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Outline of the Presentation

Organised as follows:
l Introduction
l Classical Association Rule Mining (ARM)
l Quantitative Association Rule Mining
l Fuzzy Association Rule Mining (FARM)

l Background & Related Work
l Problem definition
l Methodology & Application
l CFARM Algorithm
l Experimental Results
l Conclusion & Further work
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Introduction

l Association Rule Mining
l Data Mining Technique 
l Determine customer buying Patterns from market 

basket data/Transactions.
l Association rules are of the form

X à Y
where X and Y are item sets and φ=∩YX
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Association Rule Mining

l Support

Supp(X à Y) = Supp (X U Y)

l Confidence

Conf (X à Y) = Supp (X U Y) / Supp (X), a conditional probability

l Downward Closure Property (DCP)
l Subsets of a frequent set are also frequent, e.g. if {A,B,C} is a 

frequent set then {A,B}, {A,C} and {B,C} will also be frequent.
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Quantitative Association Rule 
Mining

l Quantitative ARM
l Applies on non-boolean and relational databases
l Determine rules of the form:

if (X is A) then (Y is B)

where X and Y are attributes in a database and A and B 
are the discretised values of these attributes.

For example:

if <Age is Young> then <Salary is Low>
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l Issues from partitioning quantitative attributes
l Interval Partitions give boundary Problems to quantitative attri butes 

using usual support measure (Supp)
l To resolve, borders can overlap but this might over emphasise some 

intervals (Fuzziness is evident).

l Example: Nutrition content of food – a protein or vitamin etc.
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l Fuzzy sets used to resolve this by Providing a smooth change between 
boundaries using normalisation process (see later!). 

l Firstly, fuzziness is defined by a membership mapping function

l Trapezoidal membership function can be derived (example above)
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FARM using composite attributes

l FARM extended to composite Attributes
l Composite Attributes
l Objects with different Properties
l Properties can be quantitative and categorical
l Attributes share the same Properties with other 

attributes
l Quantitative Properties can be discretised into 

several ranges (fuzzy sets)
l ARM usually on all data sets (edible, non-edible)
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FARM using composite attributes
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Background& Related Work

l From literature the only works that mention 
“Composite ARM” was Presented in 1997 & 2006.

l Ye, X.; Keane, J.A. “Mining association rules with composite items”, IEEE 
International Conference on Systems, Man, and Cybernetics, PP 1367 – 1372, Oct 
1997.

l Ke Wang, James N. K. Liu, Wei-min Ma, "Mining the Most Reliable Association 
Rules with Composite Items," icdmw, PP. 749-754, Sixth IEEE International 
Conference on Data Mining - Workshops (ICDMW'06), 2006.

l In these works, Composite items expressed as 
combination of several attributes

l Composite means put B and C to make a new item {BC} 
l If itemset {A,B} and {B,C} are not frequent (large) 
l BàA and CàA will not be generated
l Rule {BC}à{A} may be generated.
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Problem definition

l Given a Dataset D consist of set of transaction 
t={t1,t2,t3,..,tn}, a set of composite items I={i1,i2,i3,..,i |I|} 
and a set of properties P={p 1,p2,p3,..,pm}. 

l Each transaction ti is subset of I, and each item ti[ij] 
is a subset of P. 

l Thus each item ij will have associated with it a set of 
numeric values corresponding to the set P, i.e. 
ti[ij]={v1,v2,v3,..,vm}.

l The “kth” property value for the “jth” item in “ith” 
transaction is given by ti[i j[vk]].
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Problem Definition

l Example

{<b,{4,5,3}>, <d,{4,1,3}>}4

{<a,{2,4,6}>, {<c,{1,2,5}>, <d,{4,1,3}>}3

{<c,{1,2,5}>, <d,{4,1,3}>}2

{<a,{2,4,6}>, <b,{4,5,3}>}1

RecordTID

D={t1, t2, t3, t4}
I={a, b, c, d}
P={x, y, z}
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Problem Definition

l Property Dataset
l D is initially transformed into a Property dataset DP. 

l DP consists of Property transactions TP={tP1,tP2,tP3,..,tPn}.

l For each transaction tPi , is subset of P={p1,p2,p3,..,pm}.

