
An investigation into the issues
of Multi-Agent Data Mining

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in

Philosophy

by

Kamal Ali Albashiri

February 2010

Dedication

To the joy of my life, Amin.

i

Preface

This thesis is submitted to the University of Liverpool in support of my applica-

tion for admission to the degree of Doctor of Philosophy. No part of it has been

submitted in support of an application for another degree or qualification of this

or any other institution of learning. This thesis is predominantly my own work

and the sources from which material is drawn are identified within. Some parts

of this thesis have appeared in the following publications:

Refereed Conferences:

[1] K.A. Albashiri, F. Coenen, R. Sanderson, and P. Leng. Frequent Set Meta

Mining: Towards Multi-Agent Data Mining. Research and Development in Intel-

ligent Systems XXIII, Proceedings AI’2007, Springer, London, pages (139-151),

2007.

[2] K. A. Albashiri, F. Coenen, and P. Leng. Agent Based Frequent Set Meta

Mining: Introducing EMADS. Artificial Intelligence in Theory and Practice II,

Proceedings IFIP’2008, Springer, pages (23-32), 2008.

[3] K. A. Albashiri, F. Coenen, and P. Leng. EMADS: An Extendible Multi-Agent

Data Miner. Research and Development in Intelligent Systems XXIII, Springer,

London, Proceedings AI’2008, Springer, London, pages (263-276), 2008. Winner

of The 2008 British Computer Society Specialist Group on AI (BCS-

SGAI) Prize for Best Paper with Student as the First Author.

[4] K. A. Albashiri, and F. Coenen. Agent-Enriched Data Mining Using an Ex-

tendible Framework. International Workshop on Agents and Data Mining In-

teraction, Proceedings ADMI’2009, collocated with AMAS’09, pages (89-106),

2009.

[5] K. A. Albashiri, F. Coenen. A Generic and Extendible Multi-Agent Data-

Mining Framework. 4th International Conference on Hybrid Artificial Intelligence

ii

Systems, Proceedings HAIS’2009, Springer LNAI 5572, pages (203-210), 2009.

Journal papers:

[6] K. A. Albashiri, F. Coenen, and P. Leng. EMADS: An Extendible Multi-Agent

Data Miner. Volume 22, Issue 7, pages (523-528). Knowledge-Based Systems

(KBS) journal, 2009.

Book chapter contributions:

[7] K. A. Albashiri, and F. Coenen. The EMADS Extendible Multi-Agent Data

Mining Framework. In Cao, Longbing (Ed.), Data Mining and Multi-agent Inte-

gration, Springer, ISBN: 978-1-4419-0521-5, pages (189-200), 2009.

[8] K. A. Albashiri, F. Coenen, and P. Leng. An investigation into the issues of

Multi-Agent Data Mining. In Bouca, D. and Gafagnao, A. (Eds), Agent Based

Computing, Nova Science Publishers, ISBN: 978-1-60876-684-0, 2010.

iii

Abstract

Very often data relevant to one search is not located at a single site, it may be

widely-distributed and in many different forms. Similarly there may be a number

of algorithms that may be applied to a single Knowledge Discovery in Databases

(KDD) task with no obvious “best” algorithm. There is a clear advantage to be

gained from a software organisation that can locate, evaluate, consolidate and

mine data from diverse sources and/or apply a diverse number of algorithms.

Multi-agent systems (MAS) often deal with complex applications that require

distributed problem solving. Since MAS are often distributed and agents have

proactive and reactive features, combining Data Mining (DM) with MAS for Data

Mining (DM) intensive applications is therefore appealing.

This thesis discusses a number of research issues concerned with the viability

of Multi-Agent systems for Data Mining (MADM). The problem addressed by

this thesis is that of investigating the usefulness of MAS in the context of DM.

This thesis also examines the issues affecting the design and implementation of a

generic and extendible agent-based data mining framework.

The principal research issues associated with MADM are those of experience

and resource sharing, flexibility and extendibility, and protection of privacy and

intellectual property rights. To investigate and evaluate proposed solutions to

MADM issues, an Extendible Multi-Agent Data mining System (EMADS) was

developed. This framework promotes the ideas of high-availability and high per-

formance without compromising data or DM algorithm integrity. The proposed

framework provides a highly flexible and extendible data-mining platform. The

resulting system allows users to build collaborative DM approaches. The pro-

posed framework has been applied to a number of DM scenarios. Experimental

tests on real data have confirmed its effectiveness.

iv

Contents

Preface ii

Abstract iv

Contents ix

List of Figures xii

List of Tables xii

Acknowledgement xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Programme of Work . 6

1.4 Evaluation . 7

1.5 Overview of Selected MADM Scenarios 9

1.5.1 Meta Association Rule Mining (ARM) 9

1.5.2 Data Partitioning and Parallel/Distributed ARM 10

1.5.3 Generation of Classifiers 10

1.6 Thesis Organisation . 11

1.7 Summary . 11

2 Background and literature review 12

2.1 Data Mining . 12

2.1.1 Association Rule Mining 13

2.1.2 Classification Rule Mining 20

2.1.3 Distributed Data Mining 26

v

2.2 Agents and Multi-Agent Systems 28

2.2.1 Agents . 28

2.2.2 Multi-Agent Systems . 28

2.2.3 FIPA . 29

2.2.4 MAS Development Platforms 31

2.3 Multi-Agent Data Mining (MADM) 34

2.3.1 Central-learning Strategy 35

2.3.2 Meta-learning Strategy . 36

2.3.3 Hybrid-learning Strategy 36

2.4 Generic MADM . 37

2.5 Summary . 38

3 MADM: Requirements Analysis, Design, and Implementation 39

3.1 MADM Requirements Analysis 40

3.1.1 Design Requirements . 40

3.1.2 Structural Requirements 42

3.1.3 Operational Requirements 43

3.2 EMADS Agents and Users . 44

3.2.1 User Agent . 46

3.2.2 Registration Agent . 47

3.2.3 Facilitator Agent (or Broker Agent) 48

3.2.4 Task Agent (or Management Agent) 48

3.2.5 Data Mining (DM) Agent 49

3.2.6 Data Agent (or Resource Agent) 50

3.2.7 EMADS End User Categories 51

3.3 Defining Interaction Protocols . 51

3.3.1 Find Other Agents Protocol 54

3.3.2 Agent Registration Protocol 55

3.3.3 User DM Request Protocol 55

3.3.4 Start Data Mining Task Protocol 56

3.3.5 Advertise Agent Capabilities Protocol 57

3.3.6 Perform Data Mining Protocol 58

3.3.7 Data Retrieval Protocol 59

3.4 Data Mining with Agents . 59

vi

3.5 The Agent Development Toolkit 60

3.5.1 JADE . 62

3.5.2 JADE Agent Interaction 65

3.6 EMADS Architecture as Implemented in

JADE . 65

3.6.1 Mapping EMADS Protocols to JADE Behaviours 69

3.6.2 Agent Interactions . 70

3.6.3 Mechanisms of Cooperation 71

3.6.4 User Request Handling . 72

3.7 Discussion . 73

3.8 Summary . 74

4 MADM Extendibility 75

4.1 Extendibility . 76

4.2 Extendibility in EMADS . 77

4.3 Wrappers . 78

4.3.1 Data Wrappers . 80

4.3.2 DM Wrappers . 80

4.3.3 Task Wrappers . 81

4.4 Realisation . 81

4.4.1 Task Agents . 82

4.4.2 DM Agents . 83

4.4.3 Data Agents . 86

4.5 Summary . 87

5 Frequent Set Meta Mining: Meta ARM 89

5.1 Motivation . 90

5.2 Background and Previous Work 94

5.3 Note on P- and T-Trees . 96

5.4 Proposed Meta ARM Algorithms 98

5.4.1 Bench Mark Algorithm . 99

5.4.2 Brute Force Meta ARM Algorithm 100

5.4.3 Apriori Meta ARM Algorithm 101

5.4.4 Hybrid Meta ARM Algorithms 1 and 2 101

vii

5.5 Meta ARM EMADS Model . 102

5.6 Note on Datasets . 104

5.7 Extendibility Consideration . 104

5.7.1 Incorporating New Data Source 104

5.7.2 Incorporating New DM algorithms 105

5.7.3 Incorporating New DM Tasks 105

5.7.4 Registering New Agents 106

5.8 Experimentation and Analysis . 107

5.9 Discussion . 112

5.10 Summary . 114

6 Data Partitioning and Parallel/Distributed ARM 116

6.1 Motivation . 117

6.2 Data Segmentation and Partitioning 119

6.3 The Parallel/Distributed Task with Horizontal Segmentation (DATA-

HS) Algorithm . 121

6.4 The Apriori-T Algorithm . 122

6.5 The Parallel/Distributed Task with Vertical Partitioning (DATA-

VP) Algorithm . 123

6.6 DATA-VP Task Architecture and Network Configuration 126

6.6.1 Messaging . 126

6.7 Experimentation and Analysis . 127

6.8 Discussion . 128

6.9 Summary . 129

7 Classifier Generation 131

7.1 Motivation . 131

7.2 Background . 132

7.3 Classifier Generation Operation 133

7.3.1 Employed Classifier Generators 135

7.3.2 Dynamic Behaviour of Agents 136

7.4 Extendibility Consideration . 137

7.5 Experimentation and Analysis . 138

7.6 Summary . 140

viii

8 Conclusion 141

8.1 Summary . 142

8.2 Main Findings and Contributions 143

8.3 Future Work . 146

A EMADS Class Diagrams (UML representation) 148

A.1 Main EMADS Packages Class Diagrams 148

A.2 Meta ARM Application Class Diagram 149

A.3 Parallel and Distributed ARM Application Class Diagram 150

A.4 Classifier Generation Application Class Diagram 151

B EMADS Tutorial 152

B.1 Testing EMADS using Meta ARM 152

B.2 Testing EMADS using Data Vertical Partitioning 153

B.3 Testing EMADS using Data Horizontal Segmentation 154

B.4 Testing EMADS using Best Classifier Generation 154

Bibliography 171

Index 171

ix

List of Figures

2.1 Decision Tree Example . 24

2.2 FIPA Agent Management Reference Model [37] 30

3.1 Main Domain Components . 43

3.2 System General Architecture . 45

3.3 High Level View of EMADS Conceptual Framework 52

3.4 JADE Architecture (Bellifemine et al., 2007) [16] 63

3.5 ACL message Example . 64

3.6 EMADS Architecture as Implemented in JADE 69

4.1 EMADS Wrappers . 79

4.2 Data Agent GUI . 86

4.3 Data Normalisation GUI . 88

5.1 P-tree Example . 97

5.2 T-tree Example (support = 35%) 98

5.3 Meta ARM Model . 103

5.4 User Agent GUI: Meta ARM Example 108

5.5 Effect of Number of Data Sources 109

5.6 Effect of Increasing Number of Records 110

5.7 Effect of Increasing Number of Items (attributes) 111

6.1 Vertical Partitioning of a T-tree Example [29] 125

6.2 Parallel/Distributed ARM Model for DATA-VP Task Architecture 126

6.3 Average of Execution Time for Dataset T20.D100K.N250.num . . 127

6.4 Average of Execution Time for Dataset T20.D500K.N500.num . . 128

7.1 Classifier Generation EMADS Model Architecture 134

7.2 Classification Task Sequence Diagram. 137

x

A.1 Main Packages Class Diagrams 148

A.2 Meta ARM Class Diagram . 149

A.3 Parallel/Distributed ARM Class Diagram 150

A.4 Classifier Generation Class Diagram 151

xi

List of Tables

2.1 Apriori Algorithm . 15

2.2 Market Basket Transaction Data 18

2.3 Training set of examples on weather attributes 22

2.4 ID3 Algorithm . 23

3.1 FIPA Communicative Acts (pre-defined message types) 66

3.2 FIPA pre-defined message parameters 67

4.1 Prototype of the Task Agent Abstract Class 82

4.2 Prototype of the DM Agent Wrapper Class 84

4.3 DM Abstract Interface . 85

5.1 I-ARM itemset comparison options (relative support) 94

5.2 Bench Mark Meta ARM Algorithm 99

5.3 Brute Force Meta ARM itemset comparison options 100

5.4 Apriori Meta ARM Algorithm . 101

6.1 Dataset Example . 124

7.1 Classification Results . 139

7.2 “Best” Accuracy Results . 140

xii

Acknowledgement

Thanks to God, my creator, who helped me in the creation of this dissertation.

I would like to especially thank my main supervisor, Dr. Frans Coenen, for his

continued support and guidance throughout the past four years. His enthusiasm,

constructive criticism, research ideas and always making time for discussions have

made the completion of my Ph.D. possible and highly enjoyable. I also would

like to express my gratitude to my second supervisor, Prof. Paul Leng, for his

assistance, suggestions and valuable comments.

The Department of Computer Science in general at the University of Liverpool

has been an excellent place in which to conduct research, and all members of staff

and colleagues have been encouraging and helpful whenever needed.

I wish to kindly thank the Libyan’s Secretariat of Higher Education for spon-

soring my postgraduate studies and living expenses. I also wish to thank my

sister and brothers for their encouragement and support.

Last, but by no means least, I am eternally indebted to my wife for her

invariable support and encouragement, without whom the completion of my Ph.D.

would not have been possible to accomplish.

xiii

Chapter 1

Introduction

Knowledge Discovery in Databases (KDD) has evolved to become a well estab-

lished technology that has many commercial applications. It encompasses sub-

fields such as classification, clustering, and rule mining. However, it still poses

many challenges to the research community. New methodologies are needed in

order to mine more interesting and specific information from larger datasets.

New frameworks are needed to harmonise more effectively the steps of the KDD

process. New solutions are required to manage the complex and heterogeneous

sources of information that are today available for the analysis.

KDD is concerned with the extraction of hidden knowledge from data. Very

often data relevant to a particular application of KDD is not located at a single

site, it may be widely-distributed and in many different forms. Similarly the so-

lution to a specific single KDD task may be achieved using a variety of algorithms

with no obvious advanced indication of which is the most appropriate (“best”).

There is therefore a clear advantage to be gained from a software organisation

that can (in an automated manner) locate, evaluate, consolidate and mine data

from diverse sources and/or apply a diverse number of algorithms.

Research work in KDD continues to develop ideas, generate new algorithms

and modify/extend existing algorithms. A diverse body of work therefore ex-

ists. KDD research groups and commercial enterprises are prepared (at least to

some extent) to share their expertise. In addition, many KDD research groups

have made software freely available for download 1. This all serves to promote

and enhance the current “state of the art” in KDD. However, although the free

1Weka Tool Kit http://www.cs.waikato.ac.nz/ml/weka/, and the LUCS-KDD Software
Library http://www.csc.liv.ac.uk/~frans/KDD/Software/

1

availability of data mining software is of a considerable benefit to the KDD com-

munity, it still requires users to have programming knowledge; this means that

for many potential end users the use of such free software is not a viable option.

Multi-Agent Systems (MASs) often deal with complex applications that re-

quire distributed problem solving. In many applications the individual and col-

lective behaviour of the agents depends on the observed data from distributed

sources. The field of Distributed Data Mining (DDM) deals with the challenge

of analysing distributed data and offers many algorithmic solutions to perform

different data analysis and mining operations in a fundamentally distributed man-

ner.

This thesis addresses a number of research issues concerned with the use of

Multi-Agent systems for Data Mining (MADM). The thesis also examines the

issues affecting the design and implementation of an extendible framework for

achieving the desired MADM. To evaluate the ideas promoted in this thesis a

generic MADM framework was established, the Extendible Multi-Agent Data

mining System (EMADS) framework. EMADS was developed primarily as a

vehicle for promoting the ideas espoused in this thesis, but has also proved to be

a useful MADM tool in its own right.

The rest of this chapter is organised as follows. The motivation for the work

is presented in Section 1.1. The research objectives of the work are presented in

Section 1.2, and the programme of work in Section 1.3. The evaluation strategy

is described in Section 1.4. To act as a focus for the research described in this

thesis a number of MADM scenarios were considered; these are listed in Section

1.5. The thesis organisation is described in Section 1.6.

1.1 Motivation

There are a number of issues that Data Mining (DM) researchers are currently

addressing, including: accuracy, efficiency and effectiveness, privacy and security,

and scalability. Accuracy is especially significant in the context of classification.

Issues of efficiency and effectiveness pervade the discipline of DM. Issues of pri-

vacy and security centre around legal issues and the desire of many owners of

data to maintain the copyright they hold on that data. The scalability issue

is particularly significant as the amount of data currently available for DM is

2

extensive and increasing rapidly year by year. One potential solution to the scal-

ability issue is parallel or distributed DM, although this often entails a significant

“communication” overhead.

Multi-Agent Systems (MAS) are communities of software entities, operating

under decentralised control, designed to address (often complex) applications in a

distributed problem solving manner. MAS offer a number of general advantages

with respect to computer supported cooperative working, distributed computa-

tion and resource sharing. Well documented advantages include:

1. Autonomy.

2. Decentralised control.

3. Robustness.

4. Simple extendibility.

5. Sharing of expertise.

6. Sharing of resources.

Autonomy and decentralised control are, arguably, the most significant features

of MAS that serve to distinguish such systems from distributed or parallel ap-

proaches to computation. Autonomy and decentralised control imply that in-

dividual agents, within MAS, operate in an autonomous manner and are (in

some sense) self deterministic [126]. Robustness, in turn, is a feature of the de-

centralised control, where the overall system continues to operate even though a

number of individual agents have disconnected (“crashed”). Decentralised control

also supports extendibility, in that additional functionality can be added simply

by including further agents. The advantages of sharing expertise and resources

are self evident.

The advantages offered by MAS are entirely applicable to KDD where a con-

siderable collection of tools and techniques are current. There are many specific

areas where MASs can be seen to offer benefits with respect to DM, and by ex-

tension KDD. Some examples, of specific relevance to this thesis, are as follows:

• Location of Data. Very often the data relevant to a particular DM ap-

plication is not located as a single site, it may be widely-distributed and in

3

many different forms. MASs can be seen as offering a potential solution to

mining such data.

• Sensitivity of Data. By its nature DM is often applied to sensitive data.

Usage of MAS Technology may allow the remote mining of such data with-

out compromising data privacy or security.

• Protection of Property rights. MASs can provide a means whereby

DM software can be made available to practitioners while at the same time

maintaining the intellectual property rights in the software.

• Diversity of DM Algorithms. There are a great many DM algorithms

available. From the reported research it is clear that there is no single

“best” algorithm for any specific DM application. An approach to DM,

such as that facilitated by MASs, that can make use of numbers of such

algorithms and compare and extract the “best” result, seems desirable.

• Distributed and Parallel Processing. Much work on distributed and

parallel DM has been conducted. It is suggested that the use of MAS can

provide an alternative mechanism for facilitating distributed and parallel

DM in a manner that avoids some of the associated overheads of the latter.

The broad motivation for the work described in this thesis is, thus the potential

advantages that MAS can offer in the context of DM. The use of MAS will also

provide a radical alternative approach to DM where collections of data mining

agents (of various types) can be used to address traditional DM problems under

decentralised control.

The MADM vision that the work espouses is that of an “anarchic” and dy-

namic agent community, where agents interact with one another to address DM

problems posted by users and where data sources, and DM algorithms can be

made available by individuals as desired by those individuals. The research is-

sues that this entails are identified in the following section.

1.2 Objectives

The aim of the thesis is to evaluate the MADM vision, as identified above, with

the aim of establishing its efficacy and usability. The principal research question

4

to be addressed is therefore: “Does MADM provide the KDD community with any

desirable advantage that would make the global establishment of such a system of

genuine significance?” For example would it solve the scalability problem? Does

it address privacy and security issues? Does it allow for simple extendibility and

sharing of expertise?

There are many research challenges to be met if we are to realise the full

implementation of the MADM vision. This is, of course, a significant task and

the work presented in this thesis can not find the answers to all of the stated

issues for all possible cases. Instead, the aim is to identify and study cases where

the answer to such issues would benefit answering the research question the most.

The above research question encompasses a number of specific research issues:

1. The negotiation and communication mechanism to be adopted to allow the

envisaged agents to “talk” to one another.

2. The nature of the framework/platform in/on which the agents might oper-

ate.

3. The nature of individual DM algorithms that would gain full advantage of

operating in a multi-agent setting.

4. The usage of such a system and the mechanisms for adding/removing agents.

5. The mechanisms for achieving extendibility to provide the means to easily

accept and incorporate new data sources and new DM techniques.

6. The techniques required to support the sharing of resources and expertise.

7. The mechanisms required to ensure the protection of privacy and intellec-

tual property rights.

8. How best to deal with scalability and efficiency concerns.

In summary, the thesis presents an investigation of the MADM vision and the

associated conceptualisation. The research was, in part, focused on the construc-

tion of EMADS; which was developed to provide a test bed to experiment with

approaches and methodologies to address the identified MADM research issues.

5

Each of the identified research issues was investigated using a number of DM sce-

narios, and applications commonly found in the domain of DM, and implemented

in EMADS.

1.3 Programme of Work

To address the above research objective and associated issues a four phase pro-

gramme of work was implemented.

1. Investigation into the nature of the agent framework/platform to be used

and the establishment of a multi-agent framework to test and evaluate ideas

concerning the operation of the envisaged MADM.

2. Research, analysis and evaluation of MADM approaches to address a num-

ber of traditional DM activities (scenarios) starting with an agent based

approach to Association Rule Mining (ARM), followed by a number of

further investigations of DM activities where MADM may have specific

benefits. The considered approaches may be itemised as follows:

(a) Investigation of the operation and benefits of meta Data Mining (meta

DM), a process for combining local DM results into a global result.

(b) Investigations of the usage of MAS to achieve parallel/distributed DM.

(c) Investigation of a mechanism whereby results from a number of DM

algorithms can be compared (and the “best” selected).

The aim of these studies was to evaluate the effectiveness of the MADM

approach in various DM contexts, and to identify and assess issues arising

in this realisation in a MADM context.

3. Investigation of the issues associated with the extendibility of MADM with

respect to the addition of further functionality, and the adding of additional

agents.

4. Final analysis and evaluation of the overall MADM vision.

6

1.4 Evaluation

This section itemises the criteria used to critically evaluate the work presented in

later chapters. The principal aim of the evaluation was to establish whether the

MADM proposed vision answered the research question described in Section 1.2.

For this to be so, any generic MADM framework will be evaluated according to

the following requirements:

• Generality and Re-usability. In order to be generic, the framework

tasks need to be coordinated. The number of tasks is not known a priori,

and may evolve over time. The framework should also be reactive since it

must accommodate new tasks as they are created in the environment. Thus

the framework should provide for generality. Furthermore, The framework

should promote the opportunistic reuse of agent services by other agents.

To this end, it has to provide mechanisms by which agents may advertise

their capabilities, and ways whereby agents can find other agents support-

ing certain capabilities. It is difficult to define a measure of generality

or re-usability. Therefore, in this thesis, generality will be measured by

considering the applicability of the proposed MADM solution to a diverse

collection of DM scenarios. If the MADM can effectively be applied to these

selected scenarios, then it can be argued that the requirement of “gener-

ality” has been achieved. In the case of “re-usability” a similar approach

will be adopted. A number of scenarios will be considered and observa-

tions made of how existing agents from previous scenarios can be used. If

the functionality of a reasonable number of existing agents can be re-used

to resolve a new DM task that the requirement of “re-usability” can be

considered to be fulfilled.

• Extendibility and scalability. Extendibility requires the provision of a

framework that could easily accept new data sources and new DM tech-

niques. Scalability can be evaluated by considering the following questions:

1. Can the framework be scaled up (“grow”) to accommodate larger, and

possibly physically distributed, data sets?

2. Can DM agents interact with each other at run-time with ease? note

7

that in other non-agent based systems, these interactions must be de-

termined at design-time (this is discussed further in Chapter 3).

Extendibility, on the other hand, can be evaluated by considering the fol-

lowing questions:

– Is the framework compliant with the standard agent communication

language i.e. FIPA ACL [37]?

– Can new DM techniques be added to the system and out-of-date tech-

niques be deleted from the system dynamically? Ease of use and ex-

tendibility is evaluated by considering the simplicity where by new

agents can be included (and removed) in MADM (this is discussed

further in Chapter 4).

Extendibility is one of the principal issues of MADM. Extendibility requires

the provision of a framework that can easily accept new data sources and new

DM techniques. In general, extendibility can be defined as the ease with which

software can be modified to adapt to new requirements or changes in existing

requirements; for example, adding a new data source or DM techniques by a

simple process. It is suggested in this thesis that the desired extendibility can be

achieved using a system of wrappers. An agent wrapper “agentifies” an existing

application (i.e. an implementation of a DM algorithm) by encapsulating its

implementation to become a MADM agent. In other words, MADM wrappers

are used to “wrap” up data mining artefacts so that they become agents that can

be incorporated into a MADM framework and consequently can communicate

with other agents held in the framework [7].

Three broad categories of wrapper are identified in this thesis: (i) data wrap-

pers, (ii) task wrappers, and (iii) DM wrappers. These are discussed in more

detail in Chapter 5.

Overall the aim of the evaluation is to show that the MADM research issues

addressed in this thesis (as realised by EMADS) can be addressed by considering a

sequence of data mining scenarios designed to determine whether the above listed

requirements are achieved. The primary vehicle for conducting the evaluation was

the EMADS framework. EMADS is essentially a realisation of the MADM vision

promoted in this thesis, and is referred to throughout the rest of this work. More

8

details on the scenarios that were considered are given in Section 1.5. Chapter

4 provides a detailed description of the desired MADM extendibility feature in

terms of its requirements, design and implementation.

1.5 Overview of Selected MADM Scenarios

As indicated above, the aim of the demonstration scenarios was to evaluate the

effectiveness of the proposed MADM approach in various DM contexts, while at

the same time acting as a focus for the research. These scenarios, referred to

throughout this thesis, are introduced in this section.

1.5.1 Meta Association Rule Mining (ARM)

The standard, centralised, approach to data mining is to collate data into a

single location. In this central location, a model is then computed from the data.

Although this process is easy to understand, and the data mining software design

is straightforward, there are a number of drawbacks to this centralised approach

as descried in Section 1.1. The main objective, in the context of this scenario, is

to take advantage of the inherent parallelism and distributed nature of MADM

to design and implement a powerful and practical distributed DM system. The

scenario assumes several data sites interconnected through an intranet or internet;

the goal is then to provide the means for data owners to utilise their own local

data and, at the same time, benefit from the data that is available at other

data sites without transferring or directly accessing that data (thus maintaining

privacy and security). This is realised in the context of MADM, by agents that

execute at remote data sites and generate DM models that can subsequently be

transferred and merged into one global model.

Meta ARM was chosen as a first scenario because it represented an interesting

data mining application which would benefit from a MAS implementation but also

lent itself to (relatively straight forward) resolution using a MADM approach

that could be used as a “proof of concept” scenario with respect to the MADM

mechanisms proposed in this thesis. The scenario also acted as a vehicle to

investigate a number of the issues identified in Section 1.2, namely: minimisation

of communication, efficiency and scalability, and data privacy protection.

The scenario comprises a novel extension of ARM where a “meta set” of

9

frequent itemsets are constructed from a collection of component sets which have

been generated in an autonomous manner without centralised control. This type

of conglomerate has been termed meta ARM to distinguish it from a number of

other related approaches such as incremental and distributed ARM. A number

of MADM meta ARM algorithms were considered. This scenario is discussed in

more detail in Chapter 5.

1.5.2 Data Partitioning and Parallel/Distributed ARM

Data sources measured in gigabytes or terabytes are quite common in DM. This

has called for fast DM algorithms that can mine very large databases in a rea-

sonable amount of time. However, despite the many algorithmic improvements

proposed in many serial algorithms, the large size and dimensionality of many

databases makes the DM of such databases too slow and too big to be processed

using a single process. There is therefore a growing need to develop efficient

parallel DM algorithms that can run on distributed systems.

The second demonstration scenario was selected to demonstrate that the

MADM vision is capable of exploiting the benefits of parallel computing; par-

ticularly parallel query processing, parallel data accessing, namely parallel ARM

and horizontal/vertical data partitioning. In addition the scenario provides a

vehicle for demonstrating how re-usability can be achieved. This was seen as

significant in the context of the scalability and efficiency issues.

The scenario comprises an approach to parallel/distributed ARM, which makes

use of a vertical/horizontal data partitioning approach to distributing the input

data as described in [29]. Using this approach each partition can be mined in

isolation by individual agents while at the same time taking into account the pos-

sibility of the existence of large itemsets dispersed across two or more partitions

(agents). This scenario is discussed in more detail in Chapter 6.

1.5.3 Generation of Classifiers

Multi-Agent Systems (MAS) have some particular potential advantages to offer

with respect to KDD, in the context of sharing resources and expertise. Namely,

that the MADM approach provides the possibility of greater end user access to

DM techniques. MADM can make use of algorithms without necessitating their

10

transfer to users, thus contributing to the preservation of any intellectual property

rights over the algorithms.

The third demonstration scenario was chosen to investigate the advantage of

MAS with respect to KDD in the context of sharing resources and expertise. The

scenario demonstrates that the MAS approach provides greater end user access

to DM techniques and can select between such techniques to identify a “best”

technique for the considered task. The scenario also demonstrates that MAS

can make use of algorithms without necessitating their transfer to users, thus

contributing to the preservation of intellectual property rights.

The scenario illustrates the operation of MADM in the context of a classifier

generation task where a number of classification algorithms are available. The

scenario is thus that of an end user who wishes to obtain a “best” classifier

founded on a given, pre-labelled, data set; which can then be applied to further

unlabelled data. This scenario is discussed in more detail in Chapter 7.

1.6 Thesis Organisation

The organisation of this thesis is as follows. Chapter 2 provides an overview of the

field of MADM. The concepts of association rules are presented in detail as this is

central to the three scenarios considered. Other techniques, such as decision tree

induction and classification are also covered briefly. Chapter 3 gives an overview

of the requirements, design and implementation of EMADS. Chapter 4 provides

a detailed description of the desired MADM extendibility feature in terms of its

requirements, design and implementation. The three evaluation scenarios are

considered in Chapters 5, 6, and 7 respectively. The last chapter presents some

conclusions and directions for future work.

1.7 Summary

This chapter has provided the necessary context and background to the research

described in this thesis. The motivations for the research, the specific research ob-

jectives, and the methodology for realising these objectives, have been described.

A literature review of the relevant previous work, with respect to this thesis, is

presented in the following chapter.

11

Chapter 2

Background and literature review

This chapter presents a discussion and critical review of the current research re-

lating to Multi-Agent Data Mining (MADM). It provides an overview of the theo-

retical background of the research discipline, identifying the approaches adopted,

and discusses the benefits and challenges posed. It also highlights the principal

areas in which current solutions display significant shortcomings.

The organisation of this chapter is as follows. An overview of Data Mining

(DM) and Distributed Data Mining (DDM) is presented in Section 2.1 along with

three specific DM techniques: Association Rule Mining (ARM), Classification

Rule Mining (CRM), and Decision Tree (DT) generation; which are used for

demonstration purposes later in this thesis. In Section 2.2 a general description of

agent and multi-agent systems is provided together with a review of current multi-

agent system platforms. Finally, the use of agent and multi-agent systems for DM,

as an emerging field of DM, is reviewed in Section 2.3, where current research in

this field is summarised and some established approaches are presented.

2.1 Data Mining

During the last two decades, our ability to collect and store data has significantly

outpaced our ability to analyse, summarise and extract “knowledge” from this

data. The phrase Knowledge Discovery in Databases (KDD) denotes the complex

process of identifying valid, novel, potentially useful and ultimately understand-

able patterns in data [36]. DM refers to a particular step in the KDD process. It

consists of particular algorithms that, under acceptable computational efficiency

limitations, produce a particular enumeration of patterns (models) over the data.

12

In other words DM [48, 52, 53, 125] deals with the problem of analysing data in

a scalable manner.

A considerable number of algorithms have been developed to perform DM

tasks, from many fields of science [127]. Typical DM tasks are classification (the

generation of classifiers which can be used to assign each record of a database to

one of a predefined set of classes), clustering (finding groups of database records

that are similar according to some user defined metrics) or ARM (determining

implication rules for a subset of database record attributes).

The next two subsections review two data mining techniques, ARM and Clas-

sification, which have been used to drive and focus the research reported in this

thesis, and to evaluate the solutions to the research issues identified in Chapter

1.

2.1.1 Association Rule Mining

The most popular task of DM is to find patterns in data that show associations

between domain elements. This is generally focused on transactional data, such

as a database of purchases at a store. This task is known as Association Rule

Mining (ARM), and was first introduced in Agrawal et al. [1]. Association Rules

(ARs) identify collections of data attributes that are statistically related in the

underlying data.

An association rule is of the form X ⇒ Y where X and Y are disjoint conjunc-

tions of attribute-value pairs. The most commonly used mechanism for deter-

mining the relevance of identified ARs is the support and confidence framework.

The confidence of the rule is the conditional probability of Y given X, Pr(Y|X),

and the support of the rule is the prior probability of X and Y, Pr(X and Y). Here

probability is taken to be the observed frequency in the data set. The support

and confidence of a rule are defined as follows:

• supp(X ⇒ Y) = supp(X
⋃

Y)

• conf(X ⇒ Y) = supp(X
⋃

Y) / supp(X)

Using the support and confidence framework, the traditional ARM problem can

be described as follows. Given a database of transactions, a minimal confidence

13

threshold and a minimal support threshold, find all association rules whose con-

fidence and support are above the corresponding thresholds.

The most computationally demanding aspect of ARM is identifying the fre-

quent sets of attribute-values, or items, whose support (occurrence in the data)

exceeds some threshold. The desired ARs are then generated from the identified

frequent itemsets. The issue here is that the number of possible sets is exponen-

tial in the number of items. For this reason, almost all methods attempt to count

the support only of candidate itemsets that are identified as possible frequent

sets. It is, of course, not possible to completely determine the candidate itemsets

in advance, so it will be necessary to consider many itemsets that are not in fact

frequent.

