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1 INTRODUCTION

We have an interest in those modal formulas that are valid, relative to some suitable
notion of validity. But verifying directly that a formula meets a validity condition is
generally non-constructive. In part to get around this non-constructivity, formal proof
procedures have been created, using a rich variety of mechanisms. A formal proof is a
finitary certificate of validity for a formula, and a proof procedure is a specification of
the requirements for being a proof. A proof procedure is sound if only valid formulas
have proofs—we probably would say an unsound proof procedure is simply not a proof
procedure. A proof procedure is complete if all valid formulas have proofs. For modal
logics, historically, proof procedures preceded semantics, so the description above is a
little anachronistic. But this is not an historical account, and anyway relational semantics
is now well-developed, so let us continue as if history never happened.

It will be helpful to settle some terminology first. We assume we have an infinite list
of propositional letters, typically P , Q, . . . . Formulas are built up from these in the
usual way. For the time being we take as primitive implication (⊃), falsehood (⊥), and
necessity (�), with negation defined by ¬X = (X ⊃ ⊥), truth by � = ¬⊥, disjunction
by (X ∨ Y ) = (¬X ⊃ Y ), conjunction by (X ∧ Y ) = ¬(X ⊃ ¬Y ), equivalence by
(X ≡ Y ) = ((X ⊃ Y ) ∧ (Y ⊃ X)), and possibility by ♦X = ¬�¬X. We’ll use X, Y ,
. . . for arbitrary formulas.

A normal modal logic is a set of formulas L meeting the following conditions. First,
L contains all tautologies and all instances of the formula �(X ⊃ Y ) ⊃ (�X ⊃ �Y ).
Second, L contains Y if it contains X and X ⊃ Y . Third, L contains �X if it contains
X. Fourth and finally, with each formula X, L also contains all substitution instances
of X—the result of uniformly replacing propositional letters with more complex modal
formulas.

A large variety of formal proof procedures have been created over the years. No proof
procedure suffices for every normal modal logic. Well then, what about semantically
determined ones? Given any collection of frames, it is not hard to see that the set of
formulas valid in all of them is a normal modal logic. No proof procedure suffices for every
normal modal logic determined by a class of frames. Certain families of frames meeting
special mathematical conditions determine normal logics that have had applications, and
these have been given standard names—the same names are commonly used for the frame
families and for the normal modal logics they determine. These normal logics tend to
have proof procedures, though not every kind of proof procedure may be applicable,
even to the most used of these logics. Table 1 shows the frame conditions that are
most common in the literature. When traditional names are available I have employed
them, but other naming conventions are in use as well. For instance, B is also known as
KTB. In this chapter I will present several kinds of proof procedures, using the logics of
Table 1 as examples. I will not attempt to say, for each proof procedure, exactly what
range of logics it is good for. Such things are often difficult to determine. But some
proof procedures apply to a fairly broad range of normal logics, others to a narrower
range. Some provide proofs that humans find intuitively appealing, others are better for
machine implementation. I merely wish to display something of the variety available.



Modal Proof Theory 87

Name Frame Condition
K none
T reflexive
K4 transitive
S4 reflexive, transitive
KB symmetric
B reflexive, symmetric
S5 reflexive, transitive, symmetric
D serial
KD4 serial, transitive

Table 1. Some Frame Families for Normal Modal Logics

2 MODAL AXIOMATICS

Axiomatic proof procedures are perhaps the easiest to explain to people. Rules are simple
to state and motivate. Candidates for proofs are easily checked for correctness. Unfor-
tunately, axiomatic proofs are generally hard to discover. Today, when automatibility of
proof procedures is an important concern, axiomatic systems receive increasingly short
shrift. Nonetheless, axiomatic characterizations often make it relatively easy to compare
modal logics, and knowing the axioms and rules for a logic supplies a special understand-
ing, even if one does not spend much time constructing axiomatic proofs. And there are
modal logics with axiom systems but no decent automatable proof procedures. Let us
begin our discussion of proof procedures with axiom systems, then.

An axiomatic proof is a sequence of formulas, each of which is from a specified col-
lection, called axioms, or follows from earlier terms of the sequence by a rule of deriva-
tion. An axiomatic proof proves its last line, or equivalently, proves each of its lines. A
proved formula is a theorem of the axiomatic system. Of course there is an effectiveness
requirement—we should be able to tell whether a formula is an axiom or not, and whether
a rule of inference is applicable or not. This will be obvious for the axiom systems con-
sidered here. Axiom systems differ from each other in the choice of axioms and rules
of derivation. They also differ in which propositional connectives and modal operators
are taken as primitive, but this is not a deep issue. Early modal axiom systems differed
considerably from modern ones in their choices, but this is not an historical account. All
current axiom systems for normal modal logics follow the style introduced in [31], so this
will be the approach here.

Axioms are particular formulas. It is common to specify them by giving axiom
schemes. An axiom scheme is a pattern, and any formula matching that pattern is
an axiom. When axiom schemes are used, typically a proof procedure will have a finite
number of axiom schemes but an infinite number of axioms. An alternative method is to
specify a finite number of axioms, and adopt substitution of formulas for propositional
letters as an explicit rule of inference. This tends to be more complicated, and we will
follow the axiom scheme approach.


