
OPTIMISING ASSOCIATION
RULE ALGORITHMS USING

ITEMSET ORDERING
ES2001

Peterhouse College, Cambridge

Frans Coenen, Paul Leng and
Graham Goulbourne

The Department of Computer Science
The University of Liverpool

Introduction: The archetypal problem
--- shopping basket analysis

Which items tend to occur together in
shopping baskets?
– Examine database of purchase transactions
– look for associations

Find Association Rules:
PQ -> X

When P and Q occur together, X is likely to
occur also

Support and Confidence

• The support support for a rule Afor a rule A-->B is the number (proportion) >B is the number (proportion)
of cases in which AB occur togetherof cases in which AB occur together

•• The The confidence confidence for a rule is the ratio of support for rule for a rule is the ratio of support for rule
to support for its antecedentto support for its antecedent

•• The problem: The problem: Find all rules for which support and Find all rules for which support and
confidence exceed some threshold (the confidence exceed some threshold (the frequent frequent sets)sets)

•• Support Support is the difficult part (confidence followsis the difficult part (confidence follows))

Lattice of attribute-subsets

C DA B

AB ADAC BC BD CD

BCDACDABDABC

ABCD

Apriori Algorithm

• Breadth-first lattice traversal:
– on each iteration k, examine a Candidate Set Ck

of sets of k attributes:
– Count the support for all members of Ck (one

pass of the database, requiring all k-subsets of
each record to be examined)

– Find the set Lk of sets with required support
– Use this to determine Ck+1, the set of sets of

size k+1 all of whose subsets are in Lk

Performance
• Requires x+1 database passes (where x is the size

of the largest frequent set)
• Candidate sets can become very large (especially

if database is dense)
• Examining k-subsets of a record to identify all

members of Ck present is time-consuming

• So: unsatisfactory for databases with
densely-packed records

Computing support via Partial
support totals

• Use a single database pass to count the sets
present (not subsets): this gives us m’

partial support-counts (m’ < m, the database
size)

• Use this set of counts to compute the total
support for subsets

• Gains when records duplicated (m’ << m)
• More important: allows us to reorganise

data for efficient computation

Building the tree
• For each record i in database:

– find the set i on the tree;
– increment support-count for all sets on path to i
– if set not present on tree, create a node for it

• Tree is built dynamically (size ~m rather
than 2n)

• Building tree has already counted support
deriving from successor-supersets (leading
to interim support-count Qi)

Set enumeration tree: The P-tree

A

ABD

ACD

BD CD

BCD
A BD

B CD

C ABC

D ABD

AB ACD

AC BCD

AD ABCD

BC

B C D

AB

ABC

ABCD

AC AD BC

8 4

4 2

2

2

2 1

11

1

1

1

1

1

Set enumeration tree: The P-tree

ABD

ACD

BD CD

BCD
A BD

B CD

C ABC

D ABD

AB ACD

AC BCD

AD ABCD

BC

BC

2 11

11

1

A
7

AB

ABCD

3

3

AC AD

2 1

B C D
4 2 1

Dummy Nodes

ABD

ACD A

AC

AD

ABC

ABD

ACD

ABCD

1

1

A
7

ABC

ABCD

3

3

AC AD

2 1
ABCD

3

Dummy Nodes

ACD

A

AC

AD

ABC

ABD

ACD

ABCD1

A
7

ABC

ABCD

2

1

AC AD

2 1
ABD

1

ACD

1

A

7

AB

ABCD

3

1

AC AD

2 1

ABD

1
ABC

2

Calculating total support

A
8

ACD

AC AD

2 1

1

AB

4

ABDABC

ABCD

2 1

1

BD CD

BCD

B C D

BC

4

2

2 1

11

1

iTS = iPS+ sum(predessessor nodes of IPS)