Most algorithms involve several passes of the source data, in each of which

the support for some set of candidate itemsets is counted. The performance of

these methods, clearly, depends both on the size of the original database and on

the number of candidates being considered. The number of possible candidates

increases with increasing density of data (greater number of items present in a

record) and with decreasing support thresholds. In applications such as medical

epidemiology, where we may be searching for rules that associate rather rare

items within quite densely populated data, the low support-thresholds required

may lead to very large candidate sets. These factors motivate a continuing search

for efficient algorithms. Some of these algorithms are reviewed in the following

subsection.

2.1.1.1 Basic ARM Algorithms

There have been many algorithms developed for mining frequent patterns, which

can be classified into two categories:

1. Candidate-generation-and-test, and

2. Pattern-growth methods.

The first category, the candidate-generation-and-test approach, such as the Apri-

ori algorithm [5], is directly based on an important property of frequent itemsets:

if a pattern (set) with k items is not frequent, none of its super-patterns (super-

sets) with (k + 1) or more items can be frequent. This is known as the “downward

closure property”.

14

Since its introduction in 1994, the Apriori algorithm, developed by Agrawal

and Srikant [5], has been the basis of many subsequent ARM and/or ARM-related

algorithms. In [5], it was observed that ARs can be straightforwardly generated

from a set of frequent itemsets (FIs). Thus, efficiently and effectively mining FIs

from data is the key to ARM. The Apriori algorithm iteratively identifies FIs in

data by employing the “downward closure property” of itemsets in the generation

of candidate itemsets, where a candidate (possibly frequent) itemset is confirmed

as frequent only when all its subsets are identified as frequent in the previous

pass. The Apriori algorithm is shown in Table 2.1.

Algorithm: Apriori

function Apriori(Dt : a transactional database, s : a support threshold),
returns a set of frequent itemsets S ;

1: begin:
2: k ← 1;
3: S ← an empty set for holding the identified frequent itemsets;
4: generate all candidate k -itemsets from Dt ;
5: while (candidate k -itemsets exist) do

6: determine support for candidate k -itemsets fromDt ;
7: add frequent k -itemsets into S ;
8: remove all candidate k -itemsets that are not sufficiently supported
to give frequent k -itemsets;
9: generate candidate (k + 1)-itemsets from frequent k -itemsets using
“downward closure property”;
10: k ← k + 1;

11: end while
12: return (S);
13: end Algorithm
Note: A k -itemset represents a set of k items.

Table 2.1: Apriori Algorithm

The Apriori algorithm performs repeated passes of the database, successively

computing support-counts for sets of single items, pairs, triplets, and so on. At

the end of each pass, sets that fail to reach the required support threshold are

eliminated, and candidates for the next pass are constructed as supersets of

the remaining (frequent) sets. Since no set can be frequent which has an in-

frequent subset, this procedure guarantees that all frequent sets will be found. A

15

candidate-generation-and-test approach iteratively generates the set of candidate

patterns of length (k + 1) from the set of frequent patterns of length k and checks

their corresponding occurrence frequencies in the database.

The Apriori algorithm achieves good reduction on the size of candidate sets.

However, when there exist a large number of frequent patterns and/or long pat-

terns, candidate generation-and-test methods tend to produce very large numbers

of candidates and require many scans of the database for frequency checking.

Since, the number of database passes of the Apriori algorithm equals the size

of the maximal frequent itemset, it scans the database k times even when only

one k-frequent itemset exists. If the dataset is very large, the required multiple

database scans can be one of the limiting factors of the Apriori algorithm.

Many algorithms have been proposed, directed at improving the performance

of the Apriori algorithm, using different types of approaches. An analysis of the

best known algorithms can be found in [54].

A second, more recent, category of methods, pattern-growth methods, such

as FP-growth [49] and Apriori-TFP [30], have been proposed. These algorithms

typically operate by recursively processing a tree structure into which the input

data has been encoded.

FP-growth uses two data structures, the FP-tree and a header table, in which

to store the input data. The FP-tree is a set enumeration tree structure that

has links going back up, as well as down, the tree; and links between nodes

representing the same item. The header table contains links to a “first” item

in the tree for each item. The multiple links allow for fast processing. The

input data is initially translated into a start FP-tree and header table. FP-

growth then recursively processes this start FP-tree structure and header table

to generate frequent itemsets staring with 1-itemsets and continuing until no

more frequent itemsets can be discovered. At each recursion further FP-trees and

header tables are generated. FP-growth is a very fast algorithm, certainly with

respect to Apriori, but has some disadvantages. Firstly, because many FP-trees

are repeatedly generated, FP-growth can have significant storage requirements.

Secondly, the large number of links makes it difficult to distribute the tree. This

latter disadvantage means that FP-growth does not lend itself to MADM as

envisioned in this thesis. These disadvantages are particularly significant with

16

respect to dense data sets.

Apriori-TFP (Total From Partial) also uses two data structures: a P-tree

(Partial support tree) and a T-tree (Total support tree). The input data is

first translated into the P-tree; this is a set enumeration tree structure that

holds partial support counts for itemsets (unlike the FP-tree). Apriori-TFP then

processes the P-tree to produce a T-tree. The T-tree is a “trie” data structure

that combines the processing advantages of tree structures with the fast “look-up”

(indexing) offered by array structures. The computational efficiency of Apriori-

TFP is similar to FP-growth for sparse data sets, and outperforms FP-growth

with respect to dense data sets. Apriori-TFP also facilitates simple distribution

which offers advantages with respect to MADM as will be demonstrated in later

chapters of this thesis.

Overall, no single ARM algorithm has been identified to fit all types of data.

Real data sets can be sparse and/or dense according to their applications. For

example, for telecommunication data analysis, calling patterns for home users vs.

business users can be very different: some are frequent and dense (e.g. to family

members and close friends), while others are large and sparse. Similar situations

arise for market basket analysis, census data analysis, etc. It is hard to select an

appropriate ARM method (on the fly) when no algorithm fits all.

Finally, large applications need more scalability. Many existing methods are

efficient when the data set is not very large. Otherwise, their core data structures

(such as FP-tree) or the intermediate results (e.g., the set of candidates in Apriori

or the recursively generated sub-trees in FP-growth) may not fit in main memory

and may cause “thrashing”.

2.1.1.2 ARM Example

A typical example of ARM is market basket analysis. This process analyses

customer-buying habits by finding associations among the different items that

customers place in their shopping baskets. The discovery of such associations can

help retailers develop marketing strategies by gaining insight into which items are

frequently purchased together by customers. For instance, market basket analysis

may help managers optimise different store layouts. If customers who purchase

milk also tend to buy bread at the same time, then placing the milk close or

17

opposite to bread may help to increase the sales of both of these items.

TID Items
1 cereal coke milk
2 cereal coke mustard sausage
3 cereal bread butter
4 cereal bread butter cigarettes milk
5 cereal bread nappies milk sausage
6 cereal bread milk
7 cereal butter candy cigarettes nappies
8 cereal candy nappies mustard
9 coke bread butter mustard sausage
10 coke bread candy
11 coke bread milk mustard sausage
12 coke butter sausage
13 candy cigarettes

Table 2.2: Market Basket Transaction Data

Table 2.2 illustrates a small database of market basket transactions, labelled

with their Transaction ID (TID). The following describes the actual steps of

applying the Apriori algorithm to the data shown in Table 2.2 to generate Asso-

ciation Rules (ARs). The support threshold has been set to 0.2 (i.e. for an item

to be considered frequent it must appear in at least 20% of the records). Note

that each identified frequent itemset is delimited by round brackets, and that the

support for each itemset is given.

• Limit: support threshold ≥ 0.2

• 1st iteration: frequent 1-itemsets

– (cereal):0.62, (coke):0.46, (mustard):0.31, (bread):0.54,

(butter):0.38, (candy):0.31, (cigarettes):0.23, (nappies):0.23,

(milk):0.38, (sausage):0.38

• 2nd iteration: frequent 2-itemsets

– Candidates: all pairs of the above

18

– Frequent: (cereal, bread):0.31, (cereal, nappies):0.23,

(cereal, milk):0.31, (coke, bread):0.23, (coke, mustard):0.23,

(coke, sausage):0.31, (bread, butter):0.23, (bread, milk):0.31,

(bread, sausage):0.23, (mustard, sausage):0.23

• 3rd iteration: frequent 3-itemsets

– Candidates: (cereal, bread, milk), (coke, bread, sausage), (coke, mus-

tard, sausage)

– Frequent: (cereal, bread, milk):0.23, (coke, mustard, sausage):0.23

• 4th iteration: frequent 4-itemsets

– No more candidates

After the Apriori algorithm has discovered all the frequent itemsets, ARs can be

derived from those itemsets; for example:

• Sets (coke, mustard, sausage):0.23 and (coke, sausage):0.31

• Rule (coke, sausage) → mustard

– Support: 0.23

– Confidence: 0.23/0.31 = 70%

• Sets (cereal, nappies):0.23 and (nappies):0.23

• Rule nappies → cereal

– Support: 0.23

– Confidence: 0.23/0.23 = 100%

The above gives a sample of some of the ARs that exist in the input input data.

The numbers show the support (the number of occurrences of the item set in the

data divided by the total number of records) and the confidence (accuracy) of

the rule.

An example of the interpretation of this type of rule is the statement that “in

70% of transactions in which coke and sausage were purchased, mustard was also

purchased, and 23% of all transactions contain all three items”. In this case the

19

antecedent of this rule (X) consists of coke and sausage and the consequent (Y)

is mustard. The 70% represents the confidence factor of this rule and the 23%

is the support for the rule. The rule can then be specified as coke ∪ sausage →

mustard. Both the antecedent and consequent can comprise sets of items, or can

be a single item.

2.1.2 Classification Rule Mining

Classification is a well established data mining task, with roots in machine learn-

ing. In this task the goal is to predict the value (the class) of a user-specified goal

attribute based on the values of other attributes, called the predicting attributes.

For instance, the goal attribute might be the credit of a bank customer, taking

on the value (class) “good” or “bad”, while the predicting attributes might be

the customer’s Age, Salary, Account Balance, whether or not the customer has

an unpaid loan, etc.

The aim of classification algorithms is to generate a classifier (a set of rules in

a given database). The classifier may be expressed in a number of different ways;

one method is as a set of Classification Rules (CRs). Classification Rule Mining

(CRM) [98] is a well-known classification technique for the extraction of hidden

CRs. Classification rules can be considered as a particular kind of prediction

rule where the rule antecedent (“IF part”) contains a combination - typically, a

conjunction of conditions on predicting attribute values, and the rule consequent

(“THEN part”) contains a predicted value for the goal attribute. Examples of

classification rules are:

IF (paid-loan? = “yes”) and (Account-balance > £3,000)

THEN (Credit = “good”)

IF (paid-loan? = “no”) THEN (Credit = “bad”)

In the classifier generation task the data being mined is typically divided into

two mutually exclusive data sets, the training set and the test set. The DM

algorithm has to discover rules by accessing the training set only. In order to do

this, the algorithm has access to the values of both the predicting attributes and

the goal attribute of each example (record) in the training set. Once the training

process is finished and the algorithm has found a set of classification rules, the

20

predictive performance of these rules is evaluated on the test set (which was not

seen during training). For a comprehensive discussion about how to measure the

predictive accuracy of classification rules readers should refer to [51].

In the following two subsections two specific classifier generation techniques,

which are of particular relevance to this thesis, are described: classification asso-

ciation rule mining and decision tree based methods.

2.1.2.1 Classification Association Rule Mining

An overlap between ARM and CRM is CARM (Classification Association Rule

Mining), which strategically solves the traditional CRM problem by applying

ARM techniques. The idea of CARM, first introduced in [8], is to extract a set

of Classification Association Rules (CARs) from a class-transactional database,

where all database attributes and the class attribute are valued in a binary man-

ner. A CAR is a special form of AR that describes an implicative co-occurring

relationship between a set of binary-valued data attributes and a pre-defined

class. As such the consequent part of the ARs is restricted (typically) to a single

value of a given class attribute.

As suggested in [32], CARM offers a number of advantages over other CRM

approaches with respect to performance efficiency. Coenen et al. [32] indicate:

• “Training of the classifier is generally much faster using CARM techniques

than other classification generation techniques such as decision tree (in-

duction) and Support Vector Machine (SVM) [58] approaches (particularly

when handling multi-class problems as opposed to binary problems)”.

• “Training sets with high dimensionality can be handled very effectively”.

• “The resulting classifier is expressed as a set of rules which are easily un-

derstandable and simple to apply to unseen data (an advantage also shared

by some other techniques, e.g. decision tree classifiers)”.

2.1.2.2 Classification Rule Generation Using Decision Trees

A decision tree is a tree structure in which each internal node denotes a test

on an attribute; each branch represents an outcome of the test, and leaf nodes

represent classes. Decision tree induction methods are used to build such a tree

21

from a training set of examples. The tree can then be used (following a path from

the root to a leaf) to classify new examples given their attribute values. Because

of their structure, it is natural to transform decision trees into classification rules

that can be easily inserted into a reasoning framework. Notice that some machine

learning tools, such as C4.5 [98], already include a class ruleset generator.

Let us consider a very well known example, taken from [98]. Given a training

set of examples which represent some situations, in terms of weather conditions,

in which it is or it is not the case that playing tennis is a good idea, a decision

tree is built which can be used to classify further examples as good candidates

for playing tennis (class Yes) and bad candidates to play tennis (class No). Table

2.3 shows the original training set, given as a relational table over the attributes

Outlook, Temperature, Humidity, and Wind. The last column (class or target

attribute) of the table represents the classification of each row.

Outlook Temperature Humidity Wind Class
Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes
Rainy Mild High Weak Yes
Rainy Cool Low Weak Yes
Rainy Cool Low Strong No
Overcast Cool Low Strong Yes
Sunny Mild High Weak No
Sunny Cool Low Weak Yes
Rainy Mild Low Weak Yes
Sunny Mild Low Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Low Weak Yes
Rainy Mild High Strong No

Table 2.3: Training set of examples on weather attributes

Several algorithms have been developed to mine a decision tree from datasets

such as the one in Table 2.3. Almost all of them rely on the basic recursive

schema used in the ID3 algorithm [97]. The ID3 algorithm is shown in Table 2.4.

The ID3 algorithm is used to build a decision tree, given a set of non-categorical

attributes R1, R2, .., Rn, the categorical attribute C, and a training set of records

22

(S).

Algorithm: ID3

function ID3 (R: a set of non-categorical attributes,
C : the categorical attribute, S : a training set), returns a decision tree;

1: begin
2: If S is empty, return a single node with value Failure;
3: If S consists of records all with the same value for the categorical attribute,
4: Return a single node with that value;
5: If R is empty, then
6: Return a single node with as value the most frequent of the values of the

categorical attribute that are found in records of S; (note that then there
will be errors, that is, records that will be improperly classified)

7: Let D be the attribute that best classifies S;
8: Let {dj| j=1,2, .., m} be the values of attribute D;
9: Let {Sj| j=1,2, .., m} be the subsets of S consisting respectively of records
with value dj for attribute D;

10: Return a tree with root labelled D and arcs labelled d1, d2, .., dm going
respectively to the trees

11: ID3(R-D, C, S1), ID3(R-D, C, S2), .., ID3(R-D, C, Sm);
12: end ID3;

Table 2.4: ID3 Algorithm

Differences between decision tree algorithms are usually in the splitting criteria

used to identify the (local) best attribute for a node. Using a standard decision

tree inductive algorithm, we may obtain the decision tree in Figure. 2.1 from the

training set in Table 2.3. Recall that, each internal node represents a test on a

single attribute and each branch represents the outcome of the test.

A path in the decision tree represents the set of attribute/value pairs that

an example should exhibit in order to be classified as an example of the class

labelled by the leaf node. For instance, given the above tree, the example Outlook

= Sunny, Humidity = Low is classified as Yes, whereas the example Outlook =

Sunny, Humidity = High is classified as No.

Note that not all the attribute values have to be specified in order to find

the classification of an example. On the other hand, if an example is too under-

specified, it may lead to different, possibly incompatible, classifications. For

instance, the example Outlook = Sunny can be classified both as Yes or No,

following the two left-most branches of the tree: in this case many decision tree

23

Figure 2.1: Decision Tree Example

based classifiers make a choice by using probabilities assigned to each leaf. It

is also worth noticing that the decision tree may not consider all the attributes

given in the training set. For instance, the attribute Temperature is not taken

into account at all in this decision tree.

2.1.2.3 Classification Rule Generation Examples

Assume that the data shown in Table 2.3 is a record of the weather conditions dur-

ing a two-week period, along with the decisions (class) of a tennis player whether

or not to play tennis on each particular day. Thus tuples have been generated (or

examples, instances) consisting of values of four independent variables (outlook,

temperature, humidity, windy) and one dependent variable (class) play.

By applying various DM techniques, ARs and CARs can be found to extract

knowledge in the forms of rules, decision trees etc., or just predict the value of

the dependent variable (play) in new situations (tuples). Some examples (all

produced by Weka [124]) are presented in this section demonstrating the classi-

fication generation process using: (i) CARM (Example 1) and (ii) decision tree

mining (Example 2). Both examples use the dataset given in Table 2.3.

Example 1: Mining Classification Association Rules (CARs)

To find ARs in data, first the numeric attributes (a part of the data pre-processing

stage in DM) have to be discretised. Thus for the data in Table 2.3, the tempera-

24

ture values are grouped in three intervals (hot, mild, cool) and humidity values in

two (high, low) and substitute the values in data with the corresponding names.

Then an ARM algorithm can be applied to generate the following ARs:

1. humidity=low, windy=weak → play=yes (0.29, 100%)

2. outlook=overcast → play=yes (0.29, 100%)

3. outlook=rainy, windy=weak → play=yes (0.21, 100%)

4. temperature=cool, windy=weak, humidity=low → play=yes (0.14, 100%)

5. temperature=cool, humidity=low, windy=weak → play=yes (0.14, 100%)

The rules show relationships within attribute value sets (the so called item-

sets) that appear frequently in the data. The numbers after each rule show the

support (the number of occurrences of the item set in the data divided by the

total number of records) and the confidence of the rule.

Example 2: Classification by Decision Trees and Rules (CARs)

Using the ID3 algorithm, the following decision tree can be produced (shown in

Figure. 2.1):

• outlook = sunny

– humidity = high: no

– humidity = low: yes

• outlook = overcast: yes

• outlook = rainy

– windy = strong: no

– windy = weak: yes

The decision tree consists of decision nodes that test the values of their cor-

responding attribute. Each value of this attribute leads to a sub-tree and so on,

until the leaves of the tree are reached. The leaves determine the value of the

dependent variable (class). Using the decision tree we can classify new tuples

25

(not used to generate the tree). For example, according to the above tree the

tuple {sunny, mild, low, weak} will be classified under play=yes.

A decision tree can be represented as a set of rules, where each rule repre-

sents a path through the tree from the root to a leaf. Given the decision tree

presented in Figure 2.1 the following classification rules can be generated. Other

DM techniques can produce rules directly.

1. outlook = overcast → yes

2. outlook = rainy, windy = weak → yes

3. outlook = rainy, windy = strong → no

4. outlook = sunny, humidity = low → yes

5. outlook = sunny, humidity = high → no

2.1.3 Distributed Data Mining

A basic approach for DM is to move all of the data to a central data repository

(data warehouse) and then to analyse this with a single DM system. Even though

this approach allows the production of a global model using all the data, it might

be infeasible in many cases [96]. The cost of transferring large blocks of data

may be prohibitive and result in very inefficient implementations. An alternative

approach is the in-place strategy, as exemplified by DDM systems in which all

the data can be locally analysed (local model), and the local results at their local

sites combined at the central site to obtain the final result (global data model).

This approach is less expensive but may produce ambiguous and incorrect global

results.

Distributed Data Mining (DDM) is a branch of DM that offers a framework

to mine distributed data paying careful attention to the nature of the distribu-

tion and computing resources. The control and communication mechanisms used

in DDM systems represent a significant computational overhead that can signif-

icantly affect the operation of these systems. Since communication is assumed

to be carried out exclusively by message passing, a primary goal of many DDM

methods (reported in the literature) is to minimise the number of messages sent.

26

Some methods also attempt to load-balance across sites to prevent performance

from being dominated by the time and space usage of any individual site.

Surveys [64] and [90] provide a broad, up-to-date, overview of DDM, touching

on DM tasks such as: clustering, ARM, basic statistics computation, Bayesian

network learning, classification, and the historical roots of DDM. The collection of

papers in Kargupta and Chan [61] describes a variety of DDM algorithms (ARM,

clustering, classification, pre-processing, etc.), systems issues in DDM (security,

architecture, etc.), and some topics in parallel DM. Survey [129] discusses parallel

and distributed ARM in DDM. Survey [130] discusses a broad spectrum of issues

in DDM and parallel DM and provides a survey of distributed and parallel ARM

and clustering. Other DDM applications [103, 60] deal with continuous data

streams. An overview of the data stream mining literature can be found in [11].

The bulk of DDM methods in the literature operate over an abstract archi-

tecture which includes multiple sites having independent computing power and

storage capability. Local computation is done on each of the sites; and either

a central site communicates with each distributed site to compute the global

models, or a peer-to-peer architecture is used [101]. In the latter case, individual

nodes might communicate with a resource rich centralised node, but they perform

most of the tasks by communicating with neighbouring nodes by message passing

over an asynchronous network. For example, the sites may represent independent

sensor nodes which connect to each other in an ad-hoc fashion.

The main problems that challenge any approach to DDM are concerned not

only with scalability, but also with issues of autonomy and privacy. For example,

when data can be viewed from many different perspectives and at different levels

of abstraction, it may threaten the goal of protecting individual data and guarding

against the invasion of privacy.

The ever growing amount of data that is stored in a distributed form, over

networks of heterogeneous and autonomous sources, poses several problems for

knowledge discovery and DM, such as: communication minimisation, autonomy

preservation, scalability, and privacy protection.

To address these issues, much research effort has been directed at the identifi-

cation of more advanced approaches of combining local models built at different

sites. Most of these approaches are agent-based high level learning strategies.

27

2.2 Agents and Multi-Agent Systems

Agents and multi-agent systems are an emergent technology that is expected

to have a significant impact in realising the vision of a global and information

rich services network to support dynamic discovery and interaction of digital

enterprises. Significant work on multi-agent systems has already been done for

more than a decade since agents were first claimed to be the next breakthrough in

software development, resulting in powerful multi-agent platforms and innovative

e-business applications. The rest of this section gives a brief overview of agent and

multi-agent systems and then describes some of the most common multi-agent

system development platforms in the literature.

2.2.1 Agents

Agents are defined by Wooldridge [126] as computer systems that are situated

in some environment and are capable of autonomous action in this environment

in order to meet their design objectives. Intelligent agents [100, 126] are defined

as agents that can react to changes in their environment, have social ability

(communication) and the ability to use computational intelligence to reach their

goals by being proactive. Agents are active, task-oriented, modelled to perform

specific tasks and capable of autonomous action and decision making. The agent

modelling paradigm can be looked upon as a stronger encapsulation of localised

computational units that perform specific tasks. This can be paraphrased as

follows: an object, i.e. a software component in (say) a distributed system, does

things because it has to; an agent does things because it decides it wants to (i.e.

it does not have to).

2.2.2 Multi-Agent Systems

By combining multiple agents, in one system, to solve a problem, the resultant

system is a Multi-Agent System (MAS) [126]. These systems are comprised of

agents that individually solve problems that are simpler than the overall problem.

They can communicate with each other and assist each other in achieving larger

and more complex goals. Thus problems that software developers had previously

thought of as being too complex [79] can now be solved, by localising the problem

28

solving [119]. For example, MAS have been used in stock market prediction [77],

industrial automation [123] and e-learning [40].

In general, MAS adhere to the following three characteristics. First, MAS

must specify appropriate communication and interaction protocols. Despite agents

being the building blocks of the problem solving architecture, no individual prob-

lem can be effectively solved if no common communication ground and no action

protocol exists. Secondly, MAS must be open and decentralised; with no prior

knowledge of, for example, the number of participants or behaviours. In a running

MAS, new agents may join at any time having only to conform to the communica-

tion protocol, being able to act in the way they choose, often in an unpredictable

manner. Finally, MAS may consist of possibly heterogeneous agents that are

scattered around the environment and act autonomously or in collaboration.

2.2.3 FIPA

The Foundation for Intelligent Physical Agents, FIPA [37] is a non-profit making

international organisation established in 1996 and registered in Geneva, Switzer-

land. It is dedicated to promoting the industry of intelligent agents by openly

developing specifications to support interoperability amongst agents and agent-

based systems. FIPA defines a number of standards and specifications that in-

clude architectures to support inter-agent communication, and interaction proto-

cols between agents, as well as communication and content languages to express

the messages of these interactions. With the use of these standards, any FIPA-

compliant platforms, and their agents, are able to seamlessly interact with any

other FIPA-compliant platform.

The model proposed by FIPA agent standards [88] consists of concrete spec-

ifications enabling interoperability, based on a high-level abstract architecture.

The benefits of this will include increased re-use, together with ease of upgrade.

Early adopters of new technology tend to be wary when there is no commonly

agreed standard, which lacks the support of a large consortium of companies,

FIPA provides such a standard in the context of agents. The existence of an

agent standard provides added confidence to potential adopters of this technol-

ogy. Finally, the standardisation process shifts the emphasis from longer-term

research issues to the practicalities of realising commercial agent systems.

29

Figure 2.2: FIPA Agent Management Reference Model [37]

The FIPA agent reference model (Figure 2.2) currently provides the norma-

tive framework within which FIPA Agents exist and operate. Combined with the

Agent Life cycle, it establishes the logical and temporal contexts for the creation,

operation and dispatching of Agents. The model comprises a number of com-

ponents. The Directory Facilitator (DF), Agent Management System (AMS),

Agent Communication Channel (ACC) and Internal Platform Message Trans-

port (IPMT) form what is termed the Agent Platform (AP). The DF provides

a “yellow pages” services to other agents. The AMS provides a “white-pages”

services and life-cycle management services for agents, and the ACC supports

inter-agent communication. The ACC supports interoperability both within and

across different platforms. The Internal Platform Message Transport (IPMT)

provides a message forwarding service for agents on a particular platform. These

are mandatory, normative components of the model. The ACC, AMS and DF are

capability sets, they may be performed by one agent or by three different agents

this is left to the agent platform developer.

To be minimally FIPA-compliant requires compliance to the Agent Manage-

ment FIPA specification [37], the Agent Communication Language FIPA specifi-

cation and the (non-agent) software-agent integration specification.

30

2.2.4 MAS Development Platforms

To develop a MAS effectively, the developers have to address issues such as: agent

characteristics, agent functionalities, protocols, communication, coordination and

co-operation. Furthermore agent-based systems need to be robust, scalable and

secure. To achieve this, the development of open, stable, scalable, and reliable

architectures that allow agents to locate one another, communicate and offer

services to one another, are required.

To date several agent development platforms and toolkits have been produced

[19]. Examples include: AgentBuilder, AgentTool, ASL, Bee-gent, Grasshopper-

2, MOLE, Open Agent Architecture, RETSINA, Zeus, FIPA-OS, and JADE.

Each is briefly reviewed below.

AgentBuilder [114] is a tool for building Java agent systems based on two com-

ponents: the Toolkit and the Run-Time System. The Toolkit includes tools for

managing the agent software development process; while the Run-Time System

provides an agent engine, namely an interpreter, used as the execution environ-

ment for agent software. AgentBuilder agents are based on a model derived by

the Agent-0 [106] and PLACA [116] agent models.

AgentTool [34] is a graphical environment to build heterogeneous multi-agent

systems. It is a kind of CASE (Computer Assisted Software Engineering) tool,

specifically oriented towards agent-oriented software engineering, whose major

advantages are: (i) the complete support for the MaSE methodology [33] (de-

veloped by the same authors together with the tool), and (ii) the independence

from agent internal architecture (with MaSE and agentTool it is possible to build

multi-agent systems made of agents with different internal architectures).

ASL [68] is an agent platform that supports development in C/C++, Java,

JESS, CLIPS and Prolog. ASL is built upon the OMG’s CORBA 2.0 specifi-

cations. The use of CORBA technology facilitates seamless agent distribution

and allows usage of the language bindings supported by the used CORBA imple-

mentations. Initially, ASL agents communicated through KQML messages. The

platform is FIPA-compliant supporting FIPA ACL.

Bee-gent [65] is a software framework to develop FIPA-compliant agent sys-

tems that has been realised by Toshiba. The framework provides two types of

agents: (i) wrapper agents used to agentify existing applications, and (ii) medi-

31

ation agents supporting the wrappers coordination by handling all their commu-

nications. Bee-gent also offers a graphic RAD tool to describe agents through

state transition diagrams; and a directory facility to locate agents, databases and

applications.

Grasshopper-2 [15] is a pure Java based Mobile Agent platform, conformant

to existing agent standards, as defined by the OMG - MASIF (Mobile Agent

System Interoperability Facility) [84] and FIPA specifications. Grasshopper-2

is an open platform, enabling maximum interoperability and easy integration

with other mobile and intelligent agent systems. The Grasshopper-2 environ-

ment consists of several agents and a Region Registry, remotely connected via a

selectable communication protocol. Several interfaces are specified to enable re-

mote interactions between the distinguished distributed components. Moreover,

Grasshopper-2 provides a Graphical User Interface (GUI) for user-friendly access

to all the functionality of an agent system.

MOLE [14] is an agent development system developed in Java. MOLE agents

do not have a sufficient set of features to be considered to be truly agents [41, 108].

However, MOLE is important because it offers one of the best supports for agent

mobility. MOLE agents are multi-thread entities identified by a globally unique

agent identifier. Agents interact through two types of communication: through

RMI for client/server interactions and through message exchanges for peer-to-

peer interactions.

The Open Agent Architecture [78] is a truly open architecture intended to

realise distributed agent systems in a number of languages, namely C, Java,

Prolog, Lisp, Visual Basic and Delphi. Its main feature is its powerful facilitator

that coordinates all the other agents. The facilitator can receive tasks from

agents, decompose them and award them to other agents.

RETSINA [112] offers reusable agents to realise specific applications. Each

agent has four modules for communicating, planning, scheduling and monitor-

ing the execution of tasks and requests from other agents. RETSINA agents

communicate through KQML messages.

Zeus [87] allows the rapid development of Java agent systems by providing a li-

brary of agent components. Zeus supports: (i) a visual environment for capturing

user specifications, (ii) an agent building environment that includes an automatic

32

agent code generator, and (iii) a collection of classes that form the building blocks

of individual agents. Agents are composed of five layers: API layer, definition

layer, organisational layer, coordination layer and communication layer. The API

layer facilitates the interaction with the non-agentised world.

JATLite (Java Agent Template, Lite) [56] is a MAS development toolkit writ-

ten in the Java programming language. JATLite is a package of Java classes and

programs that allow users to create new systems of software agents that commu-

nicate over the Internet in order to perform distributed computation. The agents

may be newly created software or legacy software “wrapped” with software that

generates and receives agent messages as an integration mechanism. JATLite

allows agent communications through its message routing scheme which operates

over a networked environment, however it is not a FIPA-compliant platform.

FIPA-OS (FIPA Open Source) [94] is an open source implementation of the

mandatory elements contained within the FIPA specification for agent interoper-

ability. In addition to supporting the FIPA interoperability concepts, FIPA-OS

provides a component based architecture to enable the development of domain

specific agents which can utilise the services of the FIPA Platform agents. The

primary aim of FIPA-OS is to reduce the current barriers in the adoption of FIPA

technology by supplementing the technical specification documents with managed

open source code.

JADE (Java Agent Development Environment) [17], is a middle-ware that

enables development of applications based on the agent paradigm. JADE is fully

implemented in the Java programming language. JADE simplifies the implemen-

tation of multi-agent systems through a middle-ware that complies with the FIPA

specifications and through a set of graphical tools that supports the debugging

and deployment phases. A JADE agent platform can be distributed across ma-

chines (which do not even need to share the same OS) and the configuration can

be controlled via a remote GUI.

Shakshuki [102] presents a methodology for evaluating agent toolkits based on

criteria such as availability, environment, development, characteristic properties

and performance. His findings recommended JADE as one of the top-ranking

toolkits according to their criteria. Chmiel et al. [26] performed experiments to

test the efficiency and scalability of JADE. Their tests indicated that JADE is an

33

efficient environment; they were able to run experiments with thousands of agents

effectively migrating among eight machines and communicating by exchanging

tens of thousands of ACL messages.

Consequently the research described in this thesis has made use of the JADE

platform to engineer a real world multi-agent data mining system (EMADS) for

evaluation purposes. JADE was also chosen because it is open source, popular,

easy to use and FIPA-compliant. JADE is described in further detail in Chapter

3.

2.3 Multi-Agent Data Mining (MADM)

There are two themes of agent and DM interaction and integration in the litera-

ture [23]: DM for agents, referred to as mining-driven agents [113]; and agents for

DM, referred to as agent-driven DM, commonly known as Multi-Agent Data Min-

ing (MADM). The former concerns issues of transforming the discovered knowl-

edge, extracted by DM, into the inference mechanisms or simply the behaviours

of agents and multi-agent systems; as well as the arguable challenge of generating

intelligence from data while transferring it to a separate, possibly autonomous,

software entity. A FIPA-compliant multi-agent platform based on mining-driven

agents (Agent Academy) that offers facilities for design, implementation and de-

ployment of multi-agent systems is proposed in [113]. The authors describe the

Agent Academy as an attempt to develop a framework through which users can

create an agent community having the ability to train and retrain its own agents

using DM techniques.