l The value for each Property attribute tPi[Pj] is obtained by 
aggregating the numeric values for all pj in ti. Thus
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Problem Definition

l Fuzzy Dataset
l DP is further transformed into a fuzzy dataset D/ .

l A fuzzy dataset D/ consists of fuzzy transactions T/={t/1,t/2,t/3,..,t/n } and 
fuzzy property attributes P/.

l Each P/ has a number of fuzzy sets associated with it, identified by a set 
of linguistic labels L={l1,l2,l3,..,l|L|} e.g. {small, medium, large}.

l Each property attribute tPi[Pj] is associated (to some degree) with several 
fuzzy sets, with a membership degree in the range [0,1].

l Membership degree indicates the correspondence between the value of 
a given tpi[pj] and the set of fuzzy linguistic labels.
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Problem Definition

l Composite Item Value Table
l A composite item value table is table that allows us to get property 

values for specific items.

l Properties Table
l A properties table is a table that maps all possible values for each 

property attribute tPi[Pj] onto fuzzy/overlapped ranges, e.g. [0 -10], [7-19], 
[15-30]
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Problem definition

l Fuzzy Normalisation Process
l The process of finding the contribution to the fuzzy support value, 

m/, for individual property attributes t/i[pj[lk]] such that a partition of 
unity is guaranteed.
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Problem Definition

l Membership Function (Trapezoidal)
l Membership degree to a particular fuzzy set (described by linguistic 

label), t/i[pj[lk]] is determined by a membership function 
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Problem definition

l Fuzzy Support
l Fuzzy support is calculated as 
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Problem definition

l Fuzzy Confidence
l Fuzzy confidence (FC) is calculated in the same manner that 

confidence is calculated in traditional ARM. 

l Fuzzy confidence is calculated as:
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Problem definition

l Fuzzy Correlation Measure
l Fuzzy Confidence does not take into account FS(B).
l The Fuzzy Correlation (FCORR) addresses this.

l Similar to statistical correlation but different in meaning.
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Problem Definition
The variance of A and B can be obtained as follows:
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Proposed Methodology

l Data Transformation
l Transformation of raw dataset T into property dataset Tp.

l Transformation of property dataset Tp into a database containing 
fuzzy extensions T/.

l Normalization of fuzzy dataset.

l Candidate Generation i.e. search for all fuzzy frequent itemsets
that have support higher than user specified threshold.

l Use frequent itemsets to generate all possible rules using fuzzy
confidence or fuzzy correlation interestingness measures.
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Proposed Methodology
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CFARM Algorithm
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Example Application
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Example Application
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Experimental Results

l Quality Measures
l We use all standard 27 nutrients 

present in edible items.
l We use T10I4D100K dataset 

with 100K transactions.

l Fuzzy Support 30%
l Fuzzy Confidence 50%
l Fuzzy Correlation 25% 
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Experimental Results
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Experimental Results

l Performance Measures
We set a support threshold to 0.30, confidence 0.5 and correlation 

value to 0.25.
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Experimental Results

l Some interesting fuzzy rules produced by our 
approach with 30% support, 50% confidence and 25% 
correlation are as follows:

l IF Protein intake is Ideal THEN Carbohydrate intake is low.
l IF Protein intake is Low THEN Vitamin A intake is High.
l IF Protein intake is High AND Vitamin A intake is Low

THEN Fat intake is High.

l Depending on expert analysis from a health 
practitioner, these rules are useful in analysing
customer buying behavior concerning their nutrition.
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Conclusion & Further Work
l We have presented a novel approach for extracting hidden information

from composite items. 
l We showed that with such items, common properties can be defined as 

quantitative itemsets themselves, which are transformed into fuzzy sets. 
l We use fuzzy correlation measure as interestingness measure and 

showed more interesting rules. 
l Overall, the approach presented here is effective and efficient for 

analysing databases with composite items. 

l Further work will evaluate our approach on real and larger datasets and 
compare real performance with other common fuzzy ARM algorithms.

l There is potential to apply this to other applications with composite 
items or attributes even with varying fuzzy sets between attributes e.g. 
image analysis, inventory control database. 

l We are expanding our work with the possibilities to extend it for Fuzzy 
Utility Association Rule Mining.


