (tree
is walked from D to BD)

ABD



Advantages

• 1. Duplication in records reduces size of 
tree

• 2. Fewer subsets to be counted: eg, for a 
record of r attributes, Apriori counts r(r-1)/2 
subset-pairs; our method only r-1

• 3. T-tree provides an efficient localisation 
of candidates to be updated in Apriori-TFP



Related Work

• The FP-tree (Han et al.), developed 
contemporaneously, has similar properties, 
but:
– FP-tree stores a single item only at each node 

(so more nodes)
– FP-tree builds in more links to implement FP-

growth algorithm
– Conversely, P-tree is generic: Apriori-TFP is 

only one possible algorithm 



Experimental results (1)

• Size and construction time for P-tree:
– almost independent of N (number of attributes)
– scale linearly with M (number of records)
– seems to scale linearly as database density 

increases
– less than for FP-tree (because of more nodes 

and links in latter)



Experimental results (2): time to 
produce all frequent sets

T25.I10.N1K.D10K



Continuing work

• Optimise using item ordering heuristic: (as 
used in FP-growth)

• Explore other algorithms (eg Partition) 
applied to P-tree

• Hybrid methods, using different algorithms 
for subtrees
– (exhaustive methods may be effective for small 

very densely-populated subtrees)