MADM, rather than mining-driven agent systems, is the focus of this thesis.

It is concerned with the use of agent and MAS to perform DM activities. The

contribution of this section is to provide a broad review of prominent MADM

approaches in the literature and a discussion of the benefits that individual agent-

based DM architectures can provide. This section is not concerned with particular

DM techniques. It is however concerned with the collaborative work of distributed

software in the design of multi-agent systems directed at DM.

Several systems have been developed for MADM. These systems can be cat-

egorised, according to their strategy of learning, into three types:

1. Central-learning

34

2. Meta-learning

3. Hybrid-learning

Each is described in some further detail in the following subsections.

2.3.1 Central-learning Strategy

A central learning strategy is when all the data can be gathered at a central

site and a single model built. The only requirement is to be able to move the

data to the central location in order to merge it and then apply sequential DM

algorithms.

This strategy is appropriate when the quantity of geographically distributed

data is small and there are no issues of privacy and security that would prohibit

the movement of the data. For large volumes of data, the strategy is generally

very expensive but also more accurate in its DM results [13, 20] when compared

to alternative approaches. The process of gathering data in general is not simply

a merging step; it depends on the original distribution. For example, different

records may be placed in different sites, different attributes of the same records

may be distributed across different sites, or different tables can be placed at differ-

ent sites; therefore when gathering data it is necessary to adopt some appropriate

merging strategy. However, as noted previously, in many cases this strategy is

infeasible because of security and privacy of data requirements and for the reasons

outlined in [96].

One of the earliest references to MADM that adopted a central-learning strat-

egy can be found in Kargupta et al. [62] who describe a parallel DM system

(PADMA) that uses software agents for local data accessing and analysis, and a

web based interface for interactive data visualisation. PADMA has been used in

medical applications.

Peng et al. [92] presented an interesting comparison between single-agent

and multi-agent text classification using the central-learning strategy in terms

of a number of criteria including: response time, quality of classification, and

economic/privacy considerations. Their results indicated, not unexpectedly, in

favour of a multi-agent approach.

35

2.3.2 Meta-learning Strategy

Meta-learning is the process of automatic induction of correlations between tasks

and solving strategies, based on a domain characterisation. Meta-learning meth-

ods have been widely used within DM [122, 21], particularly in the area of clas-

sification and regression.

With respect to classification the meta-learning strategy offers a way to mine

classifiers from homogeneously distributed data. It follows three main steps. The

first is to generate base classifiers at each site using classifier learning algorithms.

The second step is to collect the base classifiers at a central site. The third

step is to generate the final classifier (meta-classifier) from meta-level data via a

combiner or an arbiter. Copies of the classifier agent will exist, or be deployed,

on nodes in the network being used (see for example [95]).

One of the most popular MADM approaches that adopt the meta-learning

strategy is the METAL project [82] whose emphasis is on helping the user to

obtain a ranking of suitable DM algorithms through an on-line advisory system.

Gorodetsky et al. [44] correctly consider that the core problem in MADM is not

the DM algorithms themselves (in many case these are well understood), but the

most appropriate mechanisms to allow agents to collaborate. Gorodetsky et al.

present a MADM system to achieve DDM and, specifically, classification. A more

recent system, proposed in [76], uses the MAGE middle-ware [104] to build an

execution engine that uses a directed acyclic graph to formalise the representation

of the KDD process. In [93] a multi-agent system for KDD (AgentDiscover) has

been proposed. It uses task-based reasoning [24] for problem solving on a multi-

agent platform. Perhaps the most mature agent-based meta-learning systems

are: JAM [111], and BODHI [63]. JAM and BODHI are both intended for data

classification.

2.3.3 Hybrid-learning Strategy

A hybrid learning strategy is a technique that combines local and remote learning

for model building [46]. An example of a hybrid learning framework is Papyrus

[12]. Papyrus is designed to support both learning strategies. In contrast to JAM

and BODHI, Papyrus can not only move models from site to site, but can also

move data when that strategy is desired. Papyrus is a specialised system which

36

is designed for clustering. These systems are reviewed in detail in [70].

2.4 Generic MADM

Most existing MADM systems are used to improve the performance of one specific

DM task. Therefore, these systems can also be categorised into three groups based

on the DM task they address:

• Classification Task: includes [44, 111, 63, 62, 39, 43, 67].

• Association Rule Mining Task: includes [85, 89, 27, 57, 66].

• Clustering Task: includes [12, 69, 70, 107, 42].

Given the above literature review, and to the best knowledge of the author, there

have been only a few MADM systems that define a generic MADM framework. An

early attempt was IDM [20]. IDM is an agent-based data mining system designed

to support predefined and ad-hoc data access, data analysis, data presentation,

and data mining requests from non-technical users over a data warehouse. The

IDM distributed environment is realised using JATLite. The developers of IDM

claim that IDM can rapidly analyse data because it delegates data mining tasks

to multiple agents. However, since JATLite is not FIPA-compliant, IDM can not

be integrated further with FIPA-compliant applications. IDM also has limited

user friendliness, meaning users are expected to correctly set the goals when

interacting with IDM and to have a good understanding of the technology used

in its development. Another example of JATLite based framework with very little

information on the testing part of the system is the work of Zhang et al. [131].

In [10] a generic task framework was introduced, however designed to work

only with spatial data. The most recent system was introduced in [35] where the

authors proposed a MAS to provide a general framework for DDM applications.

The effort to embed the logic of a specific domain has been minimised and is

limited to the customisation of the user. However, although its customisable

feature is of a considerable benefit, it still requires users to have very good DM

knowledge.

Most of the MADM frameworks adopt a similar architecture and provide

common structural components using a standard agent communication language

that facilitates the interactions among agents such as KQML or FIPA-ACL.

37

The major criticism of the above systems is that it is not always possible

to obtain an exact final DM result (knowledge model), i.e. the global knowledge

model obtained may be different from the one obtained by applying the one model

approach (if possible) to the same data. Approximated results are not always a

major concern, but it is important to be aware of their nature. Moreover, in these

alternative approaches to MADM hardware resource usage is not optimised. If

the “heavy” computation is always executed locally to the data, when the same

data is accessed concurrently, the benefits coming from the distributed environ-

ment might vanish due to the performance degradation. Another drawback is

that occasionally, these knowledge models are induced from databases that have

different schemas and hence are incompatible.

2.5 Summary

The literature review, presented in this chapter, has shown that: (i) KDD (in

particular, data mining) has a number of outstanding problems in aspects such

as scalability, security, etc. which remain the subject of research; (ii) Distributed

Data Mining may solve some of these problems, but not all, and introduces other

problems; (iii) MAS offers some promising possibilities. However, MADM sys-

tems, to the best knowledge of the author, are often unique to the application

under consideration or very specific to one data mining task (e.g. classification).

One of the objective of the research described in this thesis is to consider

whether MAS can provide a generic MADM solution.

38

Chapter 3

MADM: Requirements Analysis,
Design, and Implementation

As described in Chapter 1, the MADM vision proposed in this thesis is that of an

“anarchic” collection of persistent, autonomous (but cooperating) KDD agents

operating across the Internet. To investigate the nature of the envisaged MADM,

its operation, its architecture, and the underlying research issues, identified in

Chapter 1, the investigation was supported by establishing a working system.

This system was termed EMADS (Extendible Multi-Agent Data mining System).

This chapter describes the under-pinning philosophy of MADM frameworks and,

by extension, the view of the EMADS framework proposed in this thesis. This

chapter concentrates on the generic features of MADM and describes the EMADS

framework to support the MADM vision.

Throughout this thesis, depending on context, EMADS is referred to both

as a “system”, since it is a Multi-Agent System (MAS), and as a “framework”

because EMADS defines a framework for achieving MADM.

To realise the EMADS framework a general software development method-

ology was adopted that moved from problem definition and analysis to detailed

design and implementation.

This chapter provides a detailed description of the framework in terms of its

requirements, design and architecture. The chapter commences by reviewing the

MADM (EMADS) requirements (Section 3.1). To fully understand and analyse

the requirements, the section commence by considering a number of MADM issues

before moving on to the structural and operational requirements. A review of the

EMADS agents and users is then presented in Section 3.2 in the context of the

39

identified requirements. In Section 3.3 the EMADS agent interaction protocols

are defined; followed, in Section 3.4, with a discussion of the proposed generic data

mining process using EMADS agents. In Section 3.5 details concerning the Java

Agent Development Environment (JADE) [17], the agent development toolkit

that was used to implement EMADS, are presented. The JADE implementation

of EMADS is then detailed in Section 3.6. A discussion of how EMADS fulfils

the identified MADM requirements is presented in Section 3.7. Finally, Section

3.8 presents a summary of this chapter.

3.1 MADM Requirements Analysis

Developing a data mining system that uses specialised agents with the ability

to communicate with multiple information sources, as well as with other agents,

requires a great deal of flexibility. For instance, adding a new information source

should merely imply adding a new agent and advertising its capabilities; a pro-

cess that should be facilitated in such a way that it is as simple as possible.

As noted above the motivation for researching and implementing a fully opera-

tional MADM framework was to facilitate the investigation of the various MADM

research challenges and issues outlined in Chapter 1.

3.1.1 Design Requirements

The realisation of the desired MADM framework requires the consideration of a

number of requirements. These requirements are itemised in this section.

1. Multiple Data Mining Tasks: The MADM framework must be able to

provide mechanisms to allow the coordination of data mining tasks. The

number and nature of the data mining tasks that the framework should

be able to address is not known a priori, and is expected to evolve over

time. Consequently the framework should be designed in such a way as to

anticipate future tasks.

2. Agent Coordination: Following on from issue number 1, the framework

must be reactive since it must accommodate new agents as they are created

in the environment. Careful consideration therefore needs to be directed at

the communication mechanisms.

40

3. Agent Reuse: The framework must promote the opportunistic reuse of

agent services by other agents. To this end, it must provide mechanisms by

which agents may advertise their capabilities, and ways of finding agents

supporting certain capabilities.

4. Scalability and Efficiency: The scalability of a data mining system refers

to the ability of the system to operate effectively and without a substan-

tial or discernible reduction in performance as the number of data sites

increases. Efficiency, on the other hand, refers to the effective use of the

available system resources. The former depends on the protocols that trans-

fer and manage the intelligent agents to support the collaboration of the

agents, while the latter depends upon the appropriate evaluation and filter-

ing of the available agents to avoid targeting of irrelevant sources. Combin-

ing scalability and efficiency without sacrificing performance is, however,

an intricate problem.

There are potentially a large number of agents that must be coordinated

within any generic MADM framework. The framework must therefore be

“light-weight” and scalable. In other words, it must be possible to imple-

ment efficient communication mechanisms, and the administrative overhead

of the framework should not hamper the overall efficiency of the system.

Most of the current generation of DM learning algorithms are computa-

tionally complex and require all data to be resident in main memory, which

is clearly implausible for many realistic problems and databases. At the

same time the framework must be scalable: avoiding centralised compo-

nents which would create bottlenecks during execution.

5. Portability: A distributed data mining system should be capable of op-

erating across multiple environments with different hardware and software

configurations (e.g. across the Internet), and be able to combine multiple

models with (possibly) different representations. The framework should be

able to operate on any major operating system. In some cases, it is possible

that the data could be downloaded and stored on the same machine as the

data mining software.

6. Compatibility: Combining multiple models of data mining results has

41

been receiving increasing attention in the data mining research literature.

In much of the prior work on combining multiple models, it is assumed

that all models originate from the same database or from databases with

identical schema. This is not always the case, and differences in the type

and number of attributes among different data sets are not uncommon. The

resulting model computed at a single database is directly dependent on the

format of the underlying data. Minor differences, in the schema, between

databases derive incompatible models, i.e. a classifier cannot be applied on

data of different formats. Yet, these classifiers may target the same concept.

The framework must be able to operate using several data sources located

on various machines, and in any geographic location, using some method of

network communication.

7. Adaptivity and Extendibility: Most data mining systems operate in en-

vironments that are likely to change, a phenomenon known as concept drift.

For example, medical science evolves, and with it the types of medication,

the dosages and treatments, and of course the data included in the various

medical database. Alternatively lifestyles change over time and so do the

profiles of customers included in credit card data; new security systems are

introduced and new ways to commit fraud or to break into systems are

devised.

It is not only patterns that change over time. Advances in machine learning

and data mining will give rise to algorithms and tools that are not available

at the present time. Unless the MADM system in use is flexible to accom-

modate existing as well as future data mining technology it will rapidly be

rendered inadequate and obsolete.

In the following sections the structure and operational requirements of the desired

MADM framework are considered in detail. Given their significance in the context

of MADM, the extendibility requirements are discussed in detail in Chapter 4.

3.1.2 Structural Requirements

The goal of the structural requirements analysis, described in this section, is to

identify the flow of information through the envisioned MADM framework so as

42

to clearly define the expected system input and output streams. By breaking the

framework into domain level concepts, it was possible to begin to identify the

nature of the agents that MADM might require. Four main domain level com-

ponents were identified: (i) user interface, (ii) planning and management, (iii)

processing, and (iv) data interface. The interaction (information flow) between

these four main modules is shown in Figure 3.1. The Figure should be read from

left to right. The user interface component receives data mining requests. Once

the request is received, it is processed (parsed) to determine the data mining

algorithms and data sources required to respond to the request (this is the func-

tion of the Planning and management component). The identified data sources

are then mined (the processing component), through access to the data interface

component, and the results returned to the user via the user (interface) compo-

nent.

Figure 3.1: Main Domain Components

3.1.3 Operational Requirements

Most current agent-based data mining frameworks (see Chapter 2) share a sim-

ilar high-level architecture, and provide common structural components, to that

shown in Figure 3.1. Components of the form described above have become a tem-

plate for most agent-based data mining and information retrieval systems. The

structure illustrated in Figure 3.1 sets out three important elements of MADM

systems: (i) agent technology, (ii) domain components, and (iii) information bro-

kerage (middle-ware). Agent technology is a self evident element of MADM.

Multi-Agent Systems (MAS) espouse the use of collaborative agents, operating

across a network, and communicating by means of a high level query language

such as KQML and FIPA ACL. Domain components or ontologies, give a con-

43

cise, uniform description of semantic information, independent of the underlying

syntactic representation of the data. Finally, information brokerage utilises spe-

cialised facilitator agents to match information needs with currently available

resources, so (for example) retrieval and update requests can be properly routed

to the relevant resources.

Given the above considerations the general operation of EMADS (as suggested

in Figure 3.1) is as follows:

1. Source Identification: When a request is received, select the appropri-

ate information source or sources. One way to do this is using meta-data

obtained at the time of the query to determine what sources to use. The

advantage of this is that the knowledge sources are current at the time the

query is made.

2. Assignment: Assign the appropriate data mining algorithm(s).

3. Task Scheduling: Plan and execute the required Task. Task Planning

involves the coordination of data retrieval, and the ordering and assignment

of processes to the appropriate agents. This is expressed in the form of a

“plan”. The steps in the plan are partially ordered based on the structure

of the query. This ordering is determined by the fact that some steps make

use of data that is obtained by other steps, and thus must logically be

considered after them.

4. Result: Return the results to the user.

These steps are fairly generic and could be the foundation for any envisaged

MADM.

3.2 EMADS Agents and Users

In this section the different types of EMADS agents and users are detailed. The

discussion focuses on the functionality of the agents; the implementation is con-

sidered later in this chapter. Based on the requirements identified in Subsection

3.1, several types of EMADS agent were identified. However, regardless of “type”,

EMADS’ agents adhere to the general agent definitions described in [126]. The

44

EMADS agent types are: User, Management, Facilitator, Data Source, Data Min-

ing (DM), and Registration. Each falls within the domain level concepts identified

in Subsection 3.1.2. The user and data source agents are all identified as inter-

face agents because they all provide “interfaces” to either users, or data sources.

User agents provide the interface between EMADS end users and the rest of the

framework; whilst data source agents provide the interface between input data

and the rest of the framework. Task agents and Data Mining (DM) agents are

identified as processing agents because they carry out the required “processing”

needed to respond to user requests, and possibly, to pre-process data within the

system.

Figure 3.2: System General Architecture

Figure 3.2 shows what agents will reside in each domain component identified

in the structural requirements analysis in Subsection 3.1.2. The task agent (mid-

dle of the management layer in Figure 3.2) receives a request and asks the broker

agent to check all available databases (data agents) and DM agents to find: (i)

which data to use, and (ii) which data mining algorithms (held by DM agents)

45

are appropriate. The task agent then passes the task to DM agents and monitors

their progress. Each database must have an interface agent (data agent) to check

the database for a matching schema and then report back to a DM agent. Figure

3.2 also shows the system level inputs and outputs as they flow from agent to

agent.

The agents are kept independent from any particular DM function. They

were defined with respect to the high level objectives identified in the require-

ments presented previously in Section 3.1. In general, it is convenient to think

of an EMADS agent as formed by three interacting software modules: (i) the

interface module, (ii) the process module and (iii) the knowledge module. Note

that modules are only included when they are needed.

The following subsections describe the structure and function of each agent

from a high level perspective and in terms of the three identified software modules.

The subsections also discuss the design decisions that were made and why they

were made. The agents are considered in the same order as they might be utilised

to process an EMADS’ user request in order to illustrate how each agent’s function

fits into the system’s overall operation and contributes to supporting the other

agents. A brief overview of the various categories of end users is also presented.

3.2.1 User Agent

There are four essential operations that a user agent must be able to undertake:

1. Receive and interpret user data mining requests.

2. Communicate the user request to the processing agents.

3. Return the generated results, in a suitable and easily understandable for-

mat, back to the user.

4. Expect and respond to asynchronous events, such as “a stop mining” or

“end operations” instructions that may be issued by the user.

A user agent is also required to have the knowledge needed to translate infor-

mation from the user to a format that processing agents can understand and

vice-versa.

46

The user agent is the only agent that interacts with the user. It asks the

user to issue data mining requests, passes them to the system, and provides

the user with results. The user agent’s interface module contains methods for

inter agent communication and for obtaining input from the user. The process

module contains methods for capturing the user input and communicating it to

the task agent. In the knowledge module, the agent might store the history of

user interactions, and user profiles with their specific preferences. In addition,

the interface module may provide access to (say) visualisation software, that

may be available to show results, or to other post-processing software. The

process module may contain methods to support ad-hoc and predefined reporting

capabilities, generating visual representations, and facilitating user interaction.

The knowledge module stores details about report templates and visualisation

primitives that can be used to present the result to the user.

3.2.2 Registration Agent

The general excepted function of the registration is to inform all appropriate

agents that are already in the system and interested of a new agent arrival. When

any new agent is introduced into the system, it must first inform the registration

agent that it has entered. Since the system is designed to be relatively static in

terms of new data sources and data source types, the registration agent will be

the least utilized agent. It should also be the first agent created and started in

the system. Because the system cannot operate without a broker agent as well,

the registration agent will initiate all methods, and then await a broker agent to

enter the system. Once notified a broker has entered the system, it completes

initialization and waits for a registration request from any new agents. When

a new agent enters the system, it sends a registration request message to the

registration agent. When it receives notification of a new agent, the registration

agent will determine the functions the agent can perform by the information

transmitted in the registration message. The broker agent will be informed of

all types of agents entering the system. Once all appropriate existing system

agents have been notified, the new agent will be informed it is active in the

system. However, in the work described in this thesis the registration agent

was eliminated and its functionality was integrated with the broker agent. The

47

agent’s interface module contains methods for inter agent communication. The

knowledge module contains meta-knowledge about all agents in the system.

3.2.3 Facilitator Agent (or Broker Agent)

The facilitator agent serves as an advisor agent that facilitates the distribution

of requests to agents that have expressed an ability to handle them. This is

performed by accepting advertisements from supply agents and recommendation

requests from request agents. The facilitator agent keeps track of the names

and capabilities of all registered agents in the framework. It can reply to the

query of an agent with the name and address of an appropriate agent that has

the capabilities requested. Its knowledge module contains meta-knowledge about

capabilities of other agents in the system.

In general, any agent in EMADS can use the facilitator agent to advertise

their capabilities in order to become a part of the agent system (what is known

as a “yellow pages” service). When the facilitator agent receives notification of

a new agent who wants to advertise its services; it must add this new agent’s

identifier and its capabilities to the list of available system agents.

To fulfil a task the task agent must “talk to” the facilitator agent, asking which

agents can fulfil a given request. The facilitator agent maintains all information

on the capabilities of individual agents in the system and responds to queries

from task agents as to where to route specific requests. By requesting only those

agents who may have relevant information, the task agent can eliminate tasking

any agents that could not possibly provide any useful information. However,

it should be noted that the facilitator agent does not maintain full information

about the agents in the system, only their high level functionality and where they

are located.

3.2.4 Task Agent (or Management Agent)

A task agent is responsible for the activation and synchronisation of the various

EMADS agents required to generate a response to a given user request. Indi-

vidual categories of task agent dedicated to different, but specific, data mining

operations have been identified; the various categories are considered in detail in

later chapters. A task agent performs its task by first generating a work plan,

48

and then monitoring the progress of the plan. Task agents are designed to receive

data mining requests from user agents and seek the services of groups of agents

to obtain and synthesise the final result to be returned to the user agents. The

agent interface module is responsible for inter-agent communication; the process

module contains methods for the control and coordination of the various tasks. A

task agent may be required, when generating a response to a request, to: identify

relevant data sources, request services from agents, generate queries, etc. The

knowledge module contains meta-knowledge about data mining tasks, i.e., what

steps are required for what type of task, input requirements for each of the data

mining tasks, etc.

Once the user agent has received a user request, it passes it to the task agent.

The task agent then determines, according to the information passed to it and

through contact with the facilitator agent (see below), what other agents are

required to generate a response to the request. The nature of a received request

can dictate one of two possible types of action: (i) performance of a data mining

task, or (ii) the cancellation of the current operation. These user desires will be

passed to the task agent in the form of a request from the user agent.

In the first case the task agent will ask the facilitator agent for DM agents

which can fulfil the desired tasking. For instance, if the user wants all possible

association rules meeting a given minimum support and confidence thresholds,

across all available data sources, then the task agent will contact the appropri-

ate DM agents with this request. The task agent accepts the result from each

individual DM agent and stores it in its knowledge base. Once the DM task is

completed, the task agent combines the results to provide a single result before

passing it to the user agent. Note that in some cases there may be only a single

result in which case there will be no requirement to combine results.

The second case may occur where the user feels (say) that the current oper-

ations are taking too long, or are no longer needed. In this case, the task agent

must send “cancel” messages to all agents currently tasked and performing work.

3.2.5 Data Mining (DM) Agent

A DM agent implements a specific DM technique or algorithm; as such a DM

agent can be said to “hold” a DM algorithm. The interface module supports inter-

49

agent communication. The process module contains methods for initiating and

carrying out the DM activity, capturing the results of DM, and communicating it

to a data agent or a task agent. The knowledge module contains meta-knowledge

about DM tasks, i.e. what method is suitable for what type of problem, input

requirements for each of the mining methods, format of input data, etc. This

knowledge is used by the process module in initiating and executing a particular

mining algorithm for the problem at hand.

A DM agent accepts a request, from a task agent, and initiates the mining

algorithm using the values contained in the request. As the algorithm runs, the

DM agent may make requests for data to data agents, or ask other DM agents to

cooperate. The DM agent continues until it has completed its task, i.e. generated

a result to the presented request, and then returns the results to the task agent

to be passed on to the user agent and eventually to the EMADS end user who

originated the request.

3.2.6 Data Agent (or Resource Agent)

A data agent is responsible for a data source and maintains meta-data information

about the data source. There is a one-to-one relationship between a given data

agent and a given data source. Data agents are responsible for forwarding their

data, when requested to do so, to DM agents. Data agents also take into account

issues to do with the heterogeneity of data. The interface module for a data agent

supports inter-agent communication as well as interfacing to the data source it is

responsible for. The process module provides facilities for ad-hoc and predefined

data retrieval. Based on the user request, appropriate queries are generated by

DM agents and sent to data agents who then process the queries according to the

nature of their data set. The results, either the entire data set or some specified

sub-set, are then communicated back to the DM agents.

Once the facilitator agent has determined what agents can fulfil a given task,

it passes this information back to the task agent. The task agent then tasks each

“useful” data agent, passing it the relevant information, requesting it to provide

appropriate data. “useful” in this case refers to data agents that are responsible

for a data source that includes some part of the required data.

An individual data agent is not specific to any particular data mining task

50

but rather is able to answer any query associated with its data. When a new

data source is introduced into EMADS it must be “wrapped” (as described in

the next chapter) so that a new data agent is created. During this process the

presence of the new data agent will be announced to the facilitator agent so that

the new agent can be recognised by the system and so that the facilitator agent

can add a reference for the new agent to the list of system agents. Once the new

data agent has registered, it will query the user through its GUI interface for the

domain of the data source (i.e. data file location) for which it is responsible. This

will be considered in further detail when extendibility is discussed in Chapter 4.

3.2.7 EMADS End User Categories

EMADS has several different modes of operation according to the nature of the

participant. Each mode of operation (participant) has a corresponding cate-

gory of agent as described above and as shown in Figure 3.3. The figure also

shows the JADE house-keeping agents (AMS and DF). The supported partici-

pants (EMADS end user categories) are as follows:

• EMADS Developers: Developers are EMADS participants, who have

full access and may contribute DM algorithms and tasks.

• EMADS Data Miners: These are participants, with restricted access to

EMADS, who may pose DM requests.

• EMADS Data Contributors: These are participants, again with re-

stricted access, who are prepared to make data available to be used by

EMADS data mining agents.

In each case, before interaction with EMADS can commence, the participant

must download and launch the appropriate EMADS software. Note that any

individual participant may be a user as well as a contributor and/or developer

at the same time. With respect to EMADS users it should be recalled that the

nature of EMADS DM requests, that may be posted, is extensive.

3.3 Defining Interaction Protocols

In the previous section the primary functions and interactions for generic MADM

(EMADS) agents were identified. In this section the various protocols required to

51

Figure 3.3: High Level View of EMADS Conceptual Framework

support the identified primary functions and high-level interactions are defined

for each agent. Each protocol is considered in a separate subsection.

EMADS employs efficient distributed protocols, to avoid the consequent po-

tential use of many messages, while maintains a generic architecture that can be

extended with new DM tasks.

More generally, with respect to MAS, a protocol is some agreed message for-

mat for communication between agents that promotes some shared understand-

ing. In MAS, protocols typically define how agents request information from one

another, and how agents return responses to these requests. The agent initiating

a message is called the sender, and the agent receiving it is the receiver. The

response to a message usually requires the receiver to perform some action which

will then generate the response to be returned to the sender. The message data is

specified as content. The following syntax, expressed as a context free grammar

in BackusNaur Form (BNF) [86], is used to define the protocols:

< Protocol >::=< Header >< Send − Message >< Receive − Message >

< Header >::=< ProtocolName >< SenderAgent >< ReceiverAgent >

< Send − Message >::=< Send − Message − Tag > |

< Send − Message − Tag >< Send − Content > |

< Send − Message − Tag >< Send − Action > |

52

< Send − Message − Tag >< Send − Content >

< Send − Action >

< Receive − Message >::=< Receive − Message − Tag > |

< Receive−Message−Tag >< Receive−Content > |

< Receive−Message−Tag >< Receive−Action > |

< Receive−Message−Tag >< Receive−Content >

< Receive − Action > |

“(” < Receive−Message > “OR” < Receive−Message >

“)”|

< Receive − Message > “OR” < Receive − Action >

< ProtocolName >::= “ProtocolName : ”string

< SenderAgent >::= “Sender : ”string

< ReceiverAgent >::= “Receiver : ”string

< Send − Message − Tag >::= “Send : ”string

< Send − Content >::= “Content : ”string

< Send − Action >::= “Do : ”string

< Receive − Message − Tag >::= “Receive : ”string

< Receive − Content >::= “Content : ”string

< Receive − Action >::= “Do : ”string

The first three lines of each protocol (the header) identifies the protocol’s name

(label) and the intended message “sender” and “receiver”. The sender or receiver

can be one or more of the EMADS agent categories identified above. The next

part of the protocol defines the nature of the message to be sent, this consists

of at least a message tag, but may also define some message content and/or

some action to be performed by the sender once the message has been sent. The

message tag is one of a set of predefined tags (strings) that are understood by

EMADS agents. The final part of the protocol defines the nature of the message

to be returned to the sender (i.e. the reply) and any consequent action. This

part of the protocol also consists of at least a message tag, but again may also

define some message and any expected action(s) to be performed by the sender

on receipt of the message. In some cases there may be a number of alternative

53

messages that can be received, in which case this will be indicated by an “OR”

(and parentheses to enhance readability). It is also possible for the sender to

receive a sequence of replies of messages and actions. This format is used in the

following subsections to define the seven main EMADS protocols that have been

identified:

1. Find Other Agents

2. Agent Registration

3. User DM Request

4. Start Data Mining Task

5. Advertise Agent Capabilities

6. Perform Data Mining

7. Data Retrieval

3.3.1 Find Other Agents Protocol

Prior to transmitting a message a sender agent needs to identify the subset of

receiver agents appropriate to a particular requirement. A sender agent can first

discover exactly what agents are interested in receiving its message by commu-

nicating with the facilitator agent. The ability of sender agents to do this is a

general requirement that may be repeated on many occasions, and the generic

Find Other Agents protocol was therefore specifically created for this purpose.

The protocol is as follows:

Protocol Name: Finding other Agents

Sender: Any requesting agent

Receiver: Facilitator Agent

send: findAgents

content: agent type

(receive: agentsFound

content: agentList

or

54

receive: noAgents)

The receiver is always the facilitator agent. The sender agent sends a “findA-

gents” tagged message, with the content defining the agent type that the sender

wishes to communicate with, to the facilitator agent. The agent type indicates

the nature of the DM task the sending agent is interested in (for example a DM

agent may be interested in classification). The facilitator agent will then either

return a message containing a list of appropriate agents identifiers or a “noAgent”

tagged message indicating that no agents of the specified agent type were found.

3.3.2 Agent Registration Protocol

The Agent Registration protocol allows new agents to “register” their presence

with the facilitator agent. The Agent Registration protocol is as follows:

Protocol Name: Agent Registration

Sender: New agent

Receiver: Facilitator Agent

send: register

content: domain and agent meta-data (services, capabilities)

receive: accepted or rejected

The sender agent sends a “register” tagged message, with the content describ-

ing the agent domain and a description of the new agent’s service and capabilities,

to the facilitator agent. The sender will either receive an “accepted” tagged mes-

sage, indicating that the registration was accepted and the agent is made public

to other agents; or a “rejected” tagged message indicating that the registration

failed.

3.3.3 User DM Request Protocol

User agents interact only with task agents. Once a request from the user is

received the user agent initiates a request for some DM task to be performed

based on the task type specified within the user DM request. The task agent

will acknowledge receipt to the user agent and initiate the DM process. The user

agent will then wait until either the result of the DM request is returned; or it

55

is informed, by the associated EMADS end user, that the request has failed (for

example because no appropriate data sources can be found). In the first case the

user agent will forward the DM result to the EMADS end user. In the second

case the user agent will confirm termination of the current DM task. The DM

Request protocol is as follows:

Protocol Name: Requesting DM

Sender: User Agent

Receiver: Task Agent

send: mining

receive: accept

(receive: resultsReady

content: results

or

receive: noData)

3.3.4 Start Data Mining Task Protocol

Task agents are central to the EMADS data mining process and interact with

the user agents, the facilitator agent, and one or more DM agents. The task

agent initially reacts to a request initiated by the user agent. The user agent will

request that some DM operation be undertaken and will pass the appropriate

attributes (for example threshold values) dependent on the nature of the desired

DM task. In response to a request to be undertaken, the task agent will determine

the nature of the request according to the variables sent. Once the task agent

has determined the type of the request (for example an ARM request), it informs

the user agent it has all the information it needs with an “accept” message and

initiates the required processing.

The task agent then interacts with the facilitator agent to determine what

agents it should task for the given request. Then, the task agent awaits the

result. It can receive one of two possible answers. It can receive an “agentsFound”

message and a list of useful agents, or a “noAgents” message, indicating there

are no data sources that could be mined for the variables given. If “noAgents”

is received, the task agent sends a “noData” message to the user agent and ends

56

the user protocol.

The task agent will first use the Finding Other Agents protocol described in

Subsection 3.3.1 above. Thus if agents are found, an “agentsFound” message tag

will be returned to the sender together with a list of identifiers for the “found”

DM agents. The task agent will interact with each of the identified DM agents.

The task agent will request that the identified DM agents begin DM according

to the values in the original request received from a user agent (see the User DM

Request protocol defined above). The task agent may pass any variables received

from the user agent to the DM agents according to the nature of the DM request.

Once the task agent receives the confirmation from the DM agent, it awaits either

results or a request initiated by the user agent requesting a termination of the

current DM operation. The Start Data Mining Task protocol is given below.

Protocol Name: Start Data Mining Task

Sender: Task Agent

Receiver: DM Agent

send: beginMining

receive: miningComplete

content: result

do: return result

or

do: terminate

A task agent may interact with more than one DM agent. In this latter case

some post processing of the result is typically undertaken. After all necessary

interactions with the DM agents have been completed; the task agent sends a

“resultsReady” message to the user agent.

3.3.5 Advertise Agent Capabilities Protocol

The facilitator agent primarily interacts with task agents, DM agents, and data

agents; but has the ability to respond to any properly formatted request for

agents that can fulfil a given task. As noted above, the primary functions of the

facilitator agent are to: (i) maintain a list of all agents in the system that want

to advertise their services and the tasks they can perform, and (ii) answer queries

57

requesting lists of agents that can fulfil any given task.

