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1 INTRODUCTION

As we have seen in preceding chapters, the worst case complexity of basic reasoning tasks,
such as deciding the satisfiability of a modal formula, is at least NP-complete for almost all
modal logics. Moreover, for logics extended with features that are useful in practice, the worst
case complexity can be much higher, e.g., ExpTime-complete for Kn extended with non-logical
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axioms (background theories), and NExpTime-complete for Kn extended with converse modal-
ities, graded modalities and nominals.

Some may regard these results as discouraging and the question arises whether automated
computation with such logics can be feasible in practice. Fortunately, the kinds of pathologi-
cal formulae/theories that give rise to these worst case results seem to be rarely encountered in
realistic applications, and this has allowed for the successful development and deployment of
automated reasoning systems for modal logics and their notational variant, description logics;
see Chapter 13 of this handbook. Applications of such systems include, e.g., multi-agent sys-
tems [53, 60, 196], configuration [137], conceptual modelling [73], information integration [32],
and ontology tools and applications [125, 131, 167, 189, 138, 197].

Even for application derived formulae/theories, however, naive implementations of theoretical
proof systems, such as the tableau calculi presented in Chapter 2 of this handbook, are unlikely to
be of practical utility. As pointed out in [40], without the use of an analytic cut rule, the minimal
length of proofs using these calculi can exceed that of proofs using the truth table method for
certain propositional (and modal) formulae. Further, not only is it important that short proofs
exist, but also how we go about finding a proof or a counter-model. Much of the work presented
in this chapter deals with techniques that reduce the size of the search space or help to traverse the
search space more efficiently. Successful modern reasoning systems crucially employ specialised
reasoning techniques along with optimisations to dramatically improve typical case performance;
cf. for example [85, 90, 97, 115, 116, 158, 159]. In this chapter, we focus on reasoning and
optimisation techniques used in tableau-based algorithms and translation-based methods.

Translation-based methods make use of the fact that a wide variety of modal logics can be
translated into first-order logic; in fact, they can be considered as characterising certain frag-
ments of first-order logic as explained in Section 2 of Chapter 1 of this handbook. To the trans-
lated modal formulae, we can apply first-order reasoning methods, in particular, refinements of
resolution [16]. Using this combination of a translation method and resolution has some obvious
advantages. Any modal logic which can be embedded into first-order logic can be treated. The
translations are straightforward, and can be performed in time O(n log n), so the engineering
effort is minimal. For the resolution part, standard resolution provers can be used, or otherwise
they can be used with small adaptations. Modern resolution provers [169, 183, 194] are among
the most sophisticated and fastest first-order logic theorem provers currently available. The trans-
lation method is generic, it can handle first-order modal logics, undecidable modal logics, and
combinations of modal and non-modal logics. In all cases, soundness and completeness of the
method is immediate from results showing that the translation is satisfiability equivalence pre-
serving and the soundness and completeness of the resolution calculus for first-order logic. The
semi-decidability of first-order logic and the behaviour of first-order resolution on first-order for-
mulae does not give us, however, any immediate insight into the modal fragment of first-order
logic, which certainly is decidable, or the behaviour of first-order resolution on translated modal
formulae. While termination of a resolution derivation from a translated modal formula is not
always guaranteed, there are various ways, using different translations and different refinements
of resolution, of obtaining translation-based decision procedures. In Section 3, we discuss some
of these approaches and illustrate them using the modal logics Kn, K4n, KBn, K�n (Kn with
converse modalities), and KB4n. Also, using the modal logic Kn, we want to provide some
fundamental understanding of how modern resolution provers work in general, what kind of op-
timisations are available, and how they can be used to provide effective and practical decision
procedures for modal logics.



Computational Modal Logic 183

Tableau-based algorithms are closely related to the prefixed tableau systems presented in Sec-
tion 6 of Chapter 2 of this handbook. In Section 4, we first explain the exact relationship between
the two before describing a tableau algorithm which decides the satisfiability of formulae in the
basic multi-modal logic Kn. We then discuss implementation and optimisation techniques which
can be used to turn this tableau algorithm into an effective and practical decision procedure for
Kn. Following the same structure, we also describe tableau-based algorithms for the modal
logics K4n, Kn with non-logical axioms, K�n , and their combinations and discuss implementa-
tion issues of those algorithms. Whereas the Kn tableau algorithm terminates “automatically”,
we use certain cycle detection mechanisms to ensure termination for other modal logics. It can
be easily seen that these mechanisms must be chosen carefully to preserve correctness of the
algorithm and, at the same time, to enable termination as soon as possible so as to avoid an
unnecessarily long search. Interestingly, it has been shown by state of the art description logic
reasoners [159, 90, 160] that such tableau algorithms are amenable to optimisation, and that they
behave better than their worst-case complexity or that of the corresponding reasoning problem
suggest: they implement non-deterministic double exponential decision procedures for logics
that are ExpTime-complete.

In Section 5, we give an overview of alternative computational approaches to the satisfiability
problem in modal logics. These include automata-based algorithms, direct resolution, the inverse
method, and sequent-based approaches. In Section 6, we survey reasoning problems other than
satisfiability and provability which are relevant for applications of modal logics, namely, model
checking, proof checking, and computing correspondence properties for modal axiom schemata.
Finally, we conclude the chapter with a brief review and discussion of current and future research.

2 SYNTAX, SEMANTICS, AND REASONING PROBLEMS OF MODAL LOGICS

Throughout this chapter, we use a notation that is compatible with the one presented in Chapter 1
of this handbook. We will use the symbols p, q, pi, qi, . . . for propositional variables. Here, we
will be concerned with extensions and variants of the multi-modal logic Kn. The set of Kn

formulae is the smallest set that contains all propositional variables, is closed under Boolean
operators, and contains [i]ψ and 〈i〉ψ for each 1 ≤ i ≤ n and each Kn formula ψ. Formulae of
the form [i]ψ and 〈i〉ψ are called box formulae and diamond formulae, respectively. In different
sections, we will consider different normal forms of Kn formulae, and thus we are generous
here and allow all kinds of Boolean operators and abbreviations, e.g. ∧, ∨, ¬, →, � (for any
tautology), ⊥ (for ¬�), etc.

As usual, the semantics of Kn is defined in terms of relational, Kripke structures or frames.
A frame is a tuple 〈W,R〉 of a non-empty set W (of worlds) and a mapping R from natural
numbers i, 1 ≤ i ≤ n to binary relations over W , thus R(i) ⊆ W ×W . Here and in the rest
of the chapter, we use Ri as an abbreviation of R(i), and we say that w is i-accessible from v
if Ri(v, w). A model is given by a triple M = 〈W,R, V 〉, where 〈W,R〉 is a frame and V is a
mapping from propositional variables to subsets of W . The notion of a formula ψ being true in
a model M at a world w ∈ W is inductively defined as follows (we omit the definition for most
Boolean operators).


