

ADMA2013

UNIVERSITY OF LIVERPOOL

Introduction

>This paper presents an integrated framework for learning to predict geometry related features with respect to 3D surfaces.

The idea is to use a training set of known feature values to create a model founded on local 3D geometries associated with a given surfaces so that predictions with respect to a new "unseen" surfaces can be made.

>The local geometries are represented using Point Series (PS) curves.

Two variations of PS technique are proposed: (i) discretised and (ii) real number.
 To act as a focus for the work, we consider the prediction of "springback" resulting from sheet metal forming process, specifically Asymmetric Incremental Sheet Forming (AISF).

S. El Salhi, F. Coenen, C. Dixon, M. Khan

ADMA2013

UNIVERSITY OF LIVERPOOL

The Prediction Framework

>The input to the proposed prediction framework is a grid representation of some 3D shape of interest.

>Each grid square is defined by its centre point in terms of x, y and z coordinate.

>The number of grid squares required to represent a given shape will depend on

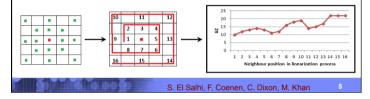
the grid size $\textit{\textbf{d}}.$ Fewer grid squares will be generated if a larger $\textit{\textbf{d}}$ value is used.

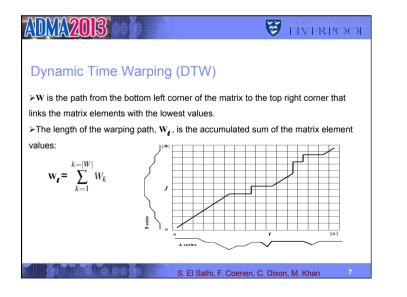
>A collection of local geometries can be defined (one per grid square).

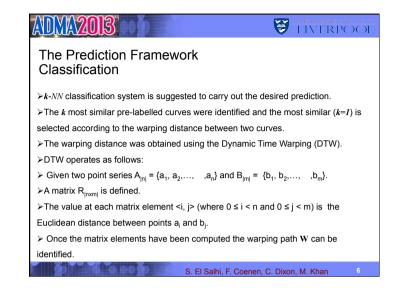
Two alternative Point Series representation are considered : (i) Key Points and (ii) All Points.

>Once a collection of point series curves have been generated, this model can be used for prediction process.

ADXA2013


UNIVERSITY OF LIVERPOOL

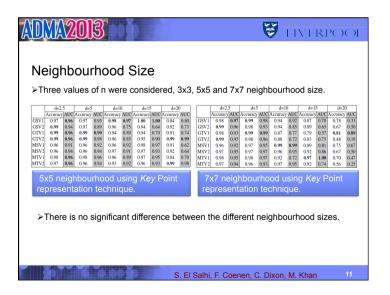

The Prediction Framework Point Series Representation Technique


>The size of a neighbourhood can be simply described in terms of a Region Of Interest (ROI) surrounding each point \mathbf{p}_i defined in terms of a *n* x *n* block of grid squares centred on \mathbf{p}_i .

>A straightforward spiral linearization was adopted.

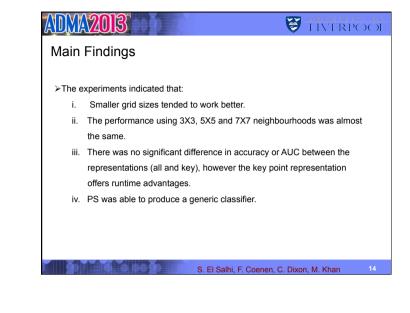
>The number of points to be considered can include all points (n^2 -1) covered by a linearization or a selection of "key" points (((n-1)/2)X8).

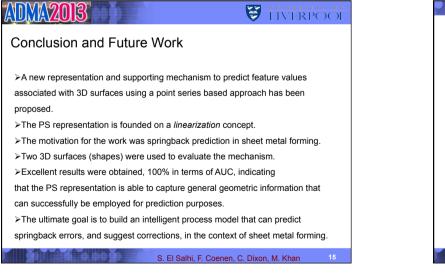
UNIVERS


S. El Salhi, F. Coenen, C. Dixon, M. Khan

 \bigcirc

AUMAVAUID	and the second	A	LIVERPO
Evaluation			
Two sample surfaces described flat topped p			
steel and twice using ti			
		£.,	
Gonzalo	Dumensial	Modified F). manaid


S. El-Salhi, F. Coenen, C. Dixon and M. Khan


ADMA2013	ADMA2013
Evaluation	Grid size ≻A range of grid sizes, d = {2.5, 5, 10, 15, 20} mm, were considered together w
 To determine best grid size Key Points VS All Points Neighbourhood Size Generalization 	3x3 neighbourhood using the key point linearization.
S. El Salhi, F. Coenen, C. Dixon, M. Khan 9	>As the grid size increases the accuracy and AUC values start to decrease du the coarseness of the representation. S. El Salhi, F. Coenen, C. Dixon, M. Khan