To perform the first function, the facilitator must be able to communicate

with any new agents entering EMADS and receive and process the new agent’s

information. The advertising process begins with the new agent sending an “ad-

vAgent” message that contains the new agent’s full name and task list. The

Advertise Agent Capabilities protocol is as follows:

Protocol Name: Advertise agent capabilities

Sender: New Agent

Receiver: Facilitator Agent

send: advAgent

content: agentMetaData, serviceList

receive: agentAdded

The facilitator agent will obtain the new agent’s information from the message

content, the global list of agents will be updated and an “agentAdded” message

tag (i.e. an acknowledgement) sent to the new agent. Once this last message is

sent the protocol is terminated.

3.3.6 Perform Data Mining Protocol

DM agents interact with task agents and data agents. A specific DM agent will

await a “beginMining” message from the task agent. This message will contain

the original request (from the user agent) and the name(s) of the data agent(s)

to be used. Once this is received, the DM agent starts the mining algorithm

associated with it by applying it to the data indicated by the specified data agent

reference(s). When a DM agent’s algorithm completes, the DM agent sends a

“miningCompleted” reply message, with the generated results as the content, to

the sending task agent. The Perform Data Mining protocol is as follows:

Protocol Name: Performing Data Mining

Sender: Task Agent

Receiver: DM Agent

send: beginMining

content: DM task type, DM and Data Agent lists

58

do:wait

receive: miningCompleted

content: result

do: if applicable process results and return result

The protocol includes an option to combine results where several DM agents

or data agents may have been used.

3.3.7 Data Retrieval Protocol

Data agents hold the software required to interface with data sources. Data agents

also have the capabilities to communicate with DM agents that will operate “over

them”. Data agents interact with DM agents using the following Data Retrieval

protocol:

Protocol Name: Data Retrieval

Sender: DM Agent

Receiver: Data Agent

send: getData

content: SQL

receive: retrievedData

content: data

3.4 Data Mining with Agents

In this section a generic overview of data mining with EMADS agents is presented.

The overview is described by considering a general DM request and tracing the

generation of the response through the various communication paths in the broad

context of MADM. The general form of the EMADS DM process has already

been partially described above in terms of the protocols used; the objective of

this section is to bring the different elements of the process together in the form

of a summary by considering a generic example.

In EMADS DM task, planning is realised by negotiation between EMADS

agents through the message passing mechanism (described further in Section 3.6

below). The DM process begins with the user agent receiving notification from

59

the end user describing a data mining request. The user agent picks up the user

request and then starts a task agent. The task agent then asks the facilitator agent

for the identifiers of all “useful” (DM and data) agents specified in the context of

the request. An agent is deemed “useful” if it can potentially contribute to the

resolution of the request. The facilitator agent receives the request and compiles

a list of all appropriate (interested) agents. The facilitator agent then returns the

list of “useful” agents to the task agent. Once the task agent receives the list,

it can commence the desired DM process. The nature of this DM process will

depend on the nature of the request.

A number of different categories of task agent have been identified in the con-

text of EMADS; these are discussed in further detail in later chapters (5,6, and 7).

However, in general terms, the task agent sends a request to each identified DM

agent in the list (there may only be one) to begin DM together with appropriate

references to the identified data agents. Each DM agent accepts the request and

begins mining their applicable data source. Once completed, the DM agents send

the results back to the task agent. When the task agent has all the results, it

processes the results (for example it may combine them), and notifies the user

agent (in some cases there may of course only be one set off results). The user

agent then displays the combined results to the user.

3.5 The Agent Development Toolkit

In this section a discussion is presented concerning the selected agent development

toolkit, JADE, in which EMADS was implemented (JADE was introduced in

Chapter 2, Subsection 2.2.4).

It is well established that building sophisticated software agents is a challeng-

ing task, requiring specialised skills and knowledge in a variety of areas including:

agent architecture, communications technology, reasoning systems, knowledge

representation, and agent communication languages and protocols. To this end a

number of agent development toolkits are available which may be used to build

MAS in an efficient and effective manner in that they reduce agent development

complexity and enhance productivity. In general agent development toolkits pro-

vide a set of templates and software modules that facilitate and/or implement

basic communication. Development toolkits may also provide templates for vari-

60

ous types of agents, or constructs that agents can use. Basic communication can

be as simple as direct communication among agents.

The key difference between most development toolkits lie in the implemen-

tation and architecture of the provided communication and agent functionality.

When selecting a toolkit to build some desired MAS developers should make their

decision based on the MAS goals and services that are desired. Any potential

toolkit should also be evaluated for potential problems related to the toolkit’s

strengths and weaknesses prior to any decision being made.

JADE was chosen for the proposed EMADS framework development. JADE

was selected for a variety of reasons as follows:

• JADE is both popular and regularly maintained (for bug fixes and extra

features).

• It was developed with industry quality standards.

• The tool kit covers many aspects of MAS, including agent models, interac-

tion, coordination, organisation, etc.

• It is simple to set-up and to evaluate. This includes good documentation,

download availability, simple installation procedure, and multi-platform

support.

• It is FIPA-compliant.

A number of alternative platforms were detailed in Chapter 2, Subsection 2.2.4.

Some of the reasons that these other platforms were avoided included:

• That they were still in an experimental state, abandoned, or confidentially

distributed,

• Very little documentation was associated with them,

• They covered only one aspect, or a limited number of aspects, of MASs;

such as single agent platforms, mobile agent platforms, interaction infras-

tructures toolkits,

• They were found to be too short on some construction stages, for example

purely methodological models.

61

Further detail concerning JADE is provided in the following subsections. Sub-

section 3.5.1 presents JADE architecture and Subsection 3.5.2 presents agent

interaction in JADE.

3.5.1 JADE

As noted above JADE is a software environment, fully implemented in the JAVA

programming language, directed at the development of MAS. As described in

Chapter 2 JADE is a FIPA-compliant middle-ware that enables development of

peer to peer applications based on the agent paradigm. JADE defines an agent

platform that comprises a set of containers, which may be distributed across a

network (as desired in the case of EMADS).

The goal of JADE is to simplify the development of MAS while at the same

time ensuring FIPA compliance through a comprehensive set of system services

and agents. While appearing as a single entity to the outside observer, a JADE

agent platform can be distributed over several hosts each running an instance

of the JADE runtime environment. A single instance of a JADE environment is

called a container which can “contain” several agents as shown in Figure 3.4. The

set of one or more “active” containers is collectively referred to as a platform (as

indicated by the dashed perimeter line in Figure 3.4). For a platform to be active

it must comprise at least one active container; further containers may be added

(as they become active) through a registration process with the initial (main)

container. A JADE platform includes a main container (the middle container in

Figure 3.4), in which is held a number of mandatory agent services. These are

the Agent Management System (AMS) and Directory Facilitator (DF) agents.

The AMS agent is used to control the life-cycles of other agents on the platform,

while the DF agent provides a lookup service by means of which agents can find

other agents. When an agent is created, upon entry into the system, it announces

itself to the DF agent after which it can be recognised and found by other agents.

Further “house-keeping” agents are the Remote Monitoring Agent (RMA) and

The Sniffer Agent (SA). The first keeps track of all registered agents, while the

second monitors all message communications between agents.

Within JADE, agents are identified by name and communicate using the FIPA

Agent Communication Language (ACL). More specifically, agents communicate

62

Figure 3.4: JADE Architecture (Bellifemine et al., 2007) [16]

by formulating and sending individual messages to each other and can have “con-

versations” using interaction protocols that range from query request protocols

to negotiation protocols. JADE supports three types of message communication

as follows:

1. Intra-container: ACL message communication between agents within the

same container using event dispatching.

2. Intra-platform: Message communication between agents in the same JADE

platform, but in different containers, founded on RMI.

3. Inter-platform: Message communication between agents in different plat-

forms uses the IIOP (Internet Inter-ORB Protocol).

. The latter is facilitated by a special Agent Communication Channel (ACC)

agent also located in the JADE platform main containers.

The JADE communication architecture is intended to offer (agent transpar-

ent) flexible and efficient messaging by choosing, on an “as needed” basis, the most

appropriate of the FIPA-compliant Message Transport Protocols (MTP) that are

activated at platform run time. Basically, each container has a table contain-

ing details of its local agents, called the Local-Agent Descriptor Table (LADT),

and also maintains a Global-Agent Descriptor Table (GADT), mapping every

agent into the RMI object reference of its container. The main container has an

(additional) Container Table (CT) which is the registry of the object-references

and transport addresses of all container nodes. Each agent is equipped with an

incoming message box and message polling can be blocking or non-blocking.

63

JADE uses LADTs and GADTs for its address caching technique so as to

avoid querying continuously the main-container for address information and thus

avoiding a potential system “bottleneck”. However, although the main-container

is not a “bottleneck”, it is still a single potential point of failure within the

platform. This is a recognised issue within the JADE user community. Research

has been reported seeks to address this issue, for example Bellifemine et al. (2007)

who described a mechanism whereby a JADE main-container replication service

was used to deploy a fault-tolerant JADE platform. However, most users simply

“live with the problem”; a strategy that has also been adopted with respect to

the EMADS framework.

FIPA specifies a set of standard interaction protocols, such as FIPA-requests

and FIPA queries. These protocols can be used to build agent “conversations”

(sequences of agent interactions). In JADE, agent tasks or agent intentions are

implemented through the use of behaviours (discussed further in Subsection 3.5.2

below).

Figure 3.5: ACL message Example

All agent communications are performed through message passing using the

FIPA ACL. Figure 3.5 shows an example of a FIPA ACL message. Each agent is

equipped with an incoming message box, and message polling can be blocking or

non-blocking with an optional time-out.

According to the structure of the JADE protocols, which are FIPA-compliant,

the sender sends a message and the receiver can subsequently reply by sending

either: (i) a not-understood or a refuse message indicating the inability to achieve

the rational effect of the communicative act; or (ii) an agree message indicating

64

the agreement to perform the communicative act. When the receiver performs

the action it must send an inform message. A failure message indicates that

the action was not successful. JADE provides ready-made classes for most of

the FIPA specified interaction protocols. Table 3.1 shows a list of FIPA pre-

defined message types, while Table 3.2 shows a list of FIPA pre-defined message

parameters.

3.5.2 JADE Agent Interaction

As noted above, in JADE, agent tasks or agent intentions are implemented

through the use of behaviours. Behaviours are logical execution threads that

can be composed in various ways to achieve complex execution patterns and can

be initialised, suspended and spawned at any given time. Behaviours are imple-

mented in terms of fields and methods contained in one or more sub-classes of

a parent Behaviour class provided with JADE. Any given JADE agent keeps a

task list that contains the active behaviours. JADE uses one thread per agent,

instead of one thread per behaviour, to limit the number of threads running on

the agent platform. A behaviour can release the execution control with the use of

blocking mechanisms, or it can permanently remove itself from the queue during

run time. Each behaviour performs its designated operation be executing the

method “action()”. The Behaviour class is the root class of the behaviour hierar-

chy that defines several core methods and sets the basis for behaviour scheduling

as it allows state transitions (starting, blocking and restarting).

3.6 EMADS Architecture as Implemented in
JADE

This section describes the implementation of the different facets of EMADS as

described in the foregoing. EMADS is implemented using the JADE MAS de-

velopment framework; the rationale for this was described in Section 3.2. Some

background details of JADE were presented in Subsection 3.5.1. Broadly speak-

ing JADE defines an agent platform that comprises a set of containers, which may

(as in the case of EMADS) be distributed across a network. This section com-

mences with an overview of the EMADS JADE implementation. More specific

details of the JADE implementation focusing on: Agent “Behaviours”, agent in-

65

Message Type: Meaning:
Accept Proposal The action of accepting a previously submitted proposal to

perform an action.
Agree The action of agreeing to perform some action, possibly in

the future.
Cancel The action of one agent informing another agent that the

first agent no longer has the intention that the second
agent performs some action.

Call for Proposal The action of calling for proposals to perform a given action.
Confirm The sender informs the receiver that a given proposition is

true, where the receiver is known to be uncertain about the
proposition.

Dis-confirm The sender informs the receiver that a given proposition is
false, where the receiver is known to believe, or believe it
likely that, the proposition is true.

Failure The action of telling another agent that an action was
attempted but the attempt failed.

Inform The sender informs the receiver that a given proposition is
true.

Inform If A macro action for the agent of the action to inform the
recipient whether or not a proposition is true.

Inform Ref A macro action for sender to inform the receiver the object
which corresponds to a descriptor, for example, a name.

Not Understood The sender of the act informs the receiver that it did not
understand the action the receiver just performed.

Request The sender requests the receiver to perform some action.
Request When The sender wants the receiver to perform some action when

some given proposition becomes true.
Propose The action of submitting a proposal to perform a certain

action, given certain preconditions.
Refuse The action of refusing to perform a given action, and

explaining the reason for the refusal.

Table 3.1: FIPA Communicative Acts (pre-defined message types)

66

Message Parameter: Meaning:
:sender Denotes the identity of the sender of the message,

i.e. the name of the agent of the communicative act.
:receiver Denotes the identity of the intended recipient of

the message. The recipient may be a single
agent name, or a tuple of agent names.

:content Denotes the content of the message; equivalently
denotes the object of the action.

:reply-with Introduces an expression which will be used by the
agent responding to this message to identify the
original message.

:envelope Denotes an expression that provides useful information
about the message as seen by the message transport
service.

:language Denotes the encoding scheme of the content of the
action.

:ontology Denotes the ontology which is used to give a meaning
to the symbols in the content expression.

:reply-by Denotes a time and/or date expression which indicates
a guideline on the latest time by which the sending
agent would like a reply.

:protocol Introduces an identifier which denotes the protocol
which the sending agent is employing. The protocol
serves to give additional context for the
interpretation of the message.

:conversation-id Introduces an expression which is used to identify
an ongoing sequence of communicative acts which
together form a conversation. A conversation may be
used by an agent to manage its communication
strategies and activities.

Table 3.2: FIPA pre-defined message parameters

67

teraction, mechanisms for cooperation, user request handling, and extendibility;

are all presented in the following subsections.

Within JADE, agents can have “conversations” using interaction protocols

similar to the schema described in Section 3.3.

In the case of the EMADS implementation, agents may be created and con-

tributed by any EMADS user/contributor. One of the containers, the main con-

tainer, holds the house-keeping agents and the Agent Management System (AMS)

(see Subsection 3.5.1). Both the main container and the remaining containers can

hold various DM agents. The EMADS main container should be located on the

EMADS host organisation site, while the other containers may be held at any

other sites worldwide.

Other than the house-keeping agents, held in the main container, EMADS

currently supports the four categories of agents identified in Section 3.2: user

agents, task agents, DM agents and data agents. Registration and facilitator

functionalities are provided by JADE house-keeping agents (AMS and DF agents

respectively). It should be noted that EMADS containers may contain both DM

agents and data agents simultaneously as well as user agents. DM agents and

data agents are persistent, i.e. they continue to exist indefinitely and are not

created for a specific DM exercise as in the case of task agents. Communication

between agents is facilitated by the EMADS network.

Figure 3.6 gives an overview of the implementation of EMADS using JADE.

The figure is divided into three parts: at the top are listed N user sites. In the

middle is the JADE platform holding the main container and N other containers.

At the bottom a sample collection of agents is included. The solid arrows indicate

a “belongs to” (or “is held by”) relationship, while the dotted arrows indicate a

“communicates with” relationship. So the data agent at the bottom right belongs

to container 1 which in turn belongs to User Site 1; and communicates with the

AMS agent and (in this example) a single DM agent.

The principal advantage of this JADE architecture is that it does not over-

load a single host machine, but distributes the processing load among multiple

machines. The results obtained can be correlated with one another in order to

achieve computationally efficient analysis at a distributed global level.

68

Figure 3.6: EMADS Architecture as Implemented in JADE

3.6.1 Mapping EMADS Protocols to JADE Behaviours

Many important design issues were considered while implementing EMADS within

the JADE framework; including:

1. ACL Messages (protocols, content).

2. Data structures.

3. Algorithms and software components.

The ACL messages were defined with respect to the JADE ACL Message class

fields [17] and the FIPA ACL Message Structure Specification [37].

The procedure to map the EMADS agent interaction protocols, as defined

in Section 3.3, to JADE behaviours was found to be relatively straightforward.

EMADS agent activities and protocols were translated to a number of predefined

JADE behaviours (defined in terms of methods contained in the JADE Behaviours

class) to either action methods or to simple methods of behaviours. Predefined

JADE behaviours that were found to be useful to EMADS were:

• OneShotBehaviour: Implements a task that runs once and terminates

immediately.

69

• CyclicBehaviour: Implements a task that is always active, and performs

the same operations each time it is scheduled.

• TickerBehaviour: Implements a task that periodically executes the same

operations.

• WakerBehaviour: Implements an atomic task that runs once after a cer-

tain amount of time, and then terminates.

When dealing with complex responsibilities, it was found to be better to split the

responsibilities into a combination of a number of simpler tasks and adopt one of

the composite behaviour classes provided by JADE. These composite behaviour

classes include:

• SequentialBehaviour: Implementing a composite task that schedules its

sub-tasks sequentially.

• FSMBehaviour: Implementing a composite task that schedules its sub-

tasks according to a Finite State Machine (FSM) model.

Composite behaviour can be nested and therefore there can be, for instance, a

subtask of a SequentialBehaviour that is in turn a FSMBehaviour and so on.

In particular, all complex responsibilities that can be modelled as Finite State

Machines can be effectively implemented as FSMBehaviour instances.

Furthermore, the behaviours that start their execution when a message ar-

rives, can receive this message either at the beginning of the action method (sim-

ple behaviours) or by spawning an additional behaviour whose purpose is the

continuous polling of the message box (complex behaviours). For behaviours

that start by a message from a Graphical User Interface (GUI), a GUI event re-

ceiver method should be implemented on the agent that starts the corresponding

behaviour. Finally, those behaviours that start by querying a data source, or by

a calculation, should be explicitly added by their upper level behaviour.

3.6.2 Agent Interactions

A user agent, as shown in Figure 3.6, runs on the user’s local host and is respon-

sible for accepting user input, launching the appropriate task agent that serves

70

the user request, and displaying the results of the distributed computation. In

this subsection the interaction mechanism between agents is reviewed.

The user expresses a task to be executed with a standard (GUI) interface

dialog mechanisms by clicking on active areas in the interface, and in some cases

by entering some thresholds attributes; the user does not need to specify which

agent or agents should perform the task. For instance, if the question “What is

the best classifier for my data?” is posed in the user interface, this request will

trigger (create and start) a task agent (in this case a classifier generation task

agent). The task agent requests the facilitator to match the action part of the

request to capabilities published by other agents. The request is then routed

by the task agent to appropriate agents (in this case, involving communication

among all classifier generator agents in the system) to execute the request. On

completion the results are sent back to the user agent for display.

The key elements of the operation of EMADS in the context of agent interac-

tion that should be noted are:

1. The mechanism whereby a collection of agents can be harnessed to identify

a “best solution”.

2. The process whereby new agents connect to the facilitator and register their

capability specifications.

3. The interpretation and execution of a task is a distributed process, with no

one agent defining the set of possible inputs to the system.

4. That a single request can produce cooperation and flexible communication

among many agents spread across multiple machines.

3.6.3 Mechanisms of Cooperation

Cooperation among the various EMADS agents is achieved via messages ex-

pressed in FIPA ACL and is normally structured around a three-stage process:

1. Service Registration: Where providers (agents who wish to provide ser-

vices) register their capability specifications with a facilitator.

2. Request Posting: Where user agents (requesters of services) construct

requests and relay them to a task agent.

71

3. Processing: Where the task agent coordinates the efforts of the appropri-

ate service providers (data agents and DM agents) to satisfy the request.

Stage 1 (service registration) is not necessarily immediately followed by stage 2

and 3; it is possible that a provider’s services may never be used. Note also that

the facilitator (the DF and AMS agents) maintains a knowledge base that records

the capabilities of the various EMADS agents, and uses this knowledge to assist

requesters and providers of services in making contact. When a service provider

(i.e. data agent or DM agent) is created, it makes a connection to the facilitator.

Upon connection, the new agent informs its parent facilitator of the services it

can provide. When the agent is needed, the facilitator sends its address to the

requester agent. An important element of the desired EMADS agent cooperation

model is the function of the task agent; this is therefore described in more detail

in the following subsection.

3.6.4 User Request Handling

A task agent is designed to handle a user request. This involves a three step

process:

1. Determination: Determination of whom (which specific agents) will exe-

cute a request.

2. Optimisation: Optimisation of the complete task, including parallelisa-

tion where appropriate.

3. Interpretation: Interpretation of the optimised task.

Thus determination (step 1) involves the selection of one or more agents to handle

each sub-task given a particular request. In doing this, the task agent uses the

facilitator’s knowledge of the capabilities of the available EMADS agents (and

possibly of other facilitators, in a multi-facilitator system). In processing a re-

quest, an agent can also make use of a variety of capabilities provided by other

agents. For example, an agent can request data from data agents that main-

tain data. The optimisation step results in a request whose interpretation will

require as few communication exchanges as possible, between the task agent and

the satisfying agents (typically DM agents and data agents), and can exploit the

72

parallel processing capabilities of the satisfying agents. Thus, in summary, the

interpretation of a task by a task agent involves: (i) the coordination of requests

directed at the satisfying agents, and (ii) assembling the responses into a coherent

whole, for return to the user agent.

3.7 Discussion

EMADS is a distributed, scalable, portable, extendible and adaptive agent-based

system that supports the launching of agents to perform DM activates. EMADS

is a realisation of the MADM ideas espoused in this thesis.

EMADS uses a facilitator approach for agent coordination. The role of the

facilitator is to help agents to locate each other and to communicate for their

mutual benefit based on a set of indices such as name, location, function, or

interest. The usefulness of this service allows the construction of a system that

is more flexible and adaptable than distributed frameworks. Individual agents

can be dynamically added to the community, extending the functionality that

the agent community can provide as a whole.

To better tackle the complexity of the scalability and efficiency issue, EMADS

addresses it at two levels, the system architecture level and the components level.

At the system architecture level, the focus is on the components of the system and

the overall architecture. Assuming that the data mining system comprises several

data sites, each with its own resources, databases, and agents, EMADS supports

a number of protocols that allow the data sites to collaborate efficiently with-

out hindering their progress. Employing efficient distributed protocols, however,

addresses the scalability problem only partially. The scalability of the system

depends greatly on the efficiency of its components (agents). The analysis of the

dependencies among the agents, and their efficiency with respect to DM tasks,

constitutes the other half of the scalability problem. EMADS addresses this issue

in some principled basis, specific to the considered DM task. For instance, in the

meta ARM problem (used to evaluate this issue and considered in detail in Chap-

ter 5), EMADS uses a pruning technique (discarding certain infrequent itemsets

early in the process) that is more efficient and scalable and at the same time

achieves comparable or better predictive performance results than fully grown

(un-pruned) techniques.

73

To simplify the issues of compatibility and data heterogeneity, in the case

of queries that require input from multiple sources, some global data schema is

assumed. This can be used to infer relationships between data sources, and unify

heterogeneous data representations into a common object data model.

To ensure adaptivity and extendibility, EMADS was designed using object-

oriented methods and was implemented independently of any particular machine

learning program or any specific DM technique. Adaptivity and extendibility

in EMADS were achieved using a system of wrappers. EMADS’s extendibility

capabilities provided the means to easily accept and incorporate new data sources

and new DM techniques (considered in detail in the following chapter).

As EMADS is implemented in Java, portability is inherent within EMADS.

3.8 Summary

This chapter discussed MADM, and consequently the EMADS framework, re-

quirements, architecture, design and implementation. EMADS was envisioned as

a collection of data sources scattered over a network, accessed by a group of agents

that allow a user to data mine those data sources without needing to know the

location of the supporting data, nor how the various agents interact. Additionally

the expectation is that EMADS will “grow” as individual users contribute further

data and DM algorithms.

In EMADS, as with most MAS, individual agents have different functionality;

the system currently comprises: data agents, user agents, task agents, DM agents

and a number of “house-keeping” agents. Users of EMADS may be data providers,

DM algorithm contributors or miners of data. The independence of EMADS

from any particular DM function, in conjunction with the object oriented design

adopted, ensures the system’s capability to incorporate and use new data mining

algorithms and tools.

In the following chapter a detailed description of the design and implementa-

tion of the extendibility feature of EMADS is provided.

74

Chapter 4

MADM Extendibility

As described in Chapter 1, one of the principal objectives of the research de-

scribed in this thesis is the provision of an extendible MADM framework, and

consequently the EMADS framework, that can easily accept new data sources

and new Data Mining (DM) techniques. This was also identified as a design re-

quirement for any generic MADM as identified in Chapter 3 (Subsection 3.1.1).

The issue of extendibility may be argued as follows:

1. The aim of any MADM framework is to facilitate DM using the MAS

paradigm.

2. The desired DM capability is not provided by the framework itself, this is

provided by the specific agents contributed by users of the framework.

3. However, the framework should provided mechanisms to support this con-

tribution of agents.

4. The challenge is that the extendibility mechanism, built into any MADM

framework, must anticipate the nature of any likely (and unlikely) DM

related agents that any end user may wish to contribute.

In general, extendibility can be defined as the ease with which software can

be modified to adapt to new requirements, or changes in existing requirements.

In the context of MADM extendibility is defined as the ease with which new data

sources and new DM techniques can be introduced to the framework. Extendibil-

ity also implies flexibility, and MADM should support the inclusion of existing

as well as future DM technology (otherwise the MADM will rapidly be rendered

75

inadequate and therefore obsolete). Essentially adding a new data source or DM

technique to a MADM should equate to the introduction of new agents.

This chapter provides a detailed discussion of extendibility in the context

of MADM and how this is achieved in EMADS. The chapter commences by

presenting an overview of mechanisms whereby extendibility can be achieved, in

the context of MADM, in Section 4.1. The extendibility mechanisms adopted for

EMADS are described in Section 4.2. The principal means for achieving this is

through the use of a system of wrappers. The wrapper concept is described in

Section 4.3. Section 4.4 discusses how, conceptually, the functionality of EMADS

can be extended by adding new task agents, DM algorithms and data sources

using the wrappers concept. The chapter also gives an overview, in Subsection

4.4.3, of the LUCS-KDD-DN software tool which was incorporated into the Data

Wrapper agent for possible data normalisation requirement as to avoid the issue

of data heterogeneity. The chapter ends with a summary in Section 4.5.

4.1 Extendibility

There are several reasons to ask for extendibility. For example, a piece of existing

software may do nearly the right thing, but needs some addition to meet a new

requirement. Or it may do the right thing, but needs to be wrapped up to

provide easier handling and integration into other software components. Or, as

in the EMADS case, the need to add new functionalities which make use of the

services already provided.

There are several methods in the literature available to provide extendibility,

including:

• Software Wrappers. Software wrapping refers to a re-engineering tech-

nique that surrounds a software component or tool with a new software

layer to hide the internal code and the logic of the component or tool and

to supply modern interfaces. One example of software wrapping is the reuse

of legacy software in modern applications, where the unwanted complexity

of the old software is hidden to the applications. Software wrapping re-

moves the mismatch between the interfaces exported by a legacy software

“artifact” and the interfaces required by the current software program [121].

76

The advantage of wrapping is that the added component becomes part of

the system without changing the content of the component. Using wrappers

can greatly reduce the amount of work required to build new functionalities.

• Libraries. Libraries are an alternative mechanism for providing a reusable

abstraction of code. However, unlike wrappers, a library leaves control in

the hands of the programmer. Since they do not provide any flow control

by themselves, complex interactions must be built from scratch [55].

• Plug-ins. Plug-ins are a widely-used approach to provide application ex-

tendibility [80]. For example, makers of popular software such as Adobe

and Mozilla provide plug-in architectures for their applications 1. Plug-ins

are required to interact with the host application through an API which

provides access to a subset of the hosts functionality. Unfortunately, this

usually means plug-ins can only provide restricted functionality to enhance

the host application.

• Dynamic scripting. Dynamic scripting to influence functionality is an-

other way to extend applications. For example, the Emacs framework [110]

allows users to define new functionality on the fly or even redefine existing

functionality. This ability to redefine existing behaviour makes the Emacs

extendibility approach much like that of plug-ins. Furthermore the core im-

plementation retains control over program flow. This approach is beneficial

because it can be interpreted at run-time instead of compile-time. However,

this carries the performance penalties associated with interpreted code.

4.2 Extendibility in EMADS

To ensure generality and extendibility, EMADS is designed using object-oriented

methods and is implemented independently of any particular machine learning

program or DM task. EMADS’s extendible capabilities provide the means to

easily incorporate any new DM algorithm/task or data sources.

The independence of EMADS from any particular DM method, in conjunction

with the object oriented design, ensure the framework’s capability to incorporate

1Johnny Stenback. Mozilla plug-ins. http://www.mozilla.org/projects/plugins/, and
Adobe plug-in component architecture (PICA). http://www.adobe.com/devnet

77

and use new DM algorithms/tasks or data sources. DM techniques and data

sources can be embedded within appropriate wrappers to be introduced into the

EMADS system and subsequently become an EMADS agent. Introducing a new

technique requires the use of the appropriate wrapper to encapsulate the algo-

rithm/technique within an object that adheres to the minimal wrapper interface.

In fact, most of the existing implemented DM algorithms have similar interfaces

already.

EMADS wrappers define the abstract methods of the parent classes and are

responsible for invoking the executables of these algorithms. This extendibility

characteristic makes EMADS an extendible DM facility. Evaluation of EMADS

has shown that, given an appropriate wrapper, existing data mining software can

be very easily packaged to become an EMADS agent. This feature of EMADS was

investigated using a number of different scenarios. These scenarios are discussed

in later chapters.

4.3 Wrappers

As EMADS agents are not intended as replacements for DM algorithms or tech-

niques, the agents must be able to interact with the algorithms or techniques.

Generally speaking there are at least three possible approaches to incorporating

DM software. The software could be rewritten to an appropriate form, but this is

a costly approach. Alternatively a separate piece of software could be employed

to act as an interpreter between the agent communication language and the na-

tive protocol of the DM software. Or thirdly, the wrapper technique could be

used to augment the legacy program with code that enables it to communicate

using the inter-agent language. As pointed out earlier, EMADS uses the latter

approach.

The term wrapper in the context of computer science has a number of conno-

tations (for example “driver wrappers”, “TCP wrappers” and the “Java wrapper”

classes). In the context of MAS the term is used to describe a mechanism (in-

troduced above) for allowing existing software systems to be incorporated into

a MAS. The wrapper “agentifies” an existing application by encapsulating its

implementation. The wrapper manages the states of the application, invoking

the application when necessary [41].

78

EMADS wrappers are used to “wrap” up DM artifacts so that they become

EMADS agents and can communicate with other agents within EMADS. As such

EMADS wrappers can be viewed as agents in their own right that are subsumed

once they have been integrated with data or tools to become DM agents. The

wrappers essentially provide an application interface to EMADS that has to be

implemented by the end user, although this has been designed to be a fairly

trivial operation. EMADS supports three broad categories of wrapper (as shown

in Figure 4.1):

Figure 4.1: EMADS Wrappers

1. Data wrapper.

2. DM wrapper.

3. Task wrapper.

The first is used to create data agents, the second to create DM agents, and

the third to create task agents. Figure 4.1 illustrates the broad “agentification”

process for the three different kinds of agent. The figure should be interpreted as

follows:

• Data wrapper usage is facilitated by a GUI and normally requires no pro-

gramming.

79

• DM wrapper usage requires extending and implementing a Java interface.

• Task wrapper usage requires extending and implementing a Java class.

Each wrapper is described in further detail in the following three subsections.

4.3.1 Data Wrappers

As pointed out early, the current version of EMADS assumes well-defined schemata

and datasets as to avoid issues of data heterogeneity. In the context of EMADS, a

data source is a single text file containing data records (one line per record); where

each record comprises a set of, typically comma or space separated, alpha-numeric

values that subscribe to some attribute schema. This is a fairly standard tabular

data format used throughout the KDD community. KDD has traditionally been

concerned with tabular data sets, reflecting the strong association between DM

and relational databases. DM algorithms have generally been developed with

respect only to tabular data. A tabular format offers the advantage of easy inte-

gration with other tabular data sets. Data wrappers are therefore used to “wrap”

a data source and consequently create a data agent. Conceptually the data wrap-

per provides the interface between the data source and the rest of the framework.

Broadly a data wrapper holds: (i) the location (file path) of a data source, so

that it can be accessed by other agents; and (ii) meta information about the data

(e.g. data type, number of classes). To assist end users, in the application of a

data wrapper to their data, a data wrapper GUI was developed. As described

previously, once created, the data agent announces itself to the EMADS facilita-

tor (broker) agent as a consequence of which it becomes available to all EMADS

users. In the case of non-standard data, then the user can use the wrapper to

have the function of reformatting the data to meet the requirements of EMADS

as described in Subsection 4.4.3.

4.3.2 DM Wrappers

DM wrappers are used to “wrap” up DM software algorithms and to create DM

agents. Generally the algorithms to be wrapped will be DM techniques of various

kinds (classifiers, clusters, association rule miners, etc.) Unlike data wrappers,

DM wrappers are not supported by a GUI facility to aid their usage; instead

80

EMADS developers are expected to encode the wrappers themselves. However,

the design of the wrapper that provides most of the required functionalities makes

the encoding to be a straight forward process.

4.3.3 Task Wrappers

It is intended that the framework will incorporate a substantial number of differ-

ent DM technique wrappers each defined by the nature of the desired I/O which

in turn will be informed by the nature of the generic DM tasks that it is desir-

able for EMADS to be able to perform. Thus, EMADS developers are expected

to encode most of the operations of the task wrappers themselves. Again, the

design of the task wrapper is such that encoding of operations is not a significant

process.

The realisation of these wrappers is described in further detail in the following

section.

