OPTIMISING ASSOCIATION

RULE ALGORITHMSUSING
ITEMSET ORDERING

ES2001
Peterhouse College, Cambridge

Frans Coenen, Paul L eng and
Graham Goulbourne

The Department of Computer Science
The University of Liverpool

Introduction: The archetypal problem

--- shopping basket analysis

Which items tend to occur together in
shopping baskets?
— Examine database of purchase transactions
— look for associations

Find Association Rules:
PQ -> X
When P and Q occur together, X islikely to
occur also

Support and Confidence

The support for arule A->B is the number (proportion)
of cases in which AB occur together

The confidence for arule isthe ratio of support for rule
to support for its antecedent

The problem: Find all rules for which support and
confidence exceed some threshold (the frequent sets)

Support isthe difficult part (confidence follows)

L attice of attribute-subsets

Breadth-first lattice traversal:

— on each iteration k, examine a Candidate Set C,
of sets of k attributes:

— Count the support for all members of C, (one
pass of the database, requiring all k-subsets of
each record to be examined)

— Find the set L, of sets with required support

— Use thisto determine C,, ;, the set of sets of
size k+1 all of whose subsetsareinlL,

Performance

* Reqguires x+1 database passes (where x isthe size
of the largest frequent set)

e Candidate sets can become very large (especially
If database Is dense)

e Examining k-subsets of arecord to identify all
members of C, present is time-consuming

o S0: unsatisfactory for databases with
densely-packed records

Computing support via Partial

support totals

o Use asingle database pass to count the sets

oresent (not subsets): this givesus m

partial support-counts (M < m, the database
Size)

e Usethisset of counts to compute the total
support for subsets

e Gains when records duplicated (m << m)

 More important: allows usto reorganise
data for efficient computation

Building the tree

e For each record I In database:
— find the set | on the tree;
— Increment support-count for all sets on path to |
— If set not present on tree, create a node for It

e Treeisbuilt dynamically (size ~m rather
than 2")

e Building tree has already counted support
deriving from successor-supersets (leading
to Interim support-count Q)

Set enumeration tree: The P-tree

Set enumeration tree: The P-tree

Dummy Nodes

O
O
Z
>
=
-
S
o

ABD

ABC

Calculating total support

il 1
ABC ABD
2 1 . .
6o lrs = Ipst SUM(predessessor nodes of |xg)
ABCD

Brs = BpstABps

Calculating total support

—
o o 3
S

2 1

8
o B

4 2 1 ?ml 1
m @ m

1 1
2
/
s ADpg+ ACDpg+ ABDpg +

1
ABCDps

Calculating total support

.
= fed

S | Al D15 = Dpg+ CDpg+ BDpg+ BCDpg +
2
/é@ ADps+ ACDps+ ABDpg +

ABCDps

Computing total supports:

The T-tree

AB AC BC AD =1D) CD

ABC ABD| |ACD[—|BCD

ABCD

ltemset Ordering

Advantages gained from partial computation Is not
equally distributed throughout the set of candidates.

For candidate early in the lexicographic order most of
the support calculation is complete

® If we know the frequency of single items sets we can
order the tree so that the most common item sets appear
first and thus reduced the effort required for total
support counting.

Set enumeration tree: The P-tree

» Have already computed interim support Q,
for set |

e Total support = (adding
support for predecessor-supersets)

ABC

AC

AD

ACD

—/

ABCD

ABD

BD

CD

-To complete total for BC, need to add support stored at ABC

e For each node]j in tree:

—for al setsi inTarget set T

o If 11sasubset of | and i Isnot a subset of the parent
of J, add Q to total for |

(&=

ABCD

-Add support stored at ABC to support for AC, BC and C

- No need to add to A, AB (already counted) or to B (will
have AB added, including ABC)

e Problem: still have 2" Totals to count
— S0 use Apriori type algorithm
e Count C,, C, etc in repeated passes of tree

e For each node] In P-tree;
— | Is attribute not in parent node

— gtarting at node | of T-tree:

« walk the tree until (parent of) node | is reached,
adding support to all subsets of | at the required
level

e On completion, prune the tree to remove
unsupported sets

o Generate the next level and repeat

AB AC BC AD BD CD

ABC ABD| |ACD [|BCD

ABD ABCD

Pass 1. C not supported, so do not add AC,BC,CD to tree
Pass2: (eg) Item ABD from P-tree added to AD and BD (tree
iIswalked from D to BD)

e 1. Duplication in records reduces size of
tree

o 2. Fewer subsetsto be counted: eg, for a
record of r attributes, Apriori counts r(r-1)/2
subset-pairs, our method only r-1

o 3. T-tree provides an efficient localisation
of candidates to be updated in Apriori-TFP

e The FP-tree (Han et al.), developed
contemporaneoudly, has similar properties,
but:

— FP-tree stores a single item only at each node
(so more nodes)

— FP-tree builds in more links to implement FP-
growth algorithm

— Conversaly, P-tree isgeneric: Apriori-TFP is
only one possible algorithm

e Sze and construction time for P-tree:
— almost independent of N (number of attributes)
— scale linearly with M (number of records)

— seems to scale linearly as database density
INncreases

— less than for FP-tree (because of more nodes
and links in latter)

Experimental results (2): timeto
produce all frequent sets

T25.110.N1K.D10K

e Optimise using item ordering heuristic: (as
used in FP-growth)

o Explore other algorithms (eg Partition)
applied to P-tree

» Hybrid methods, using different algorithms
for subtrees

— (exhaustive methods may be effective for small
very densely-populated subtrees)

gl T-tree Generartion Time: T16 1§ Na00 DZ00000

Time {mins)

&0
40

20
10

4.3 2.0
Support Threshold

Sl T-tree Generation Updates: T16 18 N500 D200000

Supp

==l T-tree Generartion Time: Mushroom H129 D7784

==l T-tree Generation Updates: Mushroom M129 D7784

=N T-tree Generartion Time: Aeet H194 D000

Supp

g =f T-tree Generation Updates: Fleet N194 D000

Mum Up

]
Supp