	≻Thi	ree	valu	es	of n	wei	e co	onsi	der	ed, 3	3x3, 5	x5 aı	nd 7	'x7 ne	eigh	bour	hoo	d size	ə.		
	d=2.	5	d=5		d=1	0	d=1	5	d=:	20		d=2.		d=5		d=1		d=1		d=2	
			Accuracy								0000			Accuracy							
GSV1 GSV2	0.97	0.96	0.97	0.95	0.98	0.97	1.00 0.94	1.00 0.64	0.84 0.92	0.80 0.73	GSV1 GSV2	0.96	0.95	0.97 0.98	0.95	0.98 0.96	0.97 0.75	1.00	1.00	0.84 0.92	0.8
JJ3 V 2	0.99	0.94		0.89	0.90	0.89	0.94	0.70	0.92	0.74	GTV1	0.99	0.96	0.99	0.99	0.94	0.88	0.94	0.70	0.91	0.1
3TV2	0.99	0.96		0.98	0.96	0.85	0.95	0.90	0.99	0.99	GTV2	0.99	0.96	0.99	0.98	0.96	0.85	0.95	0.90	0.98	0.9
MSV1	0.96	0.91	0.96	0.92	0.96	0.92	0.98	0.97	0.91	0.62	MSV1 MSV2	0.97	0.91	0.96	0.93	0.96	0.92 0.92	0.98	0.97	0.93 0.90	0.0
4SV2 4TV1	0.96	0.94		0.94	0.97	0.91 0.89	0.97 0.97	0.93	0.92	0.64	MTV1	0.99	0.97	0.98	0.95	0.96	0.91	0.97	0.96	0.83	0.0
MTV2		0.96		0.94	0.93	0.92	0.96	0.93	0.99	0.98	MTV2	0.98	0.97	0.96	0.94	0.93	0.92	0.98	0.96	0.99	0.
			bourl ation				key	роі	int			k5 ne prese		bourh tion.	1000	l usin	ig a	ll poir	nt		

				VICV1		rain	GTV2	MOVI	MSVO	MTVI	MTV2
			Point series	pavi	0.97	0.94	0.93	0.96	0.91	0.96	0.98
• · · ·		GSV1	LGM		0.66	0.59	0.70	0.44	0.52	0.48	0.52
Generalisation		0511	LDM		0.52	0.50	0.50	0.51	0.50	0.52	0.47
Ocheralisation			LGM + LDM Point series	0.99	0.94	0.76	0.81	0.80	0.89	0.75	0.70
			LCM	0.99		0.99	0.92	1.00 0.60	0.96	1.00	0.99
The main goal was to determine		GSV2	LDM	0.50		0.50	0.50	0.50	0.50	0.50	0.50
➤The main goal was to determine						0.78	0.83	0.81	0.90	0.78	0.74
whether it is possible to generate a	[Point series		0.87		0.95	0.64	0.66	0.94	0.94
		GTV1	LGM LDM	0.65	0.74		0.75	0.69	0.67	0.69	0.67
generally applicable classifier.			LGM + LDM		0.89		0.80	0.80	0.89	0.73	0.72
>Using classifier trained on one shape	11		Point series	0.81	0.91	0.98		0.65	0.61	0.99	0.95
and tested on another		GTV2	LGM	0.66	0.81	0.72		0.70	0.63	0.68	0.65
and tested on another.			LDM LGM + LDM	0.50	0.50	0.50		0.50	0.50	0.50	0.50
>A best AUC value of 1.00 was obtained	Test	۱ <u> </u>	Point series	0.74	0.97	0.79	0.98	0.85	0.95	0.79	0.74
		MSV1	LGM	0.61	0.57	0.70	0.76		0.82	0.76	0.77
by using the proposed representation.		MSV I	LDM	0.51	0.39	0.47	0.47		0.59	0.59	0.60
>Other alternatives (LGM, LDM and the			LGM + LDM Point series	0.66	0.89	0.74	0.76	0.98	0.92	0.74	0.75
			LCM	0.65	0.75	0.72	0.77	0.80		0.70	0.73
combined LGM+LDM) performed badly		MSV2	LDM	0.51	0.39	0.59	0.47	0.59		0.59	0.60
in comparison with the PS	1 L		LGM + LDM	0.77	0.95	0.78	0.83	0.84		0.77	0.73
			Point series LGM	0.85	0.88	0.96	0.94	0.62	0.59		0.95
representation.		MTV1	LOM	0.62	0.74	0.50	0.50	0.75	0.75		0.76
An effective generic classifier can be	ιι		LGM + LDM	0.74	0.93	0.76	0.81	0.80	0.91		0.71
			Point series	0.90	1.00	0.98	0.93	0.65	0.63	0.99	
produced using the proposed PS		MTV2	LGM LDM	0.56	0.49	0.59	0.59	0.76	0.75	0.73	
			LGM + LDM	0.69	0.83	0.72	0.76	0.81	0.86	0.72	
representation.	Ave	erage (Point series)	0,90	0.94	0,98	0.95	0.79	0.76	0.98	0.96
			ge (LGM)	0.56	0.64	0.69	0.69	0.74	0.73	0.72	0.64
			ge (LDM) .GM + LDM)	0.50	0.50	0.47 0.79	0.50	0.52	0.53	0.50	0.51 0.77