4.4 Realisation

As noted in the introduction to this chapter, one of the most important features of

MADM, and consequently EMADS, and one of the central themes of this thesis,

is the simple extendibility of MADM, thus the ability for new agents to be added

to such systems in an effective and efficient manner. The rationale is that the

operation of a MADM should be independent of any particular DM method.

The inclusion of new data sources or DM techniques necessitates the addition

of new agents to the system. The process of adding new agents should therefore

be as simple as possible. This section considers the mechanisms whereby the

desired extendibility feature can be realised by considering each of the three

identified categories of agents (Task, Data and DM) that may be contributed

by users. It should be noted, before considering each category of agent in detail,

that extendibility is achieved using the wrapper concept introduced earlier. Recall

that, in isolation, wrappers can be viewed as agents in their own right which are

used to build data, task and DM agents. Once incorporated with DM software

or data the wrapper agents cease to exist in their own right as their functionality

merges into the newly created agents. This section also describes how these

mechanisms were incorporated into the EMADS.

81

TaskAgent abstract class to be extended by (new tasks) subclasses

public abstract class TaskAgent extends Agent {

// −−−−−−−−−−−−−−−−−− FIELDS −−−−−−−−−−−−−−−−−−−−−−
/∗∗ the l i s t o f r e l e v an t data agents ∗/
protected AID [] dataAgents ;
/∗∗ the l i s t o f i n t e r e s t e d mining agents ∗/
protected AID [] miningAgents ;
/∗∗ c r ea to r Agent∗/
protected St r ing userAgent ;

// −−−−−−−−−−−−−−−−−− METHODS −−−−−−−−−−−−−−−−−−−−−
// a b s t r a c t methods
protected abstract void setup () ;

.

.

// implemented methods
/∗∗ l ook up data agents in the ye l l ow pages ∗/
protected boolean getDataAgents

(S t r ing agentType , S t r ing dataType)
.
.

/∗∗ l ook up mining agents in the ye l l ow pages ∗/
protected boolean getMiningAgents

(S t r ing agentType , S t r ing taskType)
.
.

}//end o f c l a s s

Table 4.1: Prototype of the Task Agent Abstract Class

4.4.1 Task Agents

Task agents, that perform DM tasks, are introduced into EMADS using a pre-

defined abstract task agent class (Task Wrapper). This wrapper is facilitated by

the Object Orientation features provided by the Java programming language in

which EMADS agents are expected to be implemented. A prototype of the task

agent abstract class is shown in Table 4.1. Individual task agents are created by

implementing a specific sub-class of this abstract class. The abstract task class

defines a number of attributes (fields, methods and abstract method headers) that

82

are inherited by the user created sub-class used to define a task agent specific to

a DM task.

In effect the abstract class defines simple and minimal variables and methods

that all task agent sub-classes are expected to comply with and use. For instance,

as shown in in Table 4.1, the method “getDataAgents(agentType, dataType)” can

be used to get a list of data agents based on the passed parameters “agentType,

dataType”. Those parameters are used to specify the required data agents for

the task under consideration (e.g. classification data). The same can be done

to use the second method “getMiningAgents(agentType, taskType)” to get a list

of matching mining agents. The method “setup()” is declared as an abstract

and left to the user to implement according to their introduced task. As long

as the sub-class task agent conforms to the abstract class attributes, it can be

introduced and used immediately as part of the EMADS system.

4.4.2 DM Agents

The addition of DM agents to the EMADS system is facilitated by a second

purpose built wrapper. The DM wrapper is said to “wrap” a DM algorithm.

The DM wrapper is implemented in Java and is designed to be an extendible

component in its own right, since it can be changed or modified. As such the DM

wrapper agent is currently only compatible with DM software systems written in

Java (there is no facility to incorporate foreign code). The wrapper consists of a

class and an abstract interface. The Java class defines the wrapper and provides

the required code to be used to instantiate the DM algorithm class. The DM

wrapping process can be achieved in two steps as follows:

1. The instantiation code of the DM algorithm class in the wrapper class

must be modified to use the DM algorithm class name. A prototype of the

wrapper class is shown in Table 4.2.

2. The algorithm class must extend the abstract interface and implement its

abstract methods.

The wrapper abstract interface (the mining interface) that a DM algorithm

class must implement is shown in Table 4.3. First, the interface in which the

algorithm is encapsulated must have a method that can be called to start the

83

DM wrapper class to be updated by users to wrap a DM algorithm class

public class DMAgent extends Agent {
// −−−−−−−−−−−−−−−−−− FIELDS −−−−−−−−−−−−−−−−−−−−−−−−
/∗∗ the l i s t o f r e l e v an t data agent (s) ∗/
private AID [] dataAgents ;

.
// −−−−−−−−−−−−−−−−−− METHODS −−−−−−−−−−−−−−−−−−−−−−−−
//∗∗ put agent i n i t i a l i s a t i o n here ∗/
protected void setup () {
//∗∗ ge t the s t a r t−up arguments ∗/
Object [] a rgs = getArguments () ;
//∗∗ r e g i s t e r the s e r v i c e in the ye l l ow pages ∗/
DFAgentDescription dfd = new DFAgentDescription () ;
.
System . out . p r i n t l n

(‘ ‘ Mining−agent : ”+getAID () . getLocalName ()+ ‘ ‘ i s ready . ”) ;

}//end o f se tup
//∗∗ agent c lean−up opera t i ons ∗/
protected void takeDown () {
//∗∗ de−r e g i s t e r from the ye l l ow pages ∗/
.
//∗∗ p r i n t ou t a d i sm i s s a l message ∗/
System . out . p r i n t l n
(‘ ‘DM−agent ”+getAID () . getName ()+ ‘ ‘ t e rminat ing . ”) ;
}//end o f c leanup
/∗∗ l ook up Data agents in the ye l l ow pages ∗∗/
protected void getDataAgents () {
//∗∗ s p e c i f y agent i n f o . ∗/
DFAgentDescription template = new DFAgentDescription () ;
S e r v i c eDe s c r i p t i on sd = new Se rv i c eDe s c r i p t i on () ;
.
}//end o f method
/∗∗ beg in mining method ∗/
protected void s tar tMin ing () {
//∗∗ user update i s needed in here ∗/
// s e t d e f a u l t v a l u e s ; e . g . suppor t and con f idence t h r e s h o l d s
//∗∗ c r ea t e in s tance o f the mining a l gor i thm c l a s s ∗/
<Algorithm Class Name> instanceName =

new <Algorithm Class Name >() ;
//∗∗ pass arguments to the c l a s s in s tance ∗/
instanceName . setArguments (args) ;
//∗∗ pass the data f i l e or the data l o c a t i o n ∗/
instanceName . setData (getData (dataAgent)) ;
//∗∗ s t a r t the mining proces s ∗/
instanceName . s tar tMin ing () ;
}//end o f method
}//end o f c l a s s

Table 4.2: Prototype of the DM Agent Wrapper Class

84

algorithm. This is implemented with the abstract “startMining()” method; such

a method must therefore be included in any DM algorithm to be wrapped. When

called by the DM agent, this method should start the algorithm operating over the

data. In effect the DM agent can be considered to hold a data mining algorithm

class instance.

Mining abstract interface to be implemented by a DM algorithm class
for the DM wrapper.

public interface MiningInt {

// −−−−−−−−−−−−−−−−−− ABSTRACT METHODS −−−−−−−−−−−−−−
// a b s t r a c t methods
/∗∗ can be used to pass a l i s t o f va l u e s (e . g . suppor t
and con f idence) ∗/

protected void setArguments (S t r ing args []) ;
/∗∗ s t a r t the mining proces s ∗/
boolean s tar tMin ing () ;
/∗∗ s top the mining proces s ∗/
boolean stopMining () ;
/∗∗ s e t the resource data ∗/
boolean se tResource (short [] [] data) ;
/∗∗ s e t the resource data ∗/
boolean se tResource (S t r ing f i l ePa t h) ;
/∗∗ re turn the r e s u l t as a s e t o f r u l e s ∗/
RuleNode getRules () ;
/∗∗ ge t the r e s u l t as a doub le va lue ∗/
double getResu l t () ;
}//end o f i n t e r f a c e

Table 4.3: DM Abstract Interface

Because the DM algorithm must have access directly to data, it must be able

to have direct visibility to it. It maintains this visibility by storing a pointer to

the data as a local variable that is set through a “setResource” method. The

“setResource” method is also an abstract method, and is called by the DM agent

to let the mining algorithm know where the dataset it will be operating on is

located. This interface is one of the components required when the system is ex-

tended and new DM algorithms are added. Because of this, special consideration

has been directed at making it as “extendible” as possible. The DM algorithm

85

must be able to return the result of the DM for which it is responsible. In order

to ensure this, the abstract methods “getResult()” and “getRules()” are included

to obtain the desired results from the DM algorithm (as a single value (e.g. classi-

fier accuracy), or as a list of rules). Because each algorithm may process its data

differently or not at all, the “getResult()” method enforces the result retrieval.

Figure 4.2: Data Agent GUI

The fact that the mining interface is an abstract interface allows any methods

required in the implementation of a specific mining algorithm to be added. It

also ensures that the DM agent can start the algorithm running, no matter what

specific implementation is used. It also provides a great deal of flexibility. An

example on using the DM wrapper is presented in Chapter 7, Section 7.4.

4.4.3 Data Agents

Using the predefined GUI data wrapper described in Subsection 4.3.1, incorpo-

rating new data agents into EMADS is made simple. Its usage is facilitated by

the use of a Java GUI only, and no programming is required for data that is in

an appropriate format. A single data agent controls each separate data source.

Thus, in order to bring a new data source into the system, a new data agent must

86

be instantiated with the required components. This is achieved using a purpose

built software wrapper, implemented in Java and interfaced using a GUI, to fa-

cilitate the addition of new data agents by EMADS users. The user must use

the data agent wrapper GUI (Figure 4.2) to refer to the data source location (file

path) and provide meta information describing the data (e.g. data type, number

of classes etc.). Then the wrapper creates a new data agent that will represent

the data source as it is introduced to the system.

4.4.3.1 Data Discretisation/Normalisation

If the data requires normalisation before introducing it to EMADS, the user can

use the wrapper GUI to launch the LUCS-KDD-DN (Liverpool University Com-

puter Science - Knowledge Discovery in Data - Discretisation/Normalisation) tool

(Figure 4.3) that has been integrated into the data wrapper. The LUCS-KDD-

DN software tool, or DN tool for short, had been developed as a standalone Java

application to convert data files available in the UCI data repository [18] into a

binary format suitable for use with Association Rule Mining (ARM) applications.

The DN tool can equally well be used to convert data files obtained from other

sources.

Discretisation and normalisation can be defined as follows: Discretisation is

the process of converting the range of possible values associated with a continuous

data item (e.g. a double precision number) into a number of sub-ranges each

identified by a unique integer label; and converting all the values associated with

instances of this data item to the corresponding integer labels. Normalisation is

the process of converting values associated with nominal data items so that they

correspond to unique integer labels.

The DN tool is integrated within the data agent for data discretisation/ nor-

malisation purposes to assure EMADS data compatibility. It is used as to avoid

issues of data heterogeneity all data was assumed to correspond to a common

global schema.

4.5 Summary

This chapter discussed the EMADS extendibility requirements, architecture, de-

sign and implementation. The expectation is that EMADS will “grow” as in-

87

Figure 4.3: Data Normalisation GUI

dividual users contribute data and DM algorithms. The incorporation of data

and DM techniques is facilitated by a system of wrappers which allows for easy

extendibility of the system.

The independence of EMADS from any particular DM function, in conjunc-

tion with the object oriented design adopted, ensures the system’s capability to

incorporate and use new DM algorithms and tasks. As discussed above, intro-

ducing a new technique requires the sub-classing of the appropriate abstract class

or the implementation of an abstract interface and the encapsulation of the tech-

nique within an object that adheres to the minimal interface. This extendibility

characteristic makes EMADS an extendible DM facility, and allows developers to

employ their pre-implemented programs within EMADS agents.

The following three chapters demonstrate the application of EMADS and

EMADS wrappers with respect to various DM scenarios.

88

Chapter 5

Frequent Set Meta Mining: Meta
ARM

In this, and the following two chapters, a sequence of MADM scenarios is con-

sidered. Each is selected so as to support the investigation of a sub-set of the

MADM issues identified in Chapter 1.

In this chapter a meta ARM scenario is considered. The scenario was selected,

as a first scenario, because it represented an interesting data mining application

which would benefit from a MAS implementation but also leant itself to (rela-

tively straight forward) resolution using a MADM approach. At the same time

the scenario presented an opportunity to investigate some potential solutions

to the issues identified in Chapter 1. More specifically the scenario facilitated

investigation of MADM issues related to: scalability, efficiency, portability, ex-

tendibility, privacy protection and agent communication and interaction. The

scenario also provided a first opportunity to incorporate suggested mechanisms

to address these issues into EMADS, and to evaluate their effectiveness.

The remainder of this chapter is organised as follows. The motivation for the

scenario is explored further in Section 5.1. In Section 5.2 some background and

related work is presented and discussed. A brief note on the data structures used

by the meta ARM algorithms is then presented in Section 5.3. Five different

agent based approaches to meta ARM are then described in Section 5.4. A meta

ARM model in the context of EMADS is presented in Section 5.5. A note on

the datasets used is given on Section 5.6. Extendibility consideration is described

in Section 5.7. This is followed, in Section 5.8, by an analysis of a sequence of

experimental results used to evaluate the approaches introduced in Section 5.4.

89

Discussion of how the identified research issues are addressed by this scenario is

presented in Section 5.9. Finally a summary is presented in Section 5.10.

5.1 Motivation

The high level MADM problem addressed in this chapter is that of Meta Data

Mining (meta DM), a process for combining local DM results into a global result.

The main objective, in the context of MADM (and by extension EMADS), is

to take advantage of the inherent parallelism and distributed nature of MADM

to design and implement a powerful and practical distributed DM system. The

scenario assumes several data sites interconnected through an intranet or internet;

the goal is then to provide the means for data owners to utilise their own local

data and, at the same time, benefit from the data that is available at other

data sites without transferring or directly accessing that data (thus maintaining

privacy and security). This is realised in the context of EMADS, by DM agents

that execute at remote data sites and generate DM models that can subsequently

be transferred and merged into one global model.

The standard, centralised, approach to data mining is to collate data into a

single location. In this central location, a model is then computed from the data.

Although this process is easy to understand, and the data mining software design

is straightforward, there are a number of drawbacks to this centralised approach:

• The movement of data from the point(s) where it is collected to a central

location requires bandwidth and takes time.

• There are substantial performance requirements at the central site: most

data mining algorithms must access all of the data at least once, and often in

multiple passes, and there is little exploitable locality in the access pattern.

The performance of most systems is limited by the memory hierarchy, so the

need to fetch records repeatedly from the bottom of the memory hierarchy

is a substantial performance issue.

• All of the data is visible at the central location, so there is no way for some

or all of the data-collection locations to limit access to their local data, and

consequently preserve the privacy of the data. In some situations, it may

90

not be possible to gather the data centrally because of legal restrictions

arising from privacy concerns, so some forms of analysis cannot be done at

all in a centralised manner.

• In some situations, data may be inherently distributed and cannot be

merged into a single database for a variety of reasons including security,

fault tolerance, legal constraints, and the maintenance of a “competitive

edge”.

With respect to the last point there are many “real life” application domains

where data is naturally collected via multiple channels, in different physical and

geographically separated locations. Examples include:

• Businesses that collect information about their customers via physical stores,

websites, and call centres, which are typically located in different places,

perhaps even in different countries.

• Organisations that are built around networks and collect data in a dis-

tributed way such as mobile-phone companies that get data about calls

made via the tower or cell in which they were initiated.

• Sensor networks that have devices that may be of different kinds and that

are placed in many different locations. Each sensor only sees a small part of

the total data that is collected; and thus their outputs have to be integrated

to give a coherent, global picture. Akyildiz et al. [6] provide a survey on

the requirements and characteristics of such sensor networks.

In such cases, it will not be possible to examine all of the data at a central pro-

cessing site to compute a single global model. As dataset sizes grow and models

become more complex, it is natural to consider replacing centralised data mining

by parallel and distributed techniques, as a way of reducing costs/overheads.

The specific meta DM technique considered in this chapter is that of meta

Association Rule Mining (meta ARM). The term meta ARM is used to describe

the process of combining the obtained results of M applications of an ARM

activity. The problem is defined as follows: an ARM algorithm (or a number of

compatible algorithms) is applied to M raw data sets producing M collections

of Frequent Item Sets (FISs). Note that it is assumed that each raw data set

91

conforms to some globally agreed attribute schema, although each local schema

will typically comprise some subset of this global schema. The objective is then

to merge the different sets of results into a single meta set of Frequent Item Sets

(FISs) with the aim of generating a set of Association Rules (ARs).

The most significant issue when combining groups of previously identified FISs

is that wherever an itemset is frequent in a data source A, but not in a data source

B, a check for any contribution from data source B is required (so as to obtain a

global support count). This will usually demand a revisit to B to obtain counts

not initially included in the FISs counted at B. The challenge is thus to combine

the results from M different data sources in the most computationally efficient

manner. This in turn is influenced predominantly by the number and magnitude

(in terms of data size) of returns to the source data that may be required.

There are a number of alternative mechanisms whereby ARM results can be

combined to satisfy the requirements of meta ARM (in the context of MADM). To

fully investigate some of these alternatives, five different meta ARM approaches

(including a bench mark approach) were considered. The approaches were re-

alised using variations of the Apriori-TFP, set enumeration tree based, ARM

algorithm; which, using EMADS, were wrapped into a DM agent. However, the

proposed approaches may be implemented using alternative algorithms such as

FP-growth; and other algorithms that use set enumeration tree style data struc-

tures, the support-confidence framework and an Apriori methodology for the

processing/building of trees. The Apriori-TFP and FP-growth algorithms were

described in detail in Chapter 2, Subsection 2.1.1.1. Whatever the case the meta

ARM results reported in this chapter are generally applicable.

Broadly the meta DM scenario is an exemplar of more generic distributed/

parallel data mining. Issues relating to MADM (and EMADS) with respect to

parallel and distributed data mining are considered in further detail in the fol-

lowing chapter.

In the context of MADM the meta ARM scenario allowed the investigation of

a number of the MADM issues identified in Chapter 1, namely:

1. Scalability: Scalability and computational efficiency (see below) are both

well established critical issues in DM [59]. In the context of meta ARM

the MADM framework is expected to effectively support the addition of

92

further data agents (and DM agents) without adversely affecting the per-

formance. Thus the proposed MADM meta ARM solution should continue

to operate effectively, and without a substantial or discernible reduction in

performance, as the number of agents increases. Scalability might be taken

to demand that performance (execution time) scales linearly as the volume

of data increases. DM algorithms, however, tend to scale polynomially or

even exponentially (which is the main performance issue for them). So, in

a meta ARM algorithm, scalability is defined to mean a performance not

much worse than a single algorithm applied to the merged data.

2. Efficiency: The main issue here is the effective use of available agents to

avoid use of irrelevant data, and the mechanism for moving results between

agents. The latter may entail a significant computational overhead.

3. Portability: The MADM is expected to operate across multiple environ-

ments with different hardware and software configuration. In the context

of meta ARM, this also includes the ability to combine disparate models.

4. Extendibility: Extendibility is essentially concerned with the capability of

MADM to incorporate and use new algorithms and data sources. In other

words the ease with which additional agents can be added/incorporated

into the EMADS solution to the meta ARM problem.

5. Privacy protection: The ability of MADM to protect and preserve the

privacy of data is a significant issue for meta ARM (and meta DM in gen-

eral). In the context of meta ARM the solution should provide for the

effective mining of the data without compromising the source of the data.

6. Agent communication and interaction: The ability of the agents to: (i)

communicate with each other using an expressive communication language;

(ii) work together cooperatively to accomplish complex goals; (iii) act on

their own initiative; and (iv) use local information and knowledge to manage

local resources and handle requests from peer agents; are all significant with

respect to any MADM scenario.

93

5.2 Background and Previous Work

The meta ARM problem (as outlined in the above introduction) has similari-

ties, and in some cases overlap, with Incremental ARM (I-ARM) and distributed

ARM. The distinction between I-ARM, as first proposed by Agrawal and Psaila

[3], and meta ARM is that in the case of I-ARM, there are typically only two input

data sets: (i) a large set of previously identified FISs D and (ii) a much smaller

set of itemsets d to be processed in order to update D. In the case of meta ARM

there can be any number of sets of input data which can be of any size. Further-

more, in this case each contributing set has already been processed to identify

local FISs. I-ARM algorithms typically operate using a relative support threshold

[71, 74, 120] as opposed to an absolute threshold, (i.e. a threshold expressed as a

percentage rather than an absolute value); the use of relative thresholds has been

adopted in the work described here. I-ARM algorithms are therefore supported

by the observation that for an itemset to be globally frequent it must be locally

frequent in at least one set of results regardless of the relative number of records

at individual sources. When undertaking I-ARM four comparison options can be

identified according to whether a given itemset i is: (i) frequent in d, and/or (ii)

frequent in D; these are itemised in Table 5.1.

Frequent in d Not frequent in d
Increment total i may be globally

Frequent in count for i supported,
D (retained and recalculate increment total
itemsets) support count for i

and recalculate support
May be globally supported,

NotFrequent need to obtain total support Do nothing
in D count and recalculate support

(Emerging itemset)

Table 5.1: I-ARM itemset comparison options (relative support)

The key issue in I-ARM is that when a set that is not frequent in D is found

to be frequent in d, a (costly) re-examination of D is required to obtain the

necessary support-count. From the literature, three fundamental approaches to

this problem can be identified. These may be categorised as follows:

94

1. Maintain the itemsets on the negative border and hope that this includes

all those itemsets that may become frequent. See for example ULI [117].

The negative border itemsets are the immediate super-sets of the maximal

itemsets (where maximal itemsets are frequent item sets all of whose super-

sets are infrequent).

2. Make use of a second (lower) support threshold above which items are

retained (similar idea to negative border). Examples include AFPIM [71]

and EFPIM [74].

3. Acknowledge that, even if either or both of the above strategies are em-

ployed; it is likely, at some time or other, that counts for some itemsets

will have to recomputed and consequently a data structure has to be main-

tained that: (i) stores all support counts, (ii) requires less space than the

original structure and (iii) facilitates fast look-up, to enable updating. See

for example [72].

Using a reduced support threshold and/or retaining the negative border results

in a significant additional storage overhead. For example if there is a given data

set with 100 attributes (n = 100) where all the 1 and 2 item sets are frequent but

none of the other itemsets are frequent, the negative border will comprise 161700

item sets (n(n−1)(n−2)
3!) compared to 4970 supported item sets (n + n(n−1)

2!). The

same issues associated with I-ARM will arise, and similar strategies will need to

be employed, when meta ARM is considered.

The distinction between distributed data mining (DDM) and MADM is one of

control. DDM assumes some central control that allows for the global partition-

ing of either the raw data (data distribution) or the ARM task (task distribution),

amongst a fixed number of processors. MADM, and by extension the meta ARM

mining described here, does not require this centralised control, instead the dif-

ferent sets of results are produced in an autonomous manner. MADM also offers

the significant advantage that the privacy and security of raw data, belonging to

individual agents, is preserved; an advantage that is desirable for both commercial

and legal reasons.

Other research on meta mining includes work on meta classification. Meta

classification, also sometimes referred to as meta learning, is a technique for

95

generating a global classifier from M distributed data sources by first computing

M base classifiers which are then collated to build a single meta classifier [95] in

much the same way that ARM results are collated with respect to the meta ARM

scenario.

Bagging [22], boosting [38] and dagging [118] are also well known re-sampling

ensemble methods that generate and combine a diversity of classifiers using the

same learning algorithm for the base-classifiers. Boosting algorithms are consid-

ered stronger than bagging and dagging on noise-free data [38].

The term merge mining is used in Aref et al. [9] to describe a generalised form

of incremental ARM that has some conceptual similarities to the ideas behind

meta ARM as described in this chapter. However Aref et al. define merge mining

in the context of time series analysis where additional data is to be merged with

existing data as it becomes available.

5.3 Note on P- and T-Trees

ARM algorithms require some sort of data structure to store itemsets as they are

being processed. The original Apriori algorithm [5] used hash trees. The well

known FP-growth [49] algorithm used a bespoke data structure called the FP-

tree [50]. The meta ARM algorithms described in this chapter makes extensive

use of two tree data structures, namely P-trees and T-trees. The nature of these

structures is described in detail in [31, 45]; however, for completeness a brief

overview is presented here.

The P-tree (Partial Support Tree) is a set enumeration tree style data struc-

ture with two important differences: (i) more than one item may be stored at any

individual node, and (ii) the tree includes partial support counts. The structure

is used to store a compressed version of the raw data set with partial support

counts obtained during the reading of the input data. The best way of describing

the P-tree is through an example such as that given in Figure 5.1. In the figure

the data set given on the left is stored in the P-tree on the right. The partial

count stored at each node is the count of all sets for which the node string is a

leading substring. The advantages offered by the P-tree are of particular benefit

if the raw data set contains many common leading sub-strings (prefixes). The

96

number of such sub-strings can be increased if the data is ordered according to

the frequency of the 1-itemsets contained in the raw data. The likelihood of

common leading sub-strings also increases with the number of records in the raw

data. The P-tree can be constructed very efficiently in a single database pass,

and the partial counting reduces the effort required finally to produce support-

counts. This is especially useful if it becomes necessary to revisit the data to get

support-counts for items not previously found to be frequent (i.e. in the I-ARM

and meta ARM cases).

Figure 5.1: P-tree Example

The T-tree (Total support tree) is a “reverse” set enumeration tree structure

that inter-leaves node records with arrays. It is used to store FISs, in a compressed

form (which maybe identified by processing the P-tree). An example, generated

from the P-tree given in Figure 5.1, is presented in Figure 5.2. In the figure

the circles indicate node records, and the number indicates the support for the

record.

From Figure 5.2 it can be seen that the top level comprises an array of ref-

erences to node records that hold the support count and references to the next

level (providing such a level exists). Indexes equate to item (attribute) numbers,

although for ease of understanding in the figure letters have been used instead

of numbers. The structure can be thought of as a “reverse” set enumeration

tree because child nodes only contain itemsets that are lexicographically before

the parent itemsets. This offers the advantage that less array storage is required

(especially if the data is ordered according to the frequency of individual items).

With respect to the work described here the T-tree is generated using the

Apriori-TFP algorithm. The Apriori-TFP algorithm is essentially an Apriori

97

Figure 5.2: T-tree Example (support = 35%)

style algorithm that proceeds in a level by level manner. At each level the P-tree

is processed to generate appropriate support counts. Note that on completion

of the Apriori-TFP algorithm the T-tree contains details of all the supported

itemsets, in a manner that provides for fast look up during AR generation, but

no information about unsupported sets (other than that they are not supported).

Referring to Figure 5.2 unsupported sets are indicated by a null reference.

5.4 Proposed Meta ARM Algorithms

In this section a number of meta ARM MADM algorithms are described, an

analysis of which is presented in Section 5.8. All algorithms are incorporated into

one EMADS task agent. A data agent maintains the data set in either its raw

form or a compressed form. For the experiments reported in this chapter the data

has been stored in a compressed form using a P-tree as described above.

The first algorithm developed was a bench mark algorithm, against which the

later developed meta ARM algorithms were to be compared. This bench mark

algorithm is described in Subsection 5.4.1. Four further meta ARM MADM

algorithms were then wrapped and constructed into meta ARM task agent: (i)

Apriori, (ii) Brute Force, (iii) Hybrid 1 and (iv) Hybrid 2. These are described in

Subsections 5.4.1, 5.4.2, 5.4.3, and 5.4.4. For the meta ARM scenario presented

in this chapter, each data agent has a DM agent temporarily associated with

it, which would produce a set of frequent sets using the Apriori-TFP algorithm

98

with the results stored in a T-tree. These T-trees would then be merged in some

manner using further task agents.

Each of the meta ARM MADM algorithms described below makes use of

return to data (RTD) lists, one per data agent, that holds itemsets whose support

was not included in the current T-tree and for which the count was to be obtained

by a return to the raw data. RTD lists comprise zero, one or more tuples of the

form < I, sup >, where I is an item set for which a count is required and sup is its

support count. RTD lists are constructed as a meta ARM algorithm progresses.

During RTD list construction the sup value will be 0; it is not until the RTD list

is processed that actual values are assigned to sup by the appropriate task agent

as detailed in Figure 5.3. The processing of RTD lists may occur during, and/or

at the end of, the meta ARM process depending on the nature of the algorithm.

5.4.1 Bench Mark Algorithm

Algorithm 5.1: Bench Mark Meta ARM

1: k = 1;
2: Generate candidate k -itemsets
3: Start Loop
4: if (there is no candidate k -itemsets) break
5: else
6: for all N data sets (data agents) get counts for k -itemsets
7: Prune k -itemsets according to support threshold
8: k ⇐ k+1
9: Generate k -itemsets
10: end Loop

Table 5.2: Bench Mark Meta ARM Algorithm

For meta ARM to make sense the process of merging the distinct sets of dis-

covered FISs must be faster than starting from the beginning. The first algorithm

developed was therefore a bench mark algorithm. This was essentially an Apri-

ori style algorithm (as described in Table 5.2) that used a T-tree as a storage

structure to support the generation process. The algorithm involved no merging

but processed the entire dataset in a single process. To be worth while any meta

ARM algorithm must outperform the bench mark algorithm.

99

5.4.2 Brute Force Meta ARM Algorithm

The philosophy behind the Brute Force meta MADM ARM algorithm was that

the collection of T-trees constructed independently at the separate data sources

are simply fused together adding items to the appropriate RTD lists as required.

The algorithm comprises three phases: (i) merge, (ii) inclusion of additional

counts and (iii) final prune. The merge phase commences by selecting one of

the T-trees, held at one of the DM agents, as the “start” merged T-tree (from a

computational perspective it is desirable that this is the largest T-tree).

Itemset i Frequent in Not frequent
T-tree M in T-tree M

Update support Add labels for
count for i in all supported

Frequent in merged T-tree nodes in
merged T-tree sofar and proceed merged T-tree
sofar to child branch branch, starting

in merged with current
T-tree sofar node, to

RTD list M
Process current branch in
T-tree M , starting with

Not Frequent current node, Do nothing
in merged adding nodes with
T-tree sofar their support to the merged

T-tree sofar and recording
labels for each to RTD lists

1 to M − 1

Table 5.3: Brute Force Meta ARM itemset comparison options

Each additional T-tree is then combined with the merged T-tree “sofar” in

turn. The combining is undertaken by comparing each element in the top level

of the merged T-tree sofar with the corresponding element in the “current” T-

tree and then updating or extending the merged T-tree sofar and/or adding to

the appropriate RTD lists as indicated in Table 5.3 (remember that the support

threshold is relative). Note the similarity between Table 5.3 and the I-ARM

itemset comparison options presented in Table 5.1. It is also worth noting that

the algorithm only proceeds to the next branch in the merged T-tree sofar if an

element represents a supported node in both the merged and current T-trees. At

100

the end of the merge phase the RTD lists are processed and any additional counts

included (the inclusion of additional counts phase). The final merged T-tree is

then pruned in phase three to remove any unsupported frequent sets according

to the user supplied support threshold (expressed as a percentage of the total

number of records under consideration).

5.4.3 Apriori Meta ARM Algorithm

In the Brute Force approach the RTD lists are not processed until the end of

the merge phase. This means that many itemsets may be included in the merged

T-tree sofar and/or the RTD lists that are in fact not supported. The objective of

the Apriori meta ARM algorithm is to identify such unsupported itemsets much

earlier on in the process. The algorithm proceeds in a similar manner to the

standard Apriori algorithm (Table 5.2) as shown in Table 5.4. Note that items

are added to the RTD list for data source M if a candidate itemset is not included

in T-tree M .

Algorithm 5.2: Apriori Meta ARM

1: k = 1;
2: Generate candidate k -itemsets
3: Start Loop
4: if (there is no candidate k -itemsets) break
5: else
6: Add supports for level K from M T-trees or add to RTD list
7: Inclusion of additional counts
8: Prune k -itemsets according to support threshold
9: k ⇐ k+1
10: Generate k -itemsets
11: end Loop

Table 5.4: Apriori Meta ARM Algorithm

5.4.4 Hybrid Meta ARM Algorithms 1 and 2

The Apriori meta ARM algorithm requires fewer itemsets to be included in the

RTD list than in the case of the Brute Force meta ARM algorithm (as will be

101

demonstrated in Section 5.8). However, the Apriori approach requires the RTD

lists to be processed at the end of each level generation, while in the case of the

Brute Force approach this is only done once. A hybrid approach, that combines

the advantages offered by both the Brute Force and Apriori meta ARM algorithms

therefore suggests itself. Experiments were conducted using two different version

of the hybrid approach.

The Hybrid 1 algorithm commences by generating the top level of the merged

T-tree in the Apriori manner described above (including processing of the RTD

list); and then adding the appropriate branches, according to which top level

nodes are supported, using a Brute Force approach.

The Hybrid 2 algorithm commences by generating the top two levels of the

merged T-tree, instead of only the first level, as in the Hybrid 1 approach. Addi-

tional support counts are obtained by processing the RTD lists. The remaining

branches are added to the supported level 2-nodes in the merged T-tree sofar

(again) using the Brute Force mechanism. The philosophy behind the hybrid 2

algorithm was that all the one-item itemsets might be expected to be supported

and included in the component T-trees, therefore the algorithm might as well

commence by building the top two layers of the merged T-tree.

5.5 Meta ARM EMADS Model

In EMADS, agents are responsible for accessing local data sources and for col-

laborative data analysis. As described in Chapter 3, EMADS initially starts up

with the two central JADE agents. When a data agent wishes to make its data

available for possible data mining tasks, it must publish its name and description

with the Directory Facilitator (DF) agent.