BTS = BPS+ABPS

Calculating total support

A
8

ACD

AC AD

2 1

1

AB

4

ABDABC

ABCD

2 1

1

BD CD

BCD

B C D

BC

4

2

2 1

11

1

DTS = DPS + CDPS + BDPS + BCDPS +

ADPS + ACDPS + ABDPS +

ABCDPS

Calculating total support

A
8

AB

4

ABCD
1

BCD

4

2

2

1

DTS = DPS + CDPS + BDPS + BCDPS +

ADPS + ACDPS + ABDPS +

ABCDPS

BD CDBC

11

1
B C

ACD

2 1

ABDABC

2 1

1

AC

D

AD

Computing total supports:
The T-tree

A B

AB

C

AC

D

ABC

BC AD

ACDABD

BD CD

ABCD

BCD

Itemset Ordering

• Advantages gained from partial computation is not
equally distributed throughout the set of candidates.

• For candidate early in the lexicographic order most of
the support calculation is complete

• If we know the frequency of single items sets we can
order the tree so that the most common item sets appear
first and thus reduced the effort required for total
support counting.

Set enumeration tree: The P-tree

A

ABD

BD

D

CD

BD

AD

BCD

ACD

ABD

ABCD

B CD D

AB

ABCD

ACD AD BCD

3 4

2 1

1

2

2 1

11

1

Computing Total Supports

• Have already computed interim support Qi
for set i

• Total support = (adding
support for predecessor-supersets)

∑+ ji PQ

Example
A B C D

AB AC AD

ABC

ABCD

ABD

ACD

BC BD CD

BCD

-To complete total for BC, need to add support stored at ABC

General summation algorithm

• For each node j in tree:
– for all sets i in Target set T:

• if i is a subset of j and i is not a subset of the parent
of j, add Qj to total for i

Example (2)
A B C D

AB AC AD

ABC

ABCD

ABD

ACD

BC BD CD

BCD

-Add support stored at ABC to support for AC, BC and C
- No need to add to A, AB (already counted) or to B (will

have AB added, including ABC)

Modified algorithm

• Problem: still have 2n Totals to count
– So use Apriori type algorithm

• Count C1, C2 etc in repeated passes of tree

Algorithm Apriori-TFP (Total-
from -Partial)

• For each node j in P-tree:
– i is attribute not in parent node
– starting at node i of T-tree:

• walk the tree until (parent of) node j is reached,
adding support to all subsets of j at the required
level

• On completion, prune the tree to remove
unsupported sets

• Generate the next level and repeat

Illustration

A B

AB

C

AC

D

ABC

BC AD

ACDABD

BD CD

ABCD

BCD

Pass 1: C not supported, so do not add AC,BC,CD to tree
Pass2: (eg) Item ABD from P-tree added to AD and BD (tree
is walked from D to BD)

ABD

Advantages

• 1. Duplication in records reduces size of
tree

• 2. Fewer subsets to be counted: eg, for a
record of r attributes, Apriori counts r(r-1)/2
subset-pairs; our method only r-1

• 3. T-tree provides an efficient localisation
of candidates to be updated in Apriori-TFP

Related Work

• The FP-tree (Han et al.), developed
contemporaneously, has similar properties,
but:
– FP-tree stores a single item only at each node

(so more nodes)
– FP-tree builds in more links to implement FP-

growth algorithm
– Conversely, P-tree is generic: Apriori-TFP is

only one possible algorithm

Experimental results (1)

• Size and construction time for P-tree:
– almost independent of N (number of attributes)
– scale linearly with M (number of records)
– seems to scale linearly as database density

increases
– less than for FP-tree (because of more nodes

and links in latter)

Experimental results (2): time to
produce all frequent sets

T25.I10.N1K.D10K

Continuing work

• Optimise using item ordering heuristic: (as
used in FP-growth)

• Explore other algorithms (eg Partition)
applied to P-tree

• Hybrid methods, using different algorithms
for subtrees
– (exhaustive methods may be effective for small

very densely-populated subtrees)