In the context of meta ARM each local DM agent’s basic function is to gen-

erate “local” item sets (a local model) from local data (provided by a local data

agent) and provide this to the task agent in order to generate the complete global

set of FISs (global model). Each mining agent could apply a different data mining

algorithm to produce its local frequent item sets T-tree. The T-trees from each

local data mining agent are collected by the task agent, and used as input to

Meta ARM algorithms for generating global frequent item sets (merged T-tree)

making use of return to data (RTD) lists, at least one per data set, to contain

102

lists of itemsets whose support was not included in the current T-tree and for

which the count is to be obtained by a return to the raw data.

Figure 5.3: Meta ARM Model

Figure 5.3 shows the meta ARM EMADS model. The model consists of M

data sources distributed across a network. Each data source has a data agent

and a “local” DM agent associated with it. The merging is then done by an

appropriately defined task agent. The figure also shows the house-keeping JADE

agents (AMS and DF) through which agents can find each other. In Figure 5.3

data flow and RTD requests between agents are indicated. Local DM agents,

operating under decentralised control and an autonomous manner, apply some

ARM algorithm to their raw data sets producing M collections of frequent item

sets (T-trees). Then a task agent merges the different sets of results (merged T-

trees) into a single meta set of FISs making use of return to data (RTD) lists, at

least one per data set, to contain lists of itemsets whose support was not included

in the current T-tree and for which the count is to be obtained by a return to the

raw data with the aim of generating a set of Association Rules (ARs).

103

5.6 Note on Datasets

The datasets used in ARM are usually presented as sequences of records compris-

ing item (column) numbers, which in turn represent attributes of the dataset. The

presence of a column number in a record indicates that the associated attribute

exists for that record. This form of dataset is exemplified by “market basket

analysis” scenarios, where records represent customer “basket-fulls” of shopping

purchased during a single transaction and the columns/attributes, items or groups

of items available for purchase (see Chapter 2, Subsection 2.1.1.2 for an example

on market basket analysis). Although ARM is directed at binary-valued attribute

sets, it can be applied to non-binary valued sets and also sets where attributes are

continuously valued through a pre-process of data normalisation (as described in

Chapter 4, Subsection 4.4.3). Datasets can thus be considered to be NxD tables

where N is the number of columns and D is the number of records.

5.7 Extendibility Consideration

The scenario presented in this chapter is a good example to illustrate that the

EMADS approach offers a simple way to incorporate existing methods and data

sources into a MADM framework and how new DM tasks are wrapped and incor-

porated. This section looks at what components (agents) are affected when new

requirements are added and the extensibility of those components.

5.7.1 Incorporating New Data Source

In the current architecture of EMADS, a single data agent controls each separate

data source. The data agent in-turn encapsulates and relies on an instance of an

agent class. Thus, in order to bring a new data source into the system, a new

data agent must be instantiated. It must also register with the system to ensure

the other agents are aware of its existence and the data source can be utilised to

fulfil system goals.

In the case of data agents, there is no code required to create a new data agent

and introduce it to EMADS. This is achieved through the data wrapper graphical

user interface (GUI) as described in Chapter 4, Subsection 4.4.3. The user must

use the GUI to refer to the data source location (file path). Then the wrapper

104

creates a new data agent that will represent the data source as it is introduced

to the system.

5.7.2 Incorporating New DM algorithms

In order to bring a new DM algorithm into the EMADS system, a new DM agent

must be instantiated with the two required components, namely a DM wrapper

and DM algorithm. The new DM agent must also be registered with the system to

ensure that other agents are aware of its existence and so that the DM algorithm

can be utilised to fulfil DM requests.

The independence of the DM technique comes from the fact that the wrapper

agents act only as interfaces, to the DM algorithms, to receive requests and pass

back results. Because of this, the only code required to create a new DM agent

and “introduce” a new DM algorithm becomes a one line instantiation as shown

below:

<Algorithm Class Name> instanceName = new <Algorithm Class Name>();

The DM wrapper contains all code required to interface with the DM algo-

rithm. In order to ensure all new DM algorithms can communicate in the system,

an abstract interface was created (i.e. the mining interface, described in Chapter

4, Subsection 4.4.2). Any new DM algorithm class must extend this abstract

interface and implement the abstract methods it includes.

5.7.3 Incorporating New DM Tasks

Task agents, that perform DM tasks, are introduced into EMADS using a pre-

defined abstract task agent class (Task Wrapper), described in Chapter 4, Sub-

section 4.4.1. Because the task wrapper is a subclass of the abstract task agent

class, any task agent subclass includes all the logic and methods that allow it to

communicate within the system which gives it the flexibility to be used by other

agents.

It is important to note that the parent abstract task agent class does not

ensure or provide any specific methods in the data mining process. Any sub-

class can include any other methods or algorithms that would provide the code

105

needed or desired for particular DM task. Because DM algorithms are task spe-

cific, these classes allow for any new methods or logic to be implemented, while

retaining the ability to communicate with the system through the parent task

agent. The parent abstract task agent class enforces the minimum system-specific

method implementation possible by providing most of the generic methods (e.g.

“getDataAgents()”, and “getMiningAgents()”) and yet ensures the flexibility for

expansion. The task agent abstract class is presented in Chapter 4, Section 4.1.

For example, when the meta ARM task agent was incorporated, the declara-

tion code in the meta ARM agent class was as follows:

public class ARMTaskAgent extends TaskAgent

5.7.4 Registering New Agents

To complete the incorporation of a new agent into the EMADS system, the

facilitator agent must be aware it exists. The facilitator agent is made aware

of any new agent upon its registration (discussed in Chapter 3, Subsection 3.3.5).

Once it is aware of the addition, the task agent is the only remaining agent

affected. The task agent is directly affected as it is responsible for tasking all

useful data agents in fulfilling a data mining request. Every time a data mining

request is made, the task agent queries the facilitator agent for all useful agents to

serve the request. Once a new agent is registered, it can be returned (and hence be

visible) to the task agent, by the facilitator, for communications. The task agent

does not maintain a “memory” of agents that are in the system from request

to request. The registration of new agents has been made as easy as possible

by placing all registration method implementations in the agent wrapper class.

Registration then becomes one line entry “this.register(agentName, agentType)”

in the “setup()” method of the agent. The facilitator agent is notified of the

presence through the registration process. By reducing the otherwise complex

registration process to one line, a great deal of simplicity is introduced into the

extension process from the view point of the agent creator.

For example, when the Meta ARM DM agent was created, the agent’s register

method was called as follows:

106

this . r e g i s t e r (”ARMAgent” , ”FrequentItemSets ”) ;

The registration method code is as follows:

// use f a c i l i t a t o r agent d e s c r i p t i o n
DFAgentDescription dfd = new DFAgentDescription () ;
//add the agent name to the f a c i l i t a t o r agent d e s c r i p t i o n
dfd . setName (getAID ()) ;
// prepare the agent s e r v i c e d e s c r i p t i o n
Se rv i c eDe s c r i p t i on sd = new Se rv i c eDe s c r i p t i on () ;
// s e t the agent type and name
sd . setName (agentName) ;
sd . setType (agentType) ;
dfd . addServ i ce s (sd) ;
try {
// r e g i s t e r the agent (s e r v i c e s) in the ye l l ow pages
DFService . r e g i s t e r (this , dfd) ;

}
catch (FIPAException f e) {

f e . pr intStackTrace () ;
}

5.8 Experimentation and Analysis

To evaluate the meta ARM scenario and the five algorithms outlined above,

in the context of EMADS, a number of experiments were conducted. These are

described and analysed in this section. The experiments were designed to evaluate

the issues of efficiency, scalability, and extendibility; and, to an extent, privacy

of data. The experiments were particularly designed to analyse the effect of the

following:

1. The number of data sources.

2. The size of the datasets in terms of number of records.

3. The size of the datasets in terms of number of attributes.

All experiments were run using a number of machines with an Intel Core

2 Duo E6400 CPU (2.13 GHz) with 3GB of main memory (DDR2 800MHz),

Fedora Core 6, Kernel version 2.6.18 running under Linux or Windows XP. For

each of the experiments the following were measured: (i) processing time (seconds

107

Figure 5.4: User Agent GUI: Meta ARM Example

/ milliseconds), (ii) the size of the RTD lists (Kilobytes) and (iii) the number of

RTD lists generated. The IBM Quest generator [2] was not used to generate test

data because many different data sets (with the same input parameters) were

required and the Quest generator was found to always generated the same data

given the same input parameters. Instead the LUCS-KDD data generator 1 was

used.

Figure 5.4 shows a “screen shot” of the EMADS user agent GUI during the

execution of one of the experiments. The GUI is showing the results of executing

a number of meta ARM tasks on four datasets which were distributed on four

machines. During each task execution, the GUI displays message statistics (num-

ber and size of messages, number of itemsets and their totals) and then displays

the required time for the completion of each task.

Figure 5.5 shows the effect of adding additional data sources. For this ex-

periment ten different artificial data sets were generated using T = 4 (average

number of items per transactions), N = 20 (Number of attributes), and D = 100k

(Number of transactions). Note that the selection of a relatively low value for N

1http://www.csc.liv.ac.uk/~frans/KDD/Software//LUCS-KDD-DataGen/

108

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Figure 5.5: Effect of Number of Data Sources

ensured that there were some common FISs shared across the T-trees.

Experiments using N = 100 and above tended to produced very flat T-trees

with many frequent 1-itemsets, only a few isolated frequent 2-itemsets and no

frequent sets with cardinality greater than 2. For the experiments a support

threshold of 1% was selected.

Graph 5.5(a) demonstrates that all of the proposed meta ARM algorithms

worked better then the bench mark (start all over again) approach, i.e. that

meta ARM is worth doing. The graph also shows that the Apriori meta ARM

algorithm, which invokes the “return to data procedure” many more times than

the other algorithms, at first takes longer; however as the number of data sources

increases the approach starts to produce some advantages as T-tree branches that

do not include frequent sets are identified and eliminated early in the process.

The amount of data passed to and from sources, shown in graph 5.5(b), correlates

directly with the execution times in graph 5.5(a).

Graph 5.5(c) shows the number of RTD lists generated in each case. The

Brute Force algorithm produces one (very large) RTD list per data source. The

109

Bench Mark algorithm produces the most RTD lists as it is constantly returning

to the data sets, while the Apriori approach produces the second most (although

the content is significantly less).

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Figure 5.6: Effect of Increasing Number of Records

Figure 5.6 demonstrates the effect of increasing the number of records. The

input data for this experiment was generated by producing a sequence of ten pairs

of data sets (with T = 4, N = 20) representing two sources. From graph 5.6(a) it

can be seen that the all the meta ARM algorithms outperformed the bench mark

algorithm because the size of the RTD (return to data) lists were limited as no

unnecessary candidate sets were generated. This is illustrated in graph 5.6(b).

Graph 5.6(b) also shows that the increase in processing time in all case is due

to the increase in the number of records only, the size of the RTD lists remains

constant throughout as does the number of RTD lists generated (graph 5.6(c)).

Figure 5.7 shows the effect of increasing the global pool of potential attributes

(remember that each data set will include some subset of this global set of at-

tributes). For this experiment another sequence of pairs of data sets (representing

two sources) was generated with T = 4, D = 100K and N ranging from 100 to

110

1000. As in the case of experiment 2 the Apriori, Brute Force and Hybrid 1

algorithms work best (for similar reasons) as can be seen from graph 5.7(a, b).

However, in this case (compared to the previous experiment), the Hybrid 2 al-

gorithm did not work as well. The reasoning behind the Hybrid 2 algorithm’s

slower performance is that all the 1-itemsets tended not to be all supported, and

because there were not eliminated and included in 2-itemsets generation (graph

5.7(a)). For completeness graph 5.7(c) indicates the number of RTD lists sent

with respect to the different algorithms.

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Figure 5.7: Effect of Increasing Number of Items (attributes)

All the meta ARM algorithms outperformed the bench mark algorithm. The

Hybrid 2 algorithm also performed in an unsatisfactory manner largely because

of the size of the RTD lists generated. Of the remainder the Apriori approach

coped best with a large number of data sources, while the Brute Force and Hybrid

1 approaches coped best with increases in data sizes (in terms of column/rows),

again largely because of the relatively smaller RTD list sizes.

It should also be noted that the algorithms are all complete and correct, i.e.

the end result produced by all the algorithms is identical to that obtained from

111

mining the union of all the raw data sets using some established ARM algorithm.

5.9 Discussion

This section returns to the MADM issues listed in Section 5.1 which the described

meta ARM scenario was designed to contribute to, or take into consideration. The

mechanisms proposed and incorporated into the resolution of the meta ARM

scenario, and by extension EMADS, with respect to these issues are listed below:

1. Scalability: The issue here is that the proposed meta ARM mechanism

must operate effectively and without a substantial or discernible reduction

in performance as the number of data sites increases. This is addressed by

providing specific protocols that allow the management of agents to support

the collaboration of the data sites. The solution constitutes a scalable (and

unifying) machine learning approach that can be applied to large amounts of

data in wide area computing networks for a range of different applications.

The distributed memory architecture used also contributes to scalability,

in that the memory is scalable as increases in the number of data sources

(agents) increases the size of memory proportionately. The proposed ap-

proach is unifying because it is algorithm and representation independent,

i.e. it does not examine the internal structure and strategies of the DM

algorithms themselves, but only the outputs (FISs) of the individual DM

agents. As can be seen from the experimental results presented in the pre-

vious section, the meta approach scales slowly and linearly as the volume

of data or the number of data sources increases.

2. Efficiency: Efficiency is inherently introduced into the meta ARM solution

through the distributed nature of the problem, incorporated into the initial

problem definition, that supports distributed/parallel processing. The pro-

posed meta ARM strategy enhances efficiency (and scalability) firstly by

executing the DM processes in parallel under decentralised control and in

an autonomous manner, and secondly by applying the learning processes

on smaller subsets of data that are properly partitioned and distributed

to fit in main memory (a data reduction technique). In particular, doing

some of the analysis on the data locally avoids performance bottlenecks.

112

In the context of meta DM the approach is especially attractive if there

is enough processing power and sophistication at the locations where data

are collected to build local models, which can then be moved to the central

location and merged to produce a coherent global model. The meta ARM

also enhances efficiency by taking advantage of EMADS agent advertising

mechanism, to only target data agents with relevant ARM data as to avoid

use of irrelevant data.

3. Portability: Portability is evidenced within the meta ARM solution in

that agents are not tied to any particular platform. As will be seen this is

also a general advantage of the EMADS framework.

4. Extendibility: The proposed solution may be extended using the EMADS

wrapper principle. New data and DM agents can be included without ad-

versely effecting the operation of the proposed meta ARM solution, or re-

quiring the approach to be extended or updated in some way. As described

in Section 5.7, the EMADS extendibility feature is illustrated in this sce-

nario by showing how easy it is to incorporate new DM algorithm (i.e.

Apriori-TFP), data sources and new DM task (i.e. meta ARM task) into

the framework.

5. Privacy protection: The suggested meta ARM solution contributes to

the important issue of data privacy by giving access to data at a local level

only. Each data source has its own local memory; which, in the case of the

meta ARM scenario, can only be accessed by a dedicated DM agent. These

agents are executed locally and only allowed to share their data mining

findings (results) and not the data itself.

6. Agent communication and interaction: The suggested meta ARM

solution demonstrated the efficient use of EMADS protocols to manage the

agents and transfer data to support the collaboration of the data sites.

The reported investigation of the meta ARM MADM scenario also provided

an opportunity to investigate, define and compare the operation of a number of

different agent based meta ARM techniques. The work described in this chapter

113

therefore also illustrates the use of EMADS as an affective research tool to support

distributed/parallel data mining related investigations.

In the context of meta DM the advantages of the approach also serve to

highlight the weaknesses of a centralised data mining approach. More specifically:

• There is no longer a need to move raw data from the points of collection to

the central site; instead only models or pieces of models need to be moved,

and these are of much smaller size than the data.

• Processing takes place at each local site, so the computational load is spread

over many processors. Perhaps more importantly, the data are distributed

over multiple shallower memory hierarchies, reducing the overheads of data

access which dominates most algorithms.

• Because only models leave local sites, details of the raw data can, at least

in principle, remain hidden. Hence a distributed approach permits privacy-

preserving data mining in a natural way. For example, insurance companies

that are competitors could still share their fraud models, and so reduce the

costs of fraud to all, without revealing sensitive information.

5.10 Summary

In this chapter the use of EMADS was illustrated in the context of a meta ARM

scenario; a novel extension of ARM where a meta set of FISs was built from a

collection of component sets which had been generated in an autonomous manner

without centralised control. This type of conglomerate was termed meta ARM

so as to distinguish it from a number of other related data mining research areas

such as incremental and distributed ARM. A number of meta ARM algorithms

were described and compared: (i) Bench Mark, (ii) Apriori, (iii) Brute Force,

(iv) Hybrid 1 and (v) Hybrid 2. More specifically the work described in this

chapter investigated some of the MADM issues identified in Chapter 1, namely:

scalability, efficiency, portability, extendibility and privacy protection.

The described experiments indicated, at least with respect to meta ARM,

that MADM and by extension EMADS, offers positive advantages in that all

the meta ARM algorithms were more computationally efficient than the bench

114

mark algorithm. The results of the analysis also indicated that the Apriori meta

ARM approach coped best with a large number of data sources, while the Brute

Force and Hybrid 1 approaches coped best with increased data sizes (in terms of

column/rows). The main MADM advantages of the described approach may be

summarised as follows: (i) its flexibility to allow sharing of DM models (results)

without disclosing data proprietary and (ii) its ability to scale as the number and

size of databases grow.

In the following chapter, a second demonstration scenario is presented to

investigate the usage of MADM to achieve a parallel/distributed data mining

scenario namely parallel ARM. This was seen as significant in the context of the

scalability and efficiency issues and also to demonstrate MADM re-usability.

115

Chapter 6

Data Partitioning and
Parallel/Distributed ARM

This chapter explores and demonstrates (by experiment) the capabilities of MADM

(EMADS) agents in the context of parallel and distributed Data Mining (DM).

The exploration, like the previous chapter, is conducted by considering a spe-

cific parallel/distributed DM scenario, namely data partitioning to achieve paral-

lel/distributed ARM. The aim of the scenario is to demonstrate that the MADM

vision is capable of exploiting the benefits of parallel computing; particularly

parallel query processing and parallel data accessing. In addition the scenario

provides a vehicle for demonstrating how re-usability can be achieved.

The organisation of the chapter is as follows: In Section 6.1 some background

on data distribution and the motivation for the scenario is described. Data parti-

tioning is introduced in Section 6.2. Data partitioning may be achieved in either a

horizontal or vertical manner. In Section 6.3 a parallel/distributed task with Data

Horizontal Segmentation (DATA-HS) algorithm is described. Before describing

the vertical approach the Apriori-T algorithm is briefly described in Section 6.4.

The parallel/distributed task with Data Vertical Partitioning (DATA-VP) algo-

rithm (which is founded on Apriori-T) is then described in Section 6.5. The

DATA-VP MADM task architecture and network configuration is presented in

Section 6.6. Experimentation and Analysis, comparing the operation of DATA-

HS and DATA-VP, is then presented in Section 6.7. Discussion of how this

scenario addresses the research goals of this thesis is presented in Section 6.8.

Finally a summary is given in Section 6.9.

116

6.1 Motivation

A common feature of most DM tasks is that they are resource intensive and

operate on large sets of data. Data sources measured in gigabytes or terabytes

are quite common in DM. This has called for fast DM algorithms that can mine

very large databases in a reasonable amount of time. However, despite the many

algorithmic improvements proposed in many serial algorithms, the large size and

dimensionality of many databases makes the DM of such databases too slow and

too big to be processed using a single process. There is therefore a growing need

to develop efficient parallel DM algorithms that can run on distributed systems.

There are several ways in which data distribution can occur, and these require

different approaches to model construction, including:

• Horizontal Data Distribution. The most straight forward form of distri-

bution is horizontal partitioning, in which different records are collected at

different sites, but each record contains all of the attributes for the object it

describes. This is the most common and natural way in which data may be

distributed. For example, a multinational company deals with customers in

several countries, collecting data about different customers in each country.

It may want to understand its customers worldwide in order to construct a

global advertising campaign.

• Vertical Data Distribution. The second form of distribution is vertical

partitioning, in which different attributes of the same set of records are

collected at different sites. Each site collects the values of one or more

attributes for each record and so, in a sense, each site has a different view

of the data. For example, a credit-card company may collect data about

transactions by the same customer in different countries and may want

to treat the transactions in different countries as different aspects of the

customers total card usage. Vertically partitioned data is still rare, but it

is becoming more common and important [81].

This chapter addresses a second generic MADM scenario, that of distribut-

ed/parallel DM. This scenario assumes an end user who owns a large data set and

wishes to obtain DM results but lacks the required resources (i.e. processors and

memory). The data set is partitioned into horizontal or vertical partitions that

117

can be distributed among a number of processors (agents) and independently pro-

cessed, to identify local itemsets, on each process. In addition to addressing the

MADM efficiency and scalability issues, the scenario is also used to demonstrate

agent re-usability in that use is made of the meta ARM agents identified in the

meta ARM scenario described in the previous chapter.

In the context of MADM the parallel ARM scenario allowed the investigation

of a number of the research issues identified in Chapter 1, namely:

1. Scalability and efficiency: Scalability and computational efficiency. Scal-

ability might be taken to demand that performance (execution time) scales

linearly as the volume of data increases. DM algorithms, however, tend to

scale polynomially or even exponentially (which is the main performance

issue for them). Distributed and parallel DM can improve both efficiency

and scalability first by executing the DM processes in parallel improving the

run-time efficiency and second, by applying the DM processes on smaller

subsets of data that are properly partitioned and distributed to fit in main

memory.

2. Extendibility: Extendibility is essentially concerned with the capability of

MADM to incorporate and use new algorithms and data sources. In other

words the ease with which additional agents can be added/incorporated

into the EMADS solution to the parallel ARM problem.

3. Re-usability: The framework should promote the opportunistic reuse of

agent services by other agents. To this end, it has to provide mechanisms

by which agents may advertise their capabilities, and ways whereby agents

can find other agents supporting certain capabilities.

4. Agent communication and interaction: The ability of the agents to

communicate with each other and work together cooperatively and in par-

allel to accomplish complex goals is significant with respect to any this

scenario.

In the exploration of the applicability of MADM to parallel/distributed ARM,

the two parallel ARM approaches, based on the Apriori algorithm, are described

and their performance evaluated. Recall that DATA-HS makes use of a horizontal

118

partitioning of the data. The data is apportioned amongst the processes, typically

by horizontally segmenting the dataset into sets of records. DATA-VP makes

use of a vertical partitioning approach to distributing the input dataset over

the available number of DM (worker) agents. To facilitate the vertical data

partitioning the tree data structure, described in Chapter 5, Section 5.3, is again

used together with the Apriori-T ARM algorithm [29]. Using both approaches

each partition can be mined in isolation, while at the same time taking into

account the possibility of the existence of frequent itemsets dispersed across two

or more partitions. In the first approach, DATA-HS, the scenario complements

the meta ARM scenario described in the previous chapter.

6.2 Data Segmentation and Partitioning

Notwithstanding the extensive work that has been done in the field of ARM, there

still remains a need for the development of faster algorithms and alternative

heuristics to increase their computational efficiency. Because of the inherent

intractability of the fundamental problem, much research effort has been directed

at parallel ARM to decrease overall processing times (see [47, 91, 105, 115]), and

distributed ARM to support the mining of datasets distributed over a network

[25]. The main challenges associated with parallel DM include:

• Minimising I/O.

• Minimising synchronisation and communication.

• Effective load balancing.

• Effective data layout (horizontal vs. vertical).

• Good data decomposition.

• Minimising/avoiding duplication of work.

To allow the data to be mined using a number of cooperating agents the most

obvious approach is to allocate different subsets of the data to each agent. There

are essentially two fundamental approaches to partitioning/segmenting the data:

1. Horizontal segmentation where the data is divided according to row number.

119

2. Vertical partitioning where the data is divided according to column number.

Note that in this chapter the term partitioning is used to indicate vertical sub-

division of data, and segmentation to indicate horizontal sub-division of data.

Horizontal segmentation, is in general more straightforward. Assuming a uni-

form/homogeneous dataset it is sufficient to divide the number of records by the

number of available agents and allocate each resulting segment accordingly.

The most natural method to vertically partition a dataset is to divide the

number of columns by the number of available agents so each is allocated an

equal number of columns.

Many parallel DM algorithms have been developed based on the Apriori algo-

rithm or variations of the Apriori algorithm. The most common parallel methods

are [4, 47]:

• Count Distribution. This method follows a data-parallel strategy and

statically partitions the database into horizontal partitions that are inde-

pendently scanned for the local counts of all candidate itemsets on each

process. At the end of each iteration, the local counts are summed across

all processes to form the global counts so that frequent itemsets can be

identified.

• Data Distribution. The Data Distribution method attempts to utilise

the aggregate main memory of parallel machines by partitioning both the

database and the candidate itemsets. Since each candidate itemset is counted

by only one process, all processes have to exchange database partitions dur-

ing each iteration in order for each process to get the global counts of the

assigned candidate itemsets.

• Candidate Distribution. The Candidate Distribution method also par-

titions candidate itemsets but selectively replicates, instead of “partition-

and-exchanging” the database transactions, so that each process can pro-

ceed independently.

Experiments show that the Count Distribution method exhibits better perfor-

mance and scalability than the other two methods [4]. The steps for the Count

Distribution method may be generalised as follows (for distributed-memory mul-

tiprocessors):

120

1. Divide the database evenly into horizontal partitions among all processes.

2. Each process scans its local database partition to collect the local count of

each item.

3. All processes exchange and sum up the local counts to get the global counts

of all items and find frequent 1-itemsets.

4. Set level k = 2.

5. All processes generate candidate k-itemsets from the mined frequent (k-1)-

itemsets.

6. Each process scans its local database partition to collect the local count of

each candidate k-itemset.

7. All processes exchange and sum up the local counts into the global counts

of all candidate k-itemsets and find frequent k-itemsets among them.

8. Repeat (5) - (8) with k = k + 1 until no more frequent itemsets are found.

In the following sections two MADM tasks, using both vertical partitioning

and horizontal segmentation, are introduced. These tasks were implemented using

the task wrapper, as described in Chapter 4, so that they could be incorporated

into EMADS as task agents.

6.3 The Parallel/Distributed Task with Hori-
zontal Segmentation (DATA-HS) Algorithm

The Data Horizontal Segmentation (DATA-HS) algorithm uses horizontal seg-

mentation, dividing the dataset into segments each containing an equal number

of records. ARM in this case involves the generation of a number of T-trees,

holding frequent itemsets, one for each segment; and then merging these T-trees

to create one global T-tree. As a demonstration of MADM re-usability, this is

carried out using the meta ARM task agent which is defined from the previous

scenario.

Assuming that a data agent representing the large dataset has been launched by

a user, the DATA-HS MADM algorithm comprises the following steps:

121

1. User agent requests the task agent to horizontally segment the dataset ac-

cording to the total number of segments required.

2. The task agent assigns and sends each data segment to an interested data

agent; if none exist then the task agent launches new data agents.

3. Then a meta ARM task is called (in the experiments described in this

chapter the Apriori meta ARM task was used) to obtain the Association

Rules (ARs) as described in Chapter 5.

6.4 The Apriori-T Algorithm

The Apriori-T (Apriori Total) algorithm is an Association Rule Mining (ARM)

algorithm [31] that combines the classic Apriori ARM algorithm with the T-tree

data structure. As each level is processed, candidates are added as a new level

of the T-tree, their support is counted, and those that do not reach the required

support threshold pruned. When the algorithm terminates, the T-tree contains

only frequent itemsets. The Apriori-T algorithm was developed as part of the

more sophisticated ARM algorithm The Apriori-TFP. The Apriori and Apriori-

TFP algorithms were described in Chapter 2, Subsection 2.1.1.1.

At each level, new candidate itemsets of size k are generated from identified

frequent k-1 itemsets, using the downward closure property of itemsets, which

in turn may necessitate the inspection of neighbouring branches in the T-tree to

determine if a particular k-1 subset is supported. This process is referred to as

X-checking. Note that X-checking adds a computational overhead; offset against

the additional effort required to establish whether a candidate k itemset, all of

whose k-1 itemsets may not necessarily be supported, is or is not a frequent

itemset.

The number of candidate nodes generated during the construction of a T-tree,

and consequently the computational effort required, is very much dependent on

the distribution of columns within the input data. Best results are produced by

ordering the dataset, according to the support counts for the 1-itemsets, so that

the most frequent 1-itemsets occur first [28].

122

6.5 The Parallel/Distributed Task with Vertical
Partitioning (DATA-VP) Algorithm

The second algorithm considered in the exploration of the applicability of MADM

to parallel/distributed ARM is the Data Vertical Partitioning (DATA-VP). The

DATA-VP algorithm commences by distributing the input dataset over the avail-

able number of workers (DM agents) using a vertical partitioning strategy. Ini-

tially the set of single attributes (columns) is split equally between the available

workers so that an allocationItemSet (a sequence of single attributes) is defined

for each DM agent in terms of a startColNum and endColNum:

allocationItemSet = {n|startColNum < n ≤ endColNum}

Each DM agent will have its own allocationItemSet which is then used to

determine the subset of the input dataset to be considered by the DM agent.

Using their allocationItemSet the task agent will partition the data among the

workers (DM agents) as follows:

1. Remove all records in the input dataset that do not intersect with the

allocationItemSet.

2. From the remaining records remove those attributes whose column num-

ber is greater than endColNum. Attributes whose identifiers are less than

startColNum cannot be removed because these may still need to be in-

cluded in the subtree counted by the DM agent.

3. Send the allocated data partition to the corresponding DM agent.

The input dataset distribution procedure, given an allocationItemSet, can

be summarised as follows:

∀ records ∈ input data
if (record ∩ allocationItemSet ≡ true)
record = {n|n ∈ record, n ≤ endColNum}
else delete record

123

TID Item Set
1 acf
2 b
3 ace
4 bd
5 ae
6 abc
7 d
8 ab
9 c
10 abd

Table 6.1: Dataset Example

As an example, the ordered data set in Table 6.1 has items with 6 attributes,

a, b, c, d, e and f. Assuming three worker agents are participating, the above par-

titioning process will result in three dataset partitions, with allocationItemSets

{a, b}, {c, d} and {e, f}. Application of the above algorithm will create partitions

as follows (but note that the empty sets, here shown for clarity, will in fact not

be included in the partitions):

Partition 1 (a to b): {{a}, {b}, {a}, {b}, {a}, {a, b}, {}, {a, b}, {}, {a, b}}

Partition 2 (c to d): {{a, c}, {}, {a, c}, {b, d}, {}, {a, b, c}, {d}, {}, {c},

{a, b, d}}

Partition 3 (e to f): {{a, c, f}, {}, {a, c, e}, {}, {a, e}, {}, {}, {}, {}}

Once partitioning is complete each partition can be mined, using the Apriori-T

algorithm, in isolation while at the same time taking into account the possibility

of the existence of frequent itemsets dispersed across two or more partitions.

Figure 6.1 shows the resulting sub T-trees assuming all combinations represented

by each partition are supported. Note that because the input dataset is ordered

according to the frequency of 1-itemsets the size of the individual partitioned sets

does not necessarily increase as the endColNum approaches N (the number of

columns in the input dataset); in the later partitions, the lower frequency leads to

more records being eliminated. Thus the computational effort required to process

each partition is roughly balanced.

The DATA-VP MADM task can thus be summarised as follows:

124

Figure 6.1: Vertical Partitioning of a T-tree Example [29]

1. A task agent starts a number of workers (DM agents); these will be referred

to as workers.

2. The task agent determines the division of allocationItemSet according to

the total number of available workers (agents) and transmits this informa-

tion to them.

3. The task agent transmits the allocated partition of the data (calculated as

described above) to each worker.

4. Each worker then generates a T-tree for its allocated partition (a sub T-tree

of the final T-tree) using the Apriori-T algorithm as described below.

5. On completion each DM (worker) agent transmits its partition of the T-tree

to the task agent which are then merged into a single global T-tree (the final

T-tree ready for the next stage in the ARM process, rule generation).

The local T-tree generation process begins with a top-level “tree” comprising

only those 1-itemsets included in each worker (DM agent) allocationItemSet.

The DM agent will then generate the candidate 2-itemsets that belong in its sub

(local) T-tree. These will comprise all the possible pairings between each element

in the allocationItemSet and the lexicographically preceding attributes of those

elements (see Figure 6.1). The support values for the candidate 2-itemsets are

then determined and the sets pruned to leave only frequent 2-itemsets. Candidate

sets for the third level are then generated. Again, no attributes from succeeding

allocationItemSet are considered, but the possible candidates will, in general,

125

have subsets which are contained in preceding allocationItemSet and which,

therefore, are being counted by some other DM agents. To avoid the overhead

involved in the X-checking process, described in Section 6.4, which in this case

would require message-passing between the DM agents concerned, X-checking

does not take place. Instead, the DM agent will generate its candidates assuming,

where necessary, that any subsets outside its local T-tree are frequent.

6.6 DATA-VP Task Architecture and Network
Configuration

The DATA-VP task architecture shown in Figure 6.2 assumes the availability of

at least one worker (DM agent), preferably more. Figure 6.2 shows the assumed

distribution of agents and shared data across the network. The figure also shows

the house-keeping JADE agents (AMS and DF) through which agents find each

other.

Figure 6.2: Parallel/Distributed ARM Model for DATA-VP Task Architecture

6.6.1 Messaging

Parallel/distributed ARM tends to entail much exchange of data messaging as

the task proceeds. Messaging represents a significant computational overhead,

126

in some cases outweighing any other advantage gained. Usually the number of

messages sent and the size of the content of the message are significant factors

affecting performance. It is therefore expedient, in the context of the techniques

described here, to minimise the number of messages that are required to be sent

as well as their size.

The technique described here is One-to-Many approach, where only the task

agent can send/receive messages to/from DM agents. This involves fewer oper-

ations, although, the significance of this advantage decreases as the number of

agents used increases.

6.7 Experimentation and Analysis

To evaluate the two approaches, in the context of the EMADS vision, a number

of experiments were conducted. These are described and analysed in this section.

The experiments presented here were run on one machine with an Intel Core

2 Duo E6400 CPU (2.13 GHz) with 3GB of main memory (DDR2 800MHz),

Fedora Core 6, Kernel version 2.6.18 running under Linux and used up to six

data partitions and two artificial datasets: (i) T20.D100K.N250.num, and (ii)

T20.D500K.N500.num where T = 20 (average number of items per transactions),

D = 100K or D = 500K (Number of transactions), and N = 500 or N = 250

(Number of attributes) are used. The datasets were generated using the IBM

Quest generator used in Agrawal and Srikant [2].

(a) Number of Data Partitions (b) Support Threshold

Figure 6.3: Average of Execution Time for Dataset T20.D100K.N250.num

As noted above the most significant overhead of any parallel/distributed sys-

tem is the number and size of messages sent and received between agents. For the

127

(a) Number of Data Partitions (b) Support Threshold

Figure 6.4: Average of Execution Time for Dataset T20.D500K.N500.num

DATA-VP EMADS approach, the number of messages sent is independent of the

number of levels in the T-tree; communication takes place only at the end of the

tree construction. DATA-VP passes entire pruned sub (local) T-tree branches.

Therefore, DATA-VP has a clear advantage in terms of the number of messages

sent.

Figure 6.3 and Figure 6.4 show the effect of increasing the number of data

partitions with respect to a range of support thresholds. As shown in Figure 6.3

the DATA-VP algorithm shows better performance compared to the DATA-HS

algorithm. This is largely due to the smaller size of the dataset and the T-tree

data structure which: (i) facilitates vertical distribution of the input dataset,

and (ii) readily lends itself to parallelisation/distribution. However, when the

data size is increased as in the second experiment, and further DM (worker)

agents are added (increasing the number of data partitions), the results shown

in Figure 6.4, show that the increasing overhead of messaging size outweighs any

gain from using additional agents, so that parallelisation/distribution becomes

counter productive. Therefore DATA-HS showed better performance from the

addition of further data agents compared to the DATA-VP approach.

6.8 Discussion

MADM can be viewed as an effective distributed and parallel environment where

the constituent agents function autonomously and (occasionally) exchange in-

formation with each other. EMADS is designed with asynchronous, distributed

communication protocols that enable the participating agents to operate inde-

128

pendently and collaborate with other peer agents as necessary, thus eliminating

centralised control and synchronisation barriers.

Distributed and parallel DM can improve both efficiency and scalability first

by executing the DM processes in parallel improving the run-time efficiency and

second, by applying the DM processes on smaller subsets of data that are properly

partitioned and distributed to fit in main memory (a data reduction technique).

The scenario, described in this chapter, demonstrated that MADM provides

suitable mechanisms for exploiting the benefits of parallel computing; particularly

parallel data processing. The scenario also demonstrated that MADM is suitable

for re-usability and illustrated how it is supported by re-employing the meta ARM

task agent, described in the previous chapter, with the DATA-HS task.

6.9 Summary

In this chapter a MADM method for parallel/distributed ARM has been described

so as to explore the MADM issues of scalability and re-usability. Scalability is

explored by parallel processing of the data and re-usability is explored by re-

employing the meta ARM task agent with the DATA-HS task.

The solution to the scenario considered in this chapter made use of a vertical

data partitioning or a horizontal data segmentation technique to distribute the

input data amongst a number of agents. In the horizontal data segmentation

(DATA-HS) method, the dataset was simply divided into segments each compris-

ing an equal number of records. Each segment was then assigned to a data agent

that allowed for using the meta ARM task when employed on EMADS. Each

DM agent then used its local data agent to generate a complete local T-tree for

its allocated segment. Finally, the local T-trees were collated into a single tree

which contained the overall frequent itemsets. The proposed vertical partition-

ing (DATA-VP) was facilitated by the T-tree data structure, and an associated

mining algorithm (Apriori-T), that allowed for computationally effective paral-

lel/distributed ARM when employed on EMADS.

The reported experimental results showed that the data partitioning methods

described are extremely effective in limiting the maximal memory requirements

of the algorithm, while their execution time scale only slowly and linearly with

increasing data dimensions. Their overall performance, both in execution time

129

and especially in memory requirements has brought significant improvement.

130

Chapter 7

Classifier Generation

To further explore the issues associated with the concept of a generic MADM, a

classifier generation scenario is considered in this chapter. The point of this sce-

nario is to investigate how MADM can be used to support the sharing of resources

and expertise while at the same time preserving intellectual property rights that

may be attached to Data Mining (DM) software contributed by MADM users.

The scenario is also intended to further demonstrate how extendibility is sup-

ported. The scenario considered is where a user wishes to generate a classifier

for a specified dataset. In this scenario, a collection of classification (DM) agents

is applied to a number of standard benchmark datasets held by data agents. A

number of classifiers are generated, from which the best can be selected.

The chapter is organised as follows. In Section 7.1 the motivation for the sce-

nario is described. Some background on data classification is presented in Section

7.2. The operation of EMADS with respect to classification is then described in

Section 7.3. Extendibility consideration is described in Section 7.4. The eval-

uation of the MADM classification process is then described in Section 7.5. A

summary is given in Section 7.6.

7.1 Motivation

Multi-Agent Systems (MAS) have some particular potential advantages to offer

with respect to KDD, in the context of sharing resources and expertise. Namely

that the MADM approach provides the possibility of greater end user access to

Data Mining (DM) techniques. MADM can make use of algorithms without

necessitating their transfer to users, thus contributing to the preservation of any

131

intellectual property rights over the algorithms. This is a significant issue with

respect to the EMADS vision espoused in this thesis. Recall that the vision is that

of an anarchic collection of agents that can organically grow (using the EMADS

extendibility feature). For this to happen contributors must have confidence in

the “security” of any software they may contribute (i.e. the intellectual property

rights in the software). This feature of MADM may be illustrated in a number

of ways, however the scenario considered in this chapter is in the context of

classification.

Although the preservation of the intellectual property in DM algorithms is the

primary motivation for the work described in this chapter there are also other

secondary motivations, namely:

• To further illustrate the EMADS extendibility feature.

• To demonstrate how EMADS agents can cooperate to produce on “opti-

mum” solutions to a DM problem.

In the scenario considered in this chapter, in addition to the preservation of the

intellectual property in DM algorithms, EMADS is used to illustrate how MADM

can provide a dynamic solution of the problem of selecting the best classifier for

a given dataset. “Best” in this context is measured in terms of classification

accuracy (although some other metric, such as precision, could equally well be

used). The experiments reported in this chapter thus not only serve to illustrate

the advantages of MADM, but also provides an interesting comparison of a variety

of classification techniques and algorithms.

7.2 Background

As described earlier in the thesis, classification is a well established data mining

task, with roots in machine learning. In this task the goal is to predict the

value (the class) of a user-specified goal attribute based on the values of other

attributes, called the predicting attributes.

This section presents some background to the classification scenario that forms

the focus of this chapter. It has been well established within the DM research

community, that there is no single best classification algorithm that works for all

datasets (a similar observation can be made for clustering algorithms). Selecting

132

an optimal classifier for a pattern recognition application is a challenge; while

different classification algorithms can be used to perform the same task, each al-

gorithm might produce a different result (i.e. different accuracy). There is some

reported work on best classifier selection. For example the STATLOG project [83]

where several classification algorithms were compared based on some empirical

datasets and a meta-level machine learning rule on the algorithm selection was

provided. Another example is the meta analysis of classification algorithms ap-

proach, proposed by Sohn et al. [109], where a statistical meta model to predict

the expected classification performance of classification algorithms, as a func-

tion of data characteristics, is used to provide a relative ranking of classification

algorithms.

Notwithstanding these attempts, it appears clear that no single algorithm will

always generate the best classifier in every case. The alternative is an empiri-

cal approach, to select what is likely to be a good classifier in the particular

circumstances of the problem under consideration.

7.3 Classifier Generation Operation

Conceptually the nature of EMADS DM requests that may be posted by EMADS

users is extensive. In the context of classifier generation, the following request is

currently supported:

• Find the “best” classifier (to be used by the requester at some later date in

off line mode) for a dataset provided by the user.

In other words, the problem can described as follows. Given M datasets and

N classification algorithms, produce a mapping returning, for each dataset, the

algorithm that returns the best classification for that dataset.

To obtain the “best” classifier EMADS will attempt to access and commu-

nicate with as many classifier generators (DM agents) as possible and select the

best result.

Figure 7.1 gives an overview of the distribution of agents and shared data

across the network. All agents described here have been implemented using the

EMADS framework. The figure includes a user agent, a single data agent, a ded-

icated task agent, and a sequence of N classification (DM) agents each equipped

133

with a classifier generator (FOIL, RDT and TFPC are all classifier generator algo-

rithms, and among those featured in the scenario considered in this chapter). The

figure also shows the JADE house-keeping agents (AMS and DF). The principal

advantage of this architecture is that it does not overload a single host machine,

but distributes the processing load among those multiple machines. The results

obtained can be correlated with one another in order to achieve computationally

efficient analysis at a distributed global level.

Figure 7.1: Classifier Generation EMADS Model Architecture

For the purpose of the scenario it has been assumed that datasets are binary

valued and that the user requires a single-label, as opposed to a multi-labelled,

classifier. A single-label classification is the task of assigning an instance to

exactly one class, when there are two or more classes. Multi-label classification is

the task of assigning an instance simultaneously to one or multiple classes. The

request is made using the individual’s user agent which in turn will spawn an

appropriate task agent.

The task agent identifies DM agents that hold single labelled classifier gen-

erators that take binary valued data as input by asking the directory facilitator

agent. Each of these DM agents is then accessed and a classifier, together with

an accuracy estimate, requested. The task agent then selects the classifier with

the best accuracy and returns this to the user agent.

134

When the data agent is launched, it prompts the user through its GUI to

provide input of: (i) the data file location; and (ii) the number of class attributes

(a value that the DM agent cannot currently deduce for itself) while the user agent

GUI allows input for threshold values that may be required by the algorithm (such

as support and confidence values). The output is a classifier together with an

accuracy measure. To obtain the accuracy measure a classifier generator (a DM

agent) builds the classifier using the first half of the input data as the “training”

set and the second half of the data as the “test” set. An alternative approach

might have been to use Ten Cross Validation (TCV) to identify the best accuracy.

7.3.1 Employed Classifier Generators

From the literature there are many reported techniques available for generat-

ing classifiers. With respect to the classifier generation scenario, eight different

algorithm implementations were used 1:

1. FOIL (First Order Inductive Learner) [99]: The well established inductive

learning algorithm for generating Classification Association Rules (CARs).

2. TFPC (Total From Partial Classification): A CAR generator [32] founded

on the P and T-tree set enumeration tree data structures.

3. PRM (Predictive Rule Mining) [128]: An extension of FOIL.

4. CPAR (Classification based on Predictive Association Rules) [128]: A fur-

ther development from FOIL and PRM.

5. IGDT (Information Gain Decision Tree) classifier: An implementation of

the well known decision tree based classifier using information gain as the

“splitting criteria”.

6. RDT (Random Decision Tree) classifier: A decision tree based classifier

that uses most frequent current attribute as the “splitting criteria” (as not

really random as the name suggests).

7. CMAR (Classification based on Multiple Association Rules): A Classifica-

tion Association Rule Mining (CARM) algorithm [73] frequently cited in

the literature.
1taken from the LUCS-KDD repository at http://www.csc.liv.ac.uk/~frans/KDD/

Software/

135

8. CBA (Classification Based on Associations): Another frequently cited CARM

algorithm [75].

These were placed within appropriately defined DM wrappers as described in

Chapter 4, Subsection 4.3.2, to produce eight (single label binary data classifier

generator) DM agents. This was found to be a trivial operation, requiring little

coding expertise, thus indicating the versatility of the wrapper concept. Then the

DM agents were incorporated from multiple machines (two agents per one ma-

chine) as to imitate the scenario of having these DM agents remotely incorporated

by contributors who wish to preserve their software intellectual property.

7.3.2 Dynamic Behaviour of Agents

Each DM (classification) agent’s basic function was to generate a classification

model (together with an accuracy estimate) using its own classifier and provide

this to the task agent. The task agent then evaluates all the classifier models

and chooses the most accurate model to be returned to the user agent. The

negotiation process amongst the agents is represented by the sequence diagram

given in Figure 7.2 (the figure assumes that an appropriate data agent has already

been launched or exists).

The figure includes N classification (DM) agents. The sequence of events

commences with a user agent which spawns a (classification) task agent, which

in turn announces itself to the DF agent. The DF agent returns a list of classifier

(DM) agents that can potentially be used to generate the desired classifier. The

task agent then contacts these DM agents which each generate classifier and

return statistical information regarding the accuracy of their classifier. The task

agent selects the DM agent that has produced the best accuracy and requests the

associated classifier, which is then passed back to the user agent.

It is worth noting that the users can either use their own data by making

the data that they desire to be mined (classified) available by launching their

own data agents (which in turn results in the publication of the new data agent’s

name and description via the DF agent) or they can use data that has already

been introduced through existing data agents.

136

Figure 7.2: Classification Task Sequence Diagram.

7.4 Extendibility Consideration

As in the meta ARM scenario presented in Chapter 5, this classification scenario

is a good example to illustrate that the EMADS approach offers a simple way

to incorporate existing DM methods and data sources into a MADM framework.

This section looks at what components (agents) are affected when new classifica-

tion (DM) algorithms are added and the extendibility of those components.

In order to bring a new classification algorithm into the EMADS system, a

new DM agent must be instantiated with the required components, namely a DM

wrapper and the classification algorithm. As described previously in Chapter 5,

Subsection 5.7.2 the new DM agent must also be registered with the system to

ensure that other agents are aware of its existence, and so that the DM algorithm

can be utilised to fulfil DM requests.

Recall that the independence of the DM algorithm comes from the fact that

the DM wrapper acts only as interface, to the DM algorithm, to receive requests

and pass back results. Because of this, the only code required to create a new

DM agent and “introduce” a new DM algorithm into EMADS becomes a one line

instantiation as shown below:

137

<Algorithm Class Name> instanceName = new <Algorithm Class Name>();

For example, when the FOIL algorithm with the Java class name “Foil” was

incorporated, the instantiation code in the DM agent was as follows:

Foil foil = new Foil();

As also described in Chapter Subsection 5.7.2, the DM wrapper contains all

code required to interface with the DM algorithm. In order to ensure all new DM

algorithms can communicate in the system, an abstract interface was created

(the mining interface). Any new DM algorithm class must extend this abstract

interface and implement the abstract methods it includes.

It is important to note that the DM algorithm class does not have to be a

subclass of the abstract Agent class. Because the DM wrapper, that includes all

required methods for communication, encapsulates it. The DM algorithm does

not need to communicate with any other agents. It will receive all information it

requires from its DM agent. The mining interface has certain methods to allow

the DM agent to communicate with it. It also allows for the DM algorithm and

any addition methods to be included. Because the DM algorithms themselves

can be coded in a variety of ways, abstract methods that would force a particular

processing of the algorithm were not included. The included abstract methods are

presented in Chapter 4, Subsection 4.4.2. For instance, the abstract “startMine()”

method allows the DM agent to begin mining in response to a request from the

task agent. It expects a list of results in the form of tree-structure to be returned

so that it may return them to the user agent indicating completion.

Extendibility is illustrated in this scenario through the simple incorporation

of a number of classifier generator algorithms (e.g. FOIL, TFPC, etc..) into the

framework.

7.5 Experimentation and Analysis

To evaluate the classification scenario, in the context of MADM, a number of ex-

periments were conducted on a sequence of datasets taken from the UCI machine

138

learning data repository [18]. The datasets were pre-processed by data agents so

that they were discretised/normalised into a binary valued format. The support

threshold has been set to 0.2% and the confidence threshold to 80% that are

required by the CARM-based algorithms.

Dataset FOIL TFPC PRM CPAR IGDT RDT CMAR CBA
connect4.D129.N67557.C3 67.64 65.94 68.55 52.32 44.13 79.76 64.29 71.64
adult.D97.N48842.C2 84.15 83.38 75.79 75.79 86.05 86.02 81.17 82.79
letRecog.D106.N20000.C26 51.04 35.75 55.53 55.10 69.39 91.79 33.61 37.94
anneal.D73.N898.C6 98.44 77.51 95.55 95.55 84.40 84.41 77.07 79.73
breast.D20.N699.C2 85.10 89.11 92.84 92.84 93.98 93.98 88.82 93.70
dematology.D49.N366.C6 75.96 63.93 74.86 76.50 74.31 96.17 74.30 75.41
flare.D39.N1389.C9 82.71 84.01 67.00 67.00 87.03 87.00 84.00 84.00
heart.D52.N303.C5 56.29 54.97 58.28 54.30 89.40 96.02 53.64 59.60
penDigits.D89.N10992.C10 85.90 87.03 82.46 82.77 88.57 99.18 86.74 90.92
pima.D38.N768.C2 72.66 54.97 73.44 73.70 82.55 80.99 15.88 73.70
soybean-large.D118.N683.C19 88.27 66.86 78.89 80.65 58.36 98.83 75.66 90.03
waveform.D101.N5000.C3 74.92 64.40 69.04 68.92 73.04 96.81 75.64 71.56

Table 7.1: Classification Results

The results of the experiments are presented in Table 7.1 and Table 7.2. Table

7.1 shows the accuracy results of all the applied algorithms for each dataset.

Table 7.2 shows the “best” accuracy results for each dataset. Each row in the

table represents a particular request for a best classifier and gives the name of the

dataset, the selected best algorithm as identified from the interaction between the

EMADS agents, the resulting best accuracy and the total EMADS execution time

from creation of the initial task agent to the final “best” classifier being returned

to the user agent. The naming convention used in Table 7.1 and Table 7.2 is

that: D equals the number of attributes (after discretisation/normalisation), N

the number of records and C the number of classes (although EMADS has no

requirement for the adoption of this convention).

The results demonstrated firstly that EMADS can usefully be adapted to pro-

duces a “best” classifier from a selection of classifiers. Secondly, that the opera-

tion of EMADS is not significantly hindered by agent communication overheads

because the generation time does not seem to be an issue, so further classifier

generator (DM) agents could easily be added. The results also reinforce the often

observed phenomenon that there is no single best classifier generator suited to

139

Dataset Classifier Accuracy Gen. Time (sec)
connect4.D129.N67557.C3 RDT 79.76 157.65
adult.D97.N48842.C2 IGDT 86.05 86.17
letRecog.D106.N20000.C26 RDT 91.79 31.52
anneal.D73.N898.C6 FOIL 98.44 5.82
breast.D20.N699.C2 IGDT 93.98 1.28
dematology.D49.N366.C6 RDT 96.17 11.28
flare.D39.N1389.C9 IGDT 87.03 4.55
heart.D52.N303.C5 RDT 96.02 3.04
penDigits.D89.N10992.C10 RDT 99.18 13.77
pima.D38.N768.C2 IGDT 82.22 3.6
soybean-large.D118.N683.C19 RDT 98.83 13.22
waveform.D101.N5000.C3 RDT 96.81 11.97

Table 7.2: “Best” Accuracy Results

all kinds of dataset. Although inspection of Table 7.2 indicates that decision tree

algorithms seen to work well.

7.6 Summary

This chapter considered the operation of MADM in the context of a classification

scenario. The scenario is that of an end user who wishes to obtain a “best”

classifier founded on a given, pre-labelled, dataset; which can then be applied to

further unlabelled data. The scenario demonstrated that EMADS can usefully be

adapted to produces a best classifier from a selection of classifiers. The scenario

also illustrated how MADM may be applied to permit: experience and resource

sharing, flexibility and extendibility, and the preservation of intellectual property

rights.

140

Chapter 8

Conclusion

KDD, and by extension data mining, is an application area of increasing rele-

vance as is evidenced by continuously growing interest in the subject. Much of

this interest is related to the explosion of data available in network-accessible

sites. However, these sites are characteristically heterogeneous and disparate in

many ways. The research proposed in this thesis will open up many ways to make

use effective of available information. Domains where the work may prove partic-

ularly useful are those where large amounts of geographically distributed data are

available which continuously but irregularly collected and updated by different

organisations, and the organisations have an interest in sharing the data. Some

example application areas where data is available in this format include: the study

of medical diagnostic/epidemiological information, market forecasting and other

forms of commercial/financial data management, meteorological/oceanographic

data analysis, and climate/weather forecasting.

Data mining (DM) refers to the process of extracting novel, useful, and un-

derstandable pieces of information (e.g., patterns, rules, regularities, constraints)

from data in databases. One way of acquiring knowledge from databases is to

apply various machine learning algorithms that search for patterns that may be

exhibited in the data and compute descriptive representations.

DM techniques have been successfully applied in many problems in diverse

areas with very good results. Although the field of machine learning has made

substantial progress over the past few years, both empirically and theoretically,

one of the continuing challenges is the development of learning techniques that

effectively scale up to large and possibly physically distributed datasets. Most

of the current generation of learning algorithms are computationally complex

141

and typically require all data to be resident in main memory, which is clearly

unrealistic for many genuine problems and databases. Furthermore, in certain

situations, data may be inherently distributed and cannot easily be merged into

a single database for a variety of reasons including security, fault tolerance, legal

constraints and competitive reasons. In such cases, it may not be possible to

examine all of the data at a central processing site to compute a single global

result.

Similarly there may be a number of algorithms that may be applied to a

single DM task with no obvious “best” algorithm. Therefore, there is a clear

advantage to be gained from a software organisation that can (in an automated

manner) locate, evaluate, consolidate and mine data from diverse sources and/or

apply a diverse number of algorithms. The research described in this thesis has

investigated the use of Multi-Agent Systems to provide this organisation.

The organisation of this concluding chapter is as follows. An overall summary

of the research presented in this thesis is provided in Section 8.1. This is followed

by a review of the main findings and contributions of the thesis in Section 8.2.

Some further research directions are discussed in Section 8.3.

8.1 Summary

MADM, as proposed in this thesis, seeks to benefit from the possibilities offered

by MASs to improve overall DM performance; or in other words, the management

of intelligent agents with the capacity to perform data mining. The term “man-

agement” denotes the ability to dispatch such agents across participant sites, and

also the potential to support the communications between these agents. MADM

allows each participant to utilise their own local data and algorithms and, at the

same time, benefit from the data and algorithms that are made available by the

other participants world wide. The principal MADM advantages envisaged are

those of experience and resource sharing, flexibility and extendibility, and (to an

extent) protection of privacy and intellectual property rights.

This thesis presented a MADM vision, and investigated the issues that arise

when using MAS for data mining activities. To assist the investigation EMADS

was designed and implemented. EMADS is a generic and extendible multi-agent

data mining framework that supports the creation and dispatching of DM agents

142

across multiple sites and employs DM techniques to combine the separately and

locally learned results into a higher level representation.

EMADS comprises a collection of data sources scattered over a network and

a group of DM agents that allow a user to data mine those data sources without

needing to know the location of the supporting data, nor how the various agents

interact. EMADS also provides simple mechanisms to incorporate new DM tech-

niques and data sources. In EMADS, as with most MAS, individual agents have

different functionality; the system currently comprises: data agents, user agents,

task agents, data mining agents and a number of “house-keeping” agents. Users

of EMADS may be data providers, DM algorithm contributors or miners of data

(or all three). The independence of EMADS from any particular DM function, in

conjunction with the object oriented design adopted, ensures the system’s capa-

bility to incorporate and use new DM algorithms/techniques. The expectation is

that EMADS will “grow” as individual users contribute data and DM algorithms.

The incorporation of data and DM techniques is facilitated by a system of wrap-

pers which allows for easy extendibility of the system. Experience indicates that

by using the wrappers provided with EMADS, existing data mining software can

be very easily packaged to become an EMADS data mining agent. As discussed

in Chapter 5, introducing a new technique requires the sub-classing of the ap-

propriate abstract class or the implementation of an abstract interface and the

encapsulation of the tool within an object that adheres to the minimal interface.

This “simple extendibility” characteristic makes EMADS an extendible DM fa-

cility. This feature allows developers to employ their pre-implemented programs

in the form of EMADS agents.

8.2 Main Findings and Contributions

In the course of the design and implementation of EMADS, several obstacles

were identified. The implementation addressed many issues related to MADM,

including: (i) dealing with heterogeneous platforms, (ii) dealing with multiple

databases and (possibly) different schemata, (iii) the design and implementation

of scalable protocols, and (iv) the efficient use of the results that are collected

from remote sites. Other important problems, intrinsic to data mining that were

also addressed included: (i) the ability of the system to adapt to environment

143

changes (e.g., when data or targets change over time), and (ii) the capacity to

extend it with new machine learning methods and data mining techniques. To be

more specific, addressing these issues and referring back to Chapter 1, required

the MADM framework to be:

• Scalable. To operate efficiently and without substantial or discernible re-

duction in performance as the number of data sites increases. The system

was designed with asynchronous and distributed communication protocols

that enable the participating agents to function independently and collab-

orate with each other as necessary, thus eliminating centralised control,

congestion and synchronisation points.

• Adaptive. To accommodate new input patterns in anticipation of such

patterns changing over time. This was achieved by facilitating the genera-

tion of new results based on the newly collected data and by extending meta

mining techniques to incorporate and combine them with existing results.

• Extendible. To incorporate new DM techniques or datasets. This was at-

tained via well-defined wrappers that enabled the decoupling of the frame-

work from DM techniques and data.

• Compatible. To facilitate the use of databases with different schemata.

This was attained through the definition and embedding of a specific Dis-

cretisation/Normalisation (DN) tool.

• Efficient. To make effective use of the system resources. This was achieved

by adapting effective DM methods (i.e. the use of special pruning methods

before and after the meta mining of results).

• Effective. To compute highly predictive and accurate results. This prop-

erty is attained by allowing the evaluation of the generated results and

the selection of the best results under various methods depending on the

particular task and the imposed constraints (e.g. classifier accuracy).

• Reusable. To improve software development productivity and reduce im-

plementation time.

144

• Portable. To execute on multiple platforms including Solaris, Windows

and Linux. The framework was built using Java technology and algorithm-

independent DM techniques.

A further important advantage of MADM is not to speed up the process, but to

be able to tap larger amounts of data whose owners are not willing, or legally

not allowed, to share data details. Privacy-preserving data mining allows the

investigation of distributed data sources without having to merge the data. As

an example, consider patient data. Generally speaking it is illegal for patients

data to be “advertised”, but using MADM, it may still be possible to detect

commonalities in (say) cancer cases.

The research described in this thesis has demonstrated the above properties of

MADM through the experimental implementation of EMADS and its application

in a number of DM scenarios.

The meta ARM scenario represented a novel extension of ARM where a meta

set of frequent itemsets, from a collection of component sets, which have been

generated in an autonomous manner without centralised control, is built. This

type of conglomerate was termed meta ARM so as to distinguish it from a number

of other related data mining research areas such as incremental and distributed

ARM. A number of meta ARM algorithms were described and compared: (i)

Bench Mark, (ii) Apriori, (iii) Brute Force, (iv) Hybrid 1 and (v) Hybrid 2.

The described experiments indicated, at least with respect to Meta ARM, that

EMADS offers positive advantages in that all the Meta ARM algorithms were

more computationally efficient than the bench mark algorithm.

The second scenario considered a data partition technique for parallel (and

distributed) ARM that made use of vertical/horizontal partitioning techniques

to distribute the input data amongst a number of agents. The proposed vertical

partitioning was facilitated by a set enumeration tree data structure (the T-tree),

and an associated mining algorithm (Apriori-T), that allows for computationally

effective distributed/parallel ARM when employed on EMADS. The experimen-

tal results obtained showed that the Tree Partitioning method described was

extremely effective in limiting the maximal memory requirements of the algo-

rithm, while its execution time scales only slowly and linearly with increasing

data dimensions. The scenario demonstrated how EMADS can be used to achieve

145

distributed/parallel data mining in a MADM context. In addition, the proposed

horizontal segmentation part of the scenario demonstrated that MADM facilitates

re-usability by reusing the previously developed meta ARM agents.

The use of EMADS was also illustrated using a classification scenario. The re-

sults demonstrated firstly that EMADS can usefully be adopted to produce a best

classifier from a selection of classifiers. Secondly, that the operation of EMADS

is not significantly hindered by agent communication overheads, although this

has some effect. Generation time, in most cases does not seem to be an issue, so

further classifier generator mining agents could easily be added. The results also

reinforced the often observed phenomenon that there is no single best classifier

generator suited to all kinds of data.

The main findings of the research may be summarised as follows: (i) the

protocols and communication mechanisms adopted are proven to be effective; (ii)

the use of wrappers has achieved simple extendibility; (iii) the techniques used to

support the sharing of recourse and expertises through the use of the facilitator

approach are proven to be effective; (iv) the mechanism used for the protection

of data privacy and intellectual property rights was proven to be effective; (v)

scalability and efficiency were addressed efficiently; (vi) MADM approach can be

viewed as an effective distributed and parallel environment; and (vii) flexibility

that allows non-expert users to perform data mining is supported.

In conclusion, this thesis presented an overall picture of the advantages offered

by MADM, an approach that advocates the integration of MAS and DM.

8.3 Future Work

The analysis and synthesis of the MADM challenges and issues clearly indicated

the need for, and the promising potential of, the enhancement of DM and the

creation of intelligent DM systems. More efforts are required to develop tech-

niques, systems, and case studies from foundational, technological, and practical

perspectives.

A foundation has thus been established for both data mining research and gen-

uine application based MADM. It is acknowledged that the current functionality

of EMADS is limited to classification and ARM, there is more work needed to-

wards increasing the diversity of mining tasks that EMADS can address. Future

146

extensions of EMADS can provide authentication capabilities, and fault toler-

ance. EMADS can also be extended with tools facilitating the data selection

problem. The data selection problem refers to the pre-processing, transforma-

tion and projection of the available data to expressive and informative features,

and is probably one of the hardest, but very important stages in the knowledge

discovery process. The process depends on the particular data mining task and

requires application domain knowledge. The current version of EMADS, assumes

well-defined schemata and datasets. The datasets that were used in the scenarios

presented in this thesis were generated and pre-processed in a separate off-line

process before being used in EMADS (although a data normalisation/discreti-

sation facility was incorporated into the data agent wrapper GUI). Introducing

data pre-processing agents could solve the incompatible schema problem. Recall

that working with heterogeneous databases has not been addressed in this thesis.

There are many other directions in which the work can (and is being) taken

forward. One interesting direction is to build on the wealth of distributed data

mining research that is currently available and progress this in a MAS context.

The entire EMADS system can also be made publicly available, to enhance its

scope and diversity. It is hoped that once the system is live other interested data

mining practitioners will be prepared to contribute algorithms and data.

147

Appendix A

EMADS Class Diagrams (UML
representation)

A.1 Main EMADS Packages Class Diagrams

(a) Users Class Diagram (b) Tasks Package Class Diagram

(c) Data Package Class Diagram (d) Common Package Class Diagram

Figure A.1: Main Packages Class Diagrams

148

A.2 Meta ARM Application Class Diagram

Figure A.2: Meta ARM Class Diagram

149

A.3 Parallel and Distributed ARM Application
Class Diagram

Figure A.3: Parallel/Distributed ARM Class Diagram

150

A.4 Classifier Generation Application Class Di-
agram

Figure A.4: Classifier Generation Class Diagram

151

Appendix B

EMADS Tutorial

B.1 Testing EMADS using Meta ARM

1. Go to http://www.csc.liv.ac.uk/~ali/emads/.

2. Download (emads.jar, jade.jar, jadeTools.jar, http.jar) files to your home

directory.

3. On your home directory, start the main container:

>> java −classpath jade.jar jade.Boot [−host “main−container host−

name”]1 − jade domain df autocleanup true − gui.

4. Start another container with EMADS data agent:

>> java − classpath jade.jar : emads.jar jade.Boot [−host “main −

container host − name”]1 − container d1 : data.DataAgent

this will create a data agent and launch the data agent GUI.

5. Use the data agent GUI to load a binary dataset file suitable for ARM and

then close the GUI.

6. Start another container with another EMADS data agent:

>> java − classpath jade.jar : emads.jar jade.Boot [−host “main −

container host − name”]1 − container d2 : data.DataAgent.

7. To add another containers with another EMADS data agents:

run the same command, but use different agent names (i.e. d3, d4, ...).

1Use -host host-name when you dispatch agents from remote machines

152

8. Start another container with an EMADS user agent:

>> java − classpath jade.jar : emads.jar jade.Boot [−host “main −

container host − name”]1 − container u1 : user.UserAgent.

9. Input support, and confidence; using the user agent GUI.

10. From the main menu choose “Gen. Frequent Sets”, click on one of the listed

Meta ARM tasks and wait for results.

B.2 Testing EMADS using Data Vertical Parti-
tioning

1. Go to http://www.csc.liv.ac.uk/~ali/emads/.

2. Download (emads.jar, jade.jar, jadeTools.jar, http.jar) files to your home

directory.

3. On your home directory, start the main container:

>> java −classpath jade.jar jade.Boot [−host “main−container host−

name”]2 − jade domain df autocleanup true − gui.

4. Start another container with EMADS data agent:

>> java − classpath jade.jar : emads.jar jade.Boot [−host “main −

container host − name”]2 − container d1 : data.DataAgent

this will create a data agent and launch the data agent GUI.

5. Use the data agent GUI to load a binary dataset file suitable for ARM and

then close the GUI.

6. Start another container with an EMADS user agent:

>> java − classpath jade.jar : emads.jar jade.Boot [−host “main −

container host − name”]2 − container u1 : user.UserAgent.

7. Input the number of partitions, support, and confidence; using the user

agent GUI.

8. From the main menu choose “Vertical Partitioning”, click on one “Gen. FIS

with Vertical Part.” and wait for results.
2Use -host host-name when you dispatch agents from remote machines

153

B.3 Testing EMADS using Data Horizontal Seg-
mentation

1. Go to http://www.csc.liv.ac.uk/~ali/emads/.

2. Download (emads.jar, jade.jar, jadeTools.jar, http.jar) files to your home

directory.

3. On your home directory, start the main container:

>> java −classpath jade.jar jade.Boot [−host “main−container host−

name”]3 − jade domain df autocleanup true − gui.

4. Start another container with EMADS data agent:

>> java − classpath jade.jar : emads.jar jade.Boot [−host “main −

container host − name”]3 − container d1 : data.DataAgent

this will create a data agent and launch the data agent GUI.

5. Use the data agent GUI to load a binary dataset file suitable for ARM and

then close the GUI.

6. Start another container with an EMADS user agent:

>> java − classpath jade.jar : emads.jar jade.Boot [−host “main −

container host − name”]3 − container u1 : user.UserAgent.

7. Input number of partitions, support, and confidence; using the user agent

GUI.

8. From the main menu choose “Horizontal Partitioning”. This will create a

number of data agents, according the number of partitions, assigning each

data partition to a data agent.

9. From the main menu choose “Gen. Frequent Sets”, click on one of the listed

Meta ARM tasks and wait for results.

B.4 Testing EMADS using Best Classifier Gen-
eration

1. Go to http://www.csc.liv.ac.uk/~ali/emads/.

3Use -host host-name when you dispatch agents from remote machines

154

2. Download (emads.jar, jade.jar, jadeTools.jar, http.jar) files to your home

directory.

3. On your home directory, start the main container:

>> java −classpath jade.jar jade.Boot [−host “main−container host−

name”]4 − jade domain df autocleanup true − gui.

4. Start another container with EMADS classifier agent:

>> java − classpath jade.jar : emads.jar jade.Boot [−host “main −

container host−name”]4 −container FOIL : classifier app.ClassifyFOILAgent.

5. Start another container with another EMADS classifier agent:

>> java − classpath jade.jar : emads.jar jade.Boot [−host “main −

container host−name”]4 −container TFPC : classifier app.ClassifyTFPCAgent.

6. To add another containers with another EMADS classifier agents: Run the

same command, but replace TFPC with CPAR, IGDT, RDT, or PRM (the

other available classifiers).

7. Start another container with an EMADS user agent:

>> java − classpath jade.jar : emads.jar jade.Boot [−host “main −

container host − name”]4 − container u1 : user.UserAgent.

8. Load data using the user agent GUI will create a data agent and launch the

data agent GUI.

9. Use the data agent GUI to load a binary dataset file suitable for classifica-

tion task the data file and then close the GUI.

10. Input support, confidence, and the number of classes; using the user agent

GUI.

11. From the main menu choose classify, click on “Generate Best Classifier”

and wait for results.

4Use -host host-name when you dispatch agents from remote machines

155

Bibliography

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between

sets of items in large databases. In Proceedings of the 1993 Association

for Computer Machinery (ACM) Special Interest Group on Management of

Data (SIGMOD) International Conference on Management of Data, pages

(207-216), 1993.

[2] R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning, and T. Bollinger.

The Quest Data Mining System. In Proceedings of the 2nd International

Conference Knowledge Discovery and Data Mining, (KDD), 1996.

[3] R. Agrawal and G. Psaila. Active Data Mining. In Proceedings of the

1st International Conference Knowledge Discovery in Data Mining, AAAI,

pages (3-8), 1995.

[4] R. Agrawal and J. Shafer. Parallel mining of association rules. In Proceed-

ings of the IEEE Transactions on Knowledge and Data Engineering 8(6),

pages (962-969), 1996.

[5] R. Agrawal and R. Srikant. Fast algorithm for mining association rules.

In Proceedings of the 20th International Conference on Very Large Data

Bases, Santiago de Chile, Chile, pages (487-499), 1994.

[6] I. Akyildiz, W. Su, Y. Sankara, and E. Cayirci. A survey on sensor net-

works. In IEEE Communications Magazine, pages (102-114), 2002.

[7] K. A. Albashiri, F. Coenen, and P. Leng. EMADS: An Extendible Multi-

Agent Data Miner, volume XXIII, pages (263-276). Research and Develop-

ment in Intelligent Systems, AI, Springer, London, England, 2008.

156

[8] K. Ali, S. Manganaris, and R. Srikant. Partial classification using associa-

tion rules. In Proceedings of the Third International Conference on Knowl-

edge Discovery and Data Mining (KDD, AAAI Press), Newport Beach, CA,

USA, pages (115-118), 1997.

[9] W. Aref, M. lfeky, and A. Elmagarmid. Incremental, Online, and Merge

Mining of Partial Periodic Patterns in Time-Series Databases, volume

16(3), pages (332-342). In Proceedings of the IEEE Transaction in Knowl-

edge and Data Engineering, 2004.

[10] H. Baazaoui, S. Faiz, R. BenHamed, and H. BenGhezala. A Framework

for data mining based multi-agent: an application to spatial data. In Pro-

ceedings of the 3rd World Enformatika Conference (WEC), Avril, Istanbu,

Turkey, 2005.

[11] B. Babcock, S. Babuand M. Datar, R. Motwani, and J. Widom. Models

and Issues in Data Stream Systems. In Proceedings of the 21th Association

for Computer Machinery (ACM) Special Interest Group on Management of

Data (SIGMOD) Symposium on Principles of Database Systems (PODS),

2002.

[12] S. Bailey, R. Grossman, H. Sivakumar, and A. Turinsky. Papyrus: a system

for data mining over local and wide area clusters and super-clusters. In

Proceedings of the Conference on Supercomputing, ACM Press, pages (50-

63), 1999.

[13] J. Balter, A. Labarre-Vila, D. Zibelin, and C. Garbay. A Platform Integrat-

ing Knowledge and Data Management for EMG Studies. In Proceedings of

the Artificial Intelligence in Medicine (AIME), 2101, pages (417-420), 2001.

[14] J. Baumann, F. Hohl, K. Rothermel, and M. StraBer. MOLE - Concepts

of a Mobile Agent System. In Proceedings of the World Wide Web, 1(3),

pages (123-137), 1998.

[15] C. Baumer and T. Magedanz. GrassHopper 2, an intelligent mobile agent

platform written in 100% pure Java. In Proceedings of the 3rd Interna-

tional Workshop on Intelligent Agents for Telecommunication Applications

(IATA), Springer LNAI 1699, Berlin, Germany, pages (19-32), 1999.

157

[16] F. Bellifemine, G. Cairo, and D. Greenwood. Developing Multi-Agent Sys-

tems with JADE. Wiley Series in Agent Technology, ISBN: 9780470057476,

2007.

[17] F. Bellifemine, A. Poggi, and G. Rimassi. JADE: A FIPA-Compliant agent

framework. In Proceedings the Practical Applications of Intelligent Agents

and Multi-Agents, pages (97-108), 1999. http://www.jade.tilab.com.

[18] C. Blake and C. Merz. UCI repository of machine learning databases. Irvine,

CA: University of California, Department of Information and Computer

Science, 1998. http://archive.ics.uci.edu/ml/.

[19] R. Bordini, L. Braubach, M. Dastani, A. Seghrouchni, J. Sanz, J. Leite,

G. OHare, A. Pokahr, and A. Ricci. A survey of programming languages and

platforms for multi-agent systems. In Proceedings of the IEEE International

Conference on Cognitive Informatics, pages (33-44), 2006.

[20] R. Bose and V. Sugumaran. IDM: An Intelligent Software Agent Based Data

Mining Environment. In Proceedings of the IEEE International Conference

on Systems, Man, and Cybernetics, 1998.

[21] J. Bota, A. Gmez-Skarmeta, M. Valds, and A. Metala. A meta-learning

architecture. In Proceedings of the Computational Intelligence. Theory and

Applications, 2206/2001, pages (688-698), 2001.

[22] L. Breiman. Bagging Predictors, volume 24(3), pages (123-140). In Machine

Learning Archive, 1996.

[23] L. Cao, C. Luo, and C. Zhang. Agent-Mining Interaction: An Emerging

Area. In Proceedings of the AIS-ADM, LNAI 4476, Springer - Verlag,

Berlin, Germany, pages (60-73), 2007.

[24] B. Chandrasekaran and T. Johnson. Generic tasks and task structures: His-

tory, critique and new directions. In Proceedings of the Second Generation

Expert Systems, Springer - Verlag, Berlin, Germany, pages (232-272), 1993.

[25] D. Cheung and Y. Xiao. Effect of Data Distribution in Parallel Mining of

Associations. In Proceedings of the Data Mining and Knowledge Discovery

3(3), pages (291-314), 1999.

158

[26] K. Chmiel, D. Tomiak, M. Gawinecki, P. Karczmarek, M. Szymczak, and

M. Paprzycki. Testing the Efficiency of JADE Agent Platform. In Pro-

ceedings of the Third International Symposium on Parallel and Distributed

Computing/Third International Workshop on Algorithms, Models, Frame-

works and Tools for Parallel Computing on Heterogeneous Networks (IS-

PDC/HeteroPar), pages (49-56), 2004.

[27] G. Christopher and B. Marks. Extensible Multi-Agent Sys-

tem for Heterogeneous Database Association Rule Min-

ing and Unification. Master’s thesis, Air University, 1994.

http://people.cis.ksu.edu/s̃deloach/publications/Thesis/marks.pdf.

[28] F. Coenen and P. Leng. Optimising Association Rule Algorithms Using

Itemset Ordering. In Proceedings of the AI Conference, Research and De-

velopment in Intelligent Systems XVIII, Springer, pages (53-66), 2001.

[29] F. Coenen, P. Leng, and S. Ahmed. T-Trees, Vertical Partitioning, and

Distributed Association Rule Mining. In Proceedings of the IEEE Interna-

tional Conference on Data Mining (ICDM), Florida, eds. X Wu, A Tuzhilin

and J Shavlik: IEEE Press, pages (513-516), 2003.

[30] F. Coenen, P. Leng, and S. Ahmed. Data structure for association rule min-

ing: T-trees and p-trees. In Proceedings of IEEE Transactions on Knowl-

edge and Data Engineering 16(6), pages (774-778), 2004.

[31] F. Coenen, P. Leng, and G. Goulbourne. Tree Structures for Mining Asso-

ciation Rules, volume 8(1), pages (25-51). In the Journal of Data Mining

and Knowledge Discovery, 2004.

[32] F. Coenen, P. Leng, and L. Zhang. Threshold Tuning for Improved Clas-

sification Association Rule Mining. In Proceeding of the Pacific-Asia Con-

ference on Knowledge Discovery and Data Mining (PAKDD), LNAI 3158,

Springer, pages (216-225), 2005.

[33] S. DeLoach. Analysis and Design using MaSE and agentTool. In Pro-

ceedings of the 12th Midwest Artificial Intelligence and Cognitive Science

Conference (MAICS), 2001.

159

[34] S. DeLoach and M. Wood. Developing Multiagent Systems with agentTool.

In Proceedings of the Intelligent Agents VII. Agent Theories, Architectures,

and Languages - 7th International Workshop, ATAL, Boston, MA, USA,

2000.

[35] G. DiFatta and G. Fortino. A customizable multi-agent system for dis-

tributed data mining. In Proceedings of the 2007 ACM symposium on

applied computing, pages (42-47), 2007.

[36] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances

in Knowledge Discovery and Data Mining. In Proceedings of the Association

for the Advancement of Artificial Intelligence(AAAI) Press/MIT, 1996.

[37] Foundation for Intelligent Physical Agents. FIPA 2002 Specification.

Geneva, Switzerland, 2002. http://www.fipa.org/specifications/index.html.

[38] Y. Freund and R. Schapire. Experiments with a New Boosting Algorithm.

In Proceedings of the The International Machine Learning Society (ICML),

pages (148-156), 1996.

[39] Y. Fu, W. Ke, and J. Mostafa. Automated Text Classification Using a

Multi-Agent. In Proceedings of the 5th ACM/IEEE-CS Joint Conference

on Publication, pages (157-158), 2005.

[40] A. Garro and L. Palopoli. An XML Multi-agent System for E-learning and

Skill Management. In Proceedings of the Agent Technologies, Infrastruc-

tures, Tools, and Applications for E-Services, pages (283-294), 2002.

[41] M. Genesereth and S. Ketchpel. Software Agents. In Proceedings of the

Communications of the Association for Computer Machinery (ACM), 37(7),

pages (48-53), 1994.

[42] C. Giannella, R. Bhargava, and R. Kargupta. Multi-agent Systems and

Distributed Data Mining. In Proceedings of the Lecture Notes in Computer

Science, Springer-Verlag, Berlin, 2004, ISSU 3191, pages (1-15), 2004.

[43] V. Gorodetsky, O. Karsaev, and V. Samoilov. Infrastructural Issues for

Agent-Based Distributed Learning. Proceedings of IADM, IEEE Computer

Society Press, 2006.

160

[44] V. Gorodetsky, O. Karsaeyv, and V. Samoilov. Multi-agent technology for

distributed data mining and classification. In Proceedings of the Inter-

national Conference on Intelligent Agent Technology, IEEE/WIC, pages

(438-441), 2003.

[45] G. Goulbourne, F. Coenen, and P. Leng. Algorithms for Computing As-

sociation Rules Using A Partial-Support Tree. In Proceedings of the nine-

teenth Annual International Conference of the British Computer Society’s

Specialist Group on Knowledge Based Systems (ES99), Springer, London,

England, pages (132-147), 1999.

[46] R. Grossman and A. Turinsky. A framework for finding distributed data

mining strategies that are intermediate between centralized strategies and

in-place strategies. In Proceedings of the KDD Workshop on Distributed

Data Mining, 2000.

[47] E. Han, G. Karypis, and V. Kumar. Scalable Parallel Data Mining for

Association Rules. In Proceedings of the ACM(Association for Computer

Machinery)- Special Interest Group on Management of Data (SIGMOD),

International Conference on Management of Data, ACM Press, pages (277-

288), 1997.

[48] J. Han and M. Kamber. Data Mining: Concepts and Techniques. ISBN:

1-55860-489-8, Morgan Kaufman Publishers, San Francisco, CA, (Second

Edition), 2006.

[49] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach. In Proceedings of the ACM

Special Interest Group on Management of Data (SIGMOD) International

Conference Management of Data(SIG MOD), pages (53-87), 2004.

[50] J. Han, J. Pei, and Y. Yiwen. Mining Frequent Patterns Without Candi-

date Generation. In Proceedings of the ACM (Association for Computer

Machinery)- Special Interest Group on Management of Data (SIGMOD)

International Conference on Management of Data, pages (1-12), 2000.

[51] D. Hand. Construction and Assessment of Classification Rules. ISBN:

0472965839, John Wiley and Sons, 1997.

161

[52] D. Hand, H. Mannila, and P. Smyth. Principals of Data Mining. MIT

press, Cambridge, Mass, 2001.

[53] T. Hastie and R. Tibshirani. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. ISBN:978-0-387-84857-0, Second Edi-

tion, Springer - Verlag, Berlin, Germany, 2001.

[54] R. Ivancsy, F. Kovacs, and I. Vajk. An Analysis of Association Rule Mining

Algorithms. In Proceedings of the Fourth International ICSC Symposium

on Engineering of Intelligent Systems (EIS), Island of Madeira, Portugal,

pages (774-778), 2004.

[55] JDM2. Java Data Mining (JDM). SUN’s Java Community Process listed as

JSR-73 and JSR-247 for JDM 2.0, 1995. https://datamining.dev.java.net/.

[56] H. Jeon, C. Petrie, and M. Cutkosky. JATLite: A Java Agent Infrastructure

with Message Routing. In Proceedings of the IEEE Internet Computing

(4)2, pages (87-96), 2000.

[57] N. Jiarui. A human-friendly MAS for mining stock data. In Proceedings of

the IEEE International conference on Web Intelligence, Hong Kong, 2006.

[58] T. Joachims. Text categorization with support vector machines: Learning

with many relevant features. In Proceedings the 10th European Conference

on Machine Learning (ECML), Springer Verlag, pages (80-91), 1998.

[59] M. Kamber, L. Winstone, G. Wan, S. Shanand, and H. Jiawei. Generaliza-

tion and Decision Tree Induction: Efficient Classification in Data Mining.

In Proceedings of the Seventh International Workshop on Research Issues

in Data Engineering, pages (111-120), 1997.

[60] H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, and M. Klein.

VEDAS: A Mobile Distributed Data Stream Mining System for Real-Time

Vehicle Monitoring. In Proceedings of the 2004 the Second Society for

Industrial and Applied Mathematics (SIAM) International Conference on

Data Mining, 2004.

162

[61] H. Kargupta and P. Chan. Advances in Distributed and Parallel Knowledge

Discovery. In Proceedings of the Advances in Distributed and Parallel

Knowledge Discovery, MIT/AAAI press, Menlo Park, CA, 2000.

[62] H. Kargupta, I. Hamzaoglu, and B. Stafford. Scalable, Distributed Data

Mining Using an Agent Based Architecture. In Proceedings of the Knowl-

edge Discovery and Data Mining, AAAI Press, pages (211-214), 1997.

[63] H. Kargupta, B. Hoon, D. Hershberger, and E. Johnson. Collective Data

Mining: A New Perspective Toward Distributed Data Mining. In Proceed-

ings of the Advances in Distributed and Parallel Knowledge Discovery,

MIT/AAAI Press, 1999.

[64] H. Kargupta and K. Sivakumar. Existential Pleasures of Distributed Data

Mining. In Data Mining: Next Generation Challenges and Future Direc-

tions. In Proceedings of the Advances in Distributed and Parallel Knowl-

edge Discovery, MIT/AAAI Press, Cambridge, MA, New York, 2004.

[65] T. Kawamura, N. Yoshioka, T. Hasegawa, A. Ohsuga, and S. Honiden.

Bee-gent: Bonding and Encapsulation Enhancement Agent Framework for

Development of Distributed Systems. In Proceedings of the 6th Asia-Pacific

Software Engneering Conference, 1999.

[66] M. Kaya and R. Alhajj. Fuzzy OLAP association rules mining-based mod-

ular reinforcement learning approach for multiagent systems, volume 35,

pages (326-338). In Proceedings of the IEEE Transactions on Systems,

Man and Cybernetics, Part B, Issue 2, 2005.

[67] B. Kegl and G. Lapalme. Performance Evaluation of an Agent Based Dis-

tributed Data Mining System. In Proceedings of AI 2005, LNAI 3501,

Springer-Verlag Berlin, Heidelberg, Germany, pages (25-32), 2005.

[68] D. Kerr, D. O’Sullivan, R. Evans, R. Richardson, and F. Somers. Ex-

periences using Intelligent Agent Technologies as a Unifying Approach to

Network and Service Management. In Proceedings of the Intelligence in Ser-

vices and Networks: Technology for Ubiquitous Telecom Services, Antwerp,

Belgium, 1430, pages (115-126), 1998.

163

[69] M. Klusch, S. Lodi, and M. Gianluca. The role of agents in distributed data

mining: issues and benefits. In Proceedings of the IEEE/WIC International

Conference on Intelligent Agent Technology (IAT), pages (211-217), 2003.

[70] M. Klusch, S. Lodi, and G. Moro. Agent-based Distributed Data Mining:

The KDEC Scheme. In Proceedings of the Intelligent Information Agents

The AgentLink Perspective. 2586, Springer-Verlag, Berlin, Germany, 2003.

[71] J. Koh and S. Shieh. An efficient approach to maintaining association

rules based on adjusting FP-tree structures. In Proceedings of the Database

Systems for Advanced Applications (DASFAA) 2004, pages (417-424), 2004.

[72] C. Leung, Q. Khan, and T. Hoque. CanTree: A tree structure for effi-

cient incremental mining of Frequent Patterns. In Proceedings of the IEEE

International Conference on Data Mining (ICDM), pages (274-281), 2005.

[73] W. Li, J. Han, and J. Pei. CMAR: Accurate and Efficient Classification

Based on Multiple Class-Association Rules. In Proceedings of the IEEE

International Conference on Data Mining (ICDM), pages (369-376), 2001.

[74] X. Li, Z-H. Deng, and S-W Tang. A Fast Algorithm for Maintenance of As-

sociation Rules in Incremental Databases. In Proceedings of the Advanced

Data Mining and Applications (ADMA), Springer-Verlag LNAI 4093, pages

(56-63), 2006.

[75] B. Liu, W. Hsu, and Y. Ma. Integrating Classification and Association Rule

Mining. In Proceedings of the Association for the Advancement of Artificial

Intelligence (AAAI), New York, USA, pages (80-86), 1998.

[76] P. Luo, R. Huang, Q. He, F. Lin, and Z. Shi. Execution engine of meta-

learning system for kdd in multi-agent environment. Technical report, In-

stitute of Computing Technology, Chinese Academy of Sciences, 2005.

[77] P. Mariano, C. Pereira, L. Correira, R. Ribeiro, V. Abramov, N. Szirbik,

J. Goossenaerts, T. Marwala, and P. Wilde. Simulation of a trading multi-

agent system, volume 5, pages (3378-3384). In Proceedings of the IEEE

International Conference on Systems, Man, and Cybernetics, Springer, Lon-

don, England, 2001.

164

[78] D. Martin, A. Cheyer, and D. Moran. The Open Agent Architecture: A

Framework for Building Distributed Software Systems, volume 13, pages

(91-128). In Proceedings of the Applied Artificial Intelligence, 1998.

[79] T. Marwala and E. Hurwitz. Multi-Agent Modelling using intelligent agents

in a game of Lerpa. eprint arXiv:0706.0280, 2007.

[80] J. Mayer, I. Melzer, and F. Schweiggert. Lightweight Plug-In-Based Appli-

cation Development. In Lecture Notes in Computer Science Springer Berlin

/ Heidelberg, volume 2591, pages (87-102), 2003.

[81] S. McConnell and D. Skillicorn. Building predictors from vertically dis-

tributed data. In Proceedings of the 2004 conference of the Centre for

Advanced Studies conference on Collaborative research 04-07. Markham,

Ontario, Canada, pages (150-162), 2004.

[82] METAL. METAL Project. Esprit Project METAL (no.26.357), 2002.

http://www.metal-kdd.org.

[83] D. Michie, D. Spiegel halter, and C. Taylor. Machine Learning, Neural and

Statical Classification. In Ellis Horwood Series in Artificial Intelligence,

New York, 1994.

[84] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman,

K. Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran,

and J. White. MASIF The OMG Mobile Agent System Interoperability

Facility. In Proceedings of the 2nd International Workshop Mobile Agents

(MA), Lecture Notes in Computer Science, Springer 1477, Stuttgart, Ger-

many, pages (50-67), 1998.

[85] S. Mohan, E. Park, and Y. Han. Association Rule-Based Data Mining

Agents for Personalized Web Caching, volume 02, pages (37-43). In Pro-

ceedings of the 29th Annual international Computer Software and Appli-

cations Conference, IEEE Computer Society, Washington, DC, 2005.

[86] P. Naur. Revised Report on the Algorithmic Language ALGOL 60, volume 3

No.5, pages (299-314). In Communications of the Association for Computer

Machinery (ACM), 1960.

165

[87] H. Nwana, D. Ndumu, and L. Lee. ZEUS: An advanced Tool-Kit for En-

gineering Distributed Multi-Agent Systems. In Proceedings of the Practical

Aspects of Declarative Languages, London, England, pages (377-391), 1998.

[88] P. O’Brien and R. Nicol. FIPA - towards a standard for software agents,

volume 16, no.3, pages (51-59). BT Technology Journal, 1998.

[89] R. Pairceir, S. McClean, and B. Scotney. Discovery of multi-level rules

and exceptions from a distributed database. In Proceedings of the sixth

ACM Special Interest Group on Management of Data (SIGKDD) interna-

tional conference on Knowledge discovery and data mining, Boston, Mas-

sachusetts, USA, pages (523-532), 2000.

[90] B. Park and H. Kargupta. Distributed Data Mining: Algorithms, Systems,

and Applications. In The Handbook of Data Mining, edited by N. Ye,

Lawrence Erlbaum Associates, pages (341-358), 2003.

[91] S. Parthasarathy, M. Zaki, and W. Li. Memory Placement Techniques

for Parallel Association Mining. In Proceedings of the 4th International

Conference on Knowledge Discovery in Databases (KDD), AAAI Press,

pages (304-308), 1998.

[92] S. Peng, S. Mukhopadhyay, R. Raje, M. Palakal, and J. Mostafa. A Com-

parison Between Single-agent and Multi-agent Classification of Documents.

In Proceedings of 15th International Parallel and Distributed Processing

Symposium, pages (935-944), 2001.

[93] D. Pop, V. Negru, and C. Sru. Multi-agent architecture for knowledge

discovery. In Proceedings of the 8th International Workshop on Symbolic

and Numeric Algorithms for Scientific Computing, SYNASC, Timisoara,

Romania, 2006.

[94] S. Poslad, P. Buckle, and R. Hadingham. The FIPA-OS agent platform:

Open Source for Open Standards. published at PAAM2000, Chichester,

England, 2000. http://sourceforge.net/projects/fipa-os/files/.

[95] A. Prodromides, P. Chan, and S. Stolfo. Meta-Learning in Distributed Data

Mining Systems: Issues and Approaches. In Proceedings of the Advances

166

in Distributed and Parallel Knowledge Discovery. AAAI Press/The MIT

Press, pages (81-114), 2000.

[96] F. Provost. Distributed Data Mining: Scaling Up and Beyond. In Pro-

ceedings of the Advances in Distributed and Parallel Knowledge Discovery,

MIT/AAAI Press, Cambridge, MA, New York. pages (3-27), 1999.

[97] J. Quinlan. Induction of decision trees. In Proceedings of the Machine

Learning 1(1), pages (81-106), 1986.

[98] J. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers, San Francisco, CA, USA. (ISBN 1-55860-238-0), 1993.

[99] J. Quinlan and R. Cameron-Jones. FOIL: A Midterm Report. In Proceed-

ings of The European Conference on Machine Learning (ECML), Vienna,

Austria, pages (3-20), 1993.

[100] I. Rudowsky. Intelligent Agents, volume 14, pages (275-290). In Proceed-

ings of the Communications of the Association for Information Systems,

Springer, London, England, 2004.

[101] R. Schollmeier. A Definition of Peer-to-Peer Networking for the Classifica-

tion of Peer-to-Peer Architectures and Applications. IN Proceedings of the

First International Conference on Peer-to-Peer Computing (P2P) IEEE,

2001.

[102] E. Shakshuki. Methodology for Evaluating Agent Toolkits. In Proceedings

of the Knowledge-Based Intelligent Information and Engineering Systems,

Springer, 4694/2010, pages(941-949), 2005.

[103] S. Sharples, C. Lindemann, and O. Waldhorst. A Multi-Agent Architecture

For Intelligent Building Sensing and Control. In Proceedings of the Inter-

national Sensor Review Journal, Yesha, MIT/AAAI Press, pages (3-27),

2000.

[104] Z. Shi, H. Zhang, Y. Cheng, Y. Jiang, Q. Sheng, and Z. Zhao. Mage:

An agent-oriented programming environment. In Proceedings of the IEEE

International Conference on Cognitive Informatics, pages (250-257), 2004.

167

[105] T. Shintani and M. Kitsuregawa. Hash Based Parallel Algorithms for Min-

ing Association Rules. In Proceedings of the 4th International Conference

on Parallel and Distributed Information Systems, (PIDS), IEEE Computer

Society Press, pages (19-30), 1996.

[106] Y. Shoham. Agent-oriented programming, volume 60(1), pages (51-92). In

Proceedings of the Artificial Intelligence, Elsevier Science Publishers Ltd.

Essex, England, 1993.

[107] J. Silva, M. Klusch, S. Lodi, and G. Moro. Privacy-preserving agent-based

distributed data clustering. In Proceedings of the Web Intelligence and

Agent Systems 4(2), pages (221-238), 2006.

[108] Munindar P. Singh. Write Asynchronous, Run Synchronous. In Proceedings

of the IEEE Internet Computing, 3(2), pages (4-5), 1999.

[109] S. Sohn. Meta Analysis of Classification Algorithms for Pattern Recognition.

In Proceedings of the IEEE Transactions on PAMI 2111, pages (1137-1144),

1999.

[110] R. Stallman. EMACS the extensible, customizable self-documenting display

editor, volume 16(6), pages (147-156). In ACM (Association for Computer

Machinery) Special Interest Group on Management of Data Notices, New

York, NY, USA, 1981.

[111] S. Stolfo, A. Prodromidis, S. Tselepis, and W. Lee. JAM: Java Agents for

Meta-Learning over Distributed Databases. In Proceedings of the Interna-

tional Conference Knowledge Discovery and Data Mining, pages (74-81),

1997.

[112] K. Sycara, A. Pannu, M. Williamson, and D. Zeng. Distributed Intelligent

Agents, volume 11(6), pages (36-46). IEEE Expert, 1996.

[113] A. Symeonidis and P. Mitkas. Agent Intelligence Through Data Mining,

volume XXVI, pages (0-206). In Proceedings of the Multi-agent Systems,

Artificial Societies, and Simulated Organizations, 2006.

168

[114] Reticular Systems. AgentBuilder - An integrated Toolkit for Construct-

ing Intelligence Software Agents. Acronymics, Inc., 1999. Available at

http://www.agentbuilder.com.

[115] M. Tamura and M. Kitsuregawa. Dynamic Load Balancing for Parallel

Association Rule Mining on Heterogeneous PC Cluster Systems. In Pro-

ceedings of the 25th Very Large Data Bases (VLDB) Conference, Morgan

Kaufman, pages (162-173), 1999.

[116] S. Thomas. The PLACA Agent Programming Language. In Lecture Notes in

Artificial Intelligence, Springer-Verlag, Berlin, Germany, pages (355-370),

1994.

[117] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An efficient algorithm

for the incremental updation of association rules. In Proceedings of the

3rd Association for Computer Machinery (ACM) Special Interest Group on

Management of Data (SIG) International Conference on Knowledge Dis-

covery and Data Mining, pages (263-266), 1997.

[118] K. Ting and I. Witten. Stacking Bagged and Dagged Models. In Proceed-

ings in the fourteenth international Conference on Machine Learning, San

Francisco, CA, pages (367-375), 1997.

[119] B. van Aardt and T. Marwala. A Study in a Hybrid Centralised-Swarm

Agent Community. In Proceedings of the IEEE 3rd International Confer-

ence on Computational Cybernetics, Mauritius, pages (169-74), 2005.

[120] A. Veloso, W. Meira, B. deCarvalho, M. Possas, S. Parthasarathy, and

M. Zaki. Mining Frequent Itemsets in Evolving Databases. In Proceed-

ings of the Second Society for Industrial and Applied Mathematics (SIAM)

International Conference on Data Mining (SDM), 2002.

[121] M. Vigder and J. Dean. An architectural approach to building systems from

COTS software components. In Proceedings of the Centre for Advanced

Studies Conference on Collaborative research, Toronto, Ontario, Canada,

pages (131-143), 1997.

169

[122] R. Vilalta, G. Giraud-Carrier, P. Brazdil, and C. Soares. Using Meta-

Learning to Support Data Mining. International Journal of Computer Sci-

ence and Applications, IJCSA, 1(1), pages (31-45), 2004.

[123] T. Wagner. An Agent-Oriented Approach to Industrial Automation Sys-

tems. In Proceedings of the Agent Technologies, Infrastructures, Tools,

and Applications for E-Services, pages (314-328), 2002.

[124] WEKA. Data Mining Software in Java. The University of Waikato, New

Zealand, 1993. http://www.cs.waikato.ac.nz/ ml/weka/.

[125] I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations. ISBN: 1-55860-552-5, Morgan

Kaufman Publishers, San Fransisco, 1999.

[126] M. Wooldridge. An Introduction to Multi-Agent Systems. ISBN-10:

0470519460, John Wiley and Sons (Chichester, England), 2003.

[127] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda,

G. McLachlan, A. Ng, B. Liu, P. Yu, Z. Zhou, M. Steinbach, J. Hand, and

D. Steinberg. Top 10 Algorithms in Data Mining, Knowledge and Informa-

tion Systems, volume 14, pages (1-37). In Proceedings of the Knowledge

and Information Systems, Springer-Verlag, London Limited, 2008.

[128] X. Yin and J. Han. CPAR: Classification based on Predictive Associa-

tion Rules. In Proceedings the Second Society for Industrial and Applied

Mathematics (SIAM) International Conference on Data Mining (SDM), San

Fransisco, CA, pages (331-335), 2003.

[129] M. Zaki. Parallel and Distributed Association Mining: A Survey, volume

7(4), pages (14-25). In the IEEE Concurrency, 1999.

[130] M. Zaki. Parallel and Distributed Association Mining: An Introduction.

In Proceedings of the Large-Scale Parallel Data Mining (Lecture Notes in

Artificial Intelligence 1759), Springer-Verlag, Berlin, Germany, pages (1-

23), 2000.

170

[131] Z. Zhang, C. Zhang, and S. Zhang. An Agent-Based Hybrid Framework for

Database Mining. In Proceedings of the Applied Artificial Intelligence 17,

pages (383-398), 2003.

171

