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1 INTRODUCTION

Formal modal logic is mostly mathematical in its methods, regardless of area of appli-
cation. This Handbook presents a wide variety of mathematical techniques developed
over decades of studying the intricate details of modal logic. Also included among rela-
tively recent general purpose sources on the mathematics of modal logic are monographs
[57, 75, 99, 114, 153] and a survey paper [115]. For that matter, the applications of
mathematics in modal logic are overwhelming, while those in the dual category, the uses
of modal logic in mathematics, are less numerous.

Mathematics normally finds a proper language and level of abstraction for the study
of its objects. Propositional modal logic offers a new paradigm of applying logical
methods: instead of using the traditional languages with quantification (first-order or
higher-order) to describe a structure, look for an appropriate quantifier-free language
with additional logic operators (modalities) that represent the phenomenon at hand. In
a number of prominent cases, we end up with a logic-based language which is much richer
than Boolean logic, and yet, unlike universal languages with quantification, does not fall
under the scope of classical undecidability limitations. Modal logic often offers better
decidability and complexity results than the rival first-order logic.

We adopt a strict approach as to what constitutes an application of modal logic in
mathematics, i.e., we limit our attention to mathematical objects which existed indepen-
dently of modal logic, rather than those developed for the needs of modal logic itself.
This requirement is not by any means sufficient; after all, any class of binary relations
in mathematics specifies some propositional modal logic which, however, does not auto-
matically make these connections worthy of study. We consider only the cases in which a
mathematical modality-like notion was developed and studied by mathematicians to the
extent that the modal logical language and methods became pertinent. Neither is this
requirement necessary; for example, elaborate algebraic models originally developed for
the needs of logic (e.g., modal logic) are now deeply embedded into the corresponding
field of mathematics and may well be regarded as a contribution of modal logic to math-
ematics. Fortunately, algebraic models for modal logic have been covered in Chapter 6 of
this Handbook. Moreover, the present author has not been quite pedantic in carrying out
even this imperfect approach; such important issues as topos models and the connection
between modal logic and Grothendieck topology on categories were barely mentioned in
this survey. Some of these topics were considered in Chapter 9 of this Handbook.

There are two major ideas that dominate the landscape of modal logic application in
mathematics: Gödel’s provability semantics and Tarski’s topological semantics.

Gödel’s use of modal logic to describe provability in the 1930s gave the first exact
semantics of modality. This approach led to a comprehensive provability semantics for
a broad class of modal logics, including the major ones: K, T, K4, S4, S5, GL, Grz, and
others. It also proved vital for such applications as the Brouwer-Heyting-Kolmogorov
(intended) provability semantics for intuitionistic logic, for introducing justification into
formal epistemology and tackling its logical omniscience problem, for introducing self-
reference into combinatory logic and lambda-calculi, etc.

Another major use of modal logic in mathematics is the topological semantics sug-
gested by Tarski and developed by Tarski and McKinsey in the 1940s. Here modal logic
provides a natural high-level language for describing topology in a point-free manner. In
addition to its natural mathematical appeal, this approach has evolved into an active
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research area with applications in dynamic systems, control systems, spatio-temporal
reasoning, etc.

There has also been significant research activity in applying modal logic to set theory,
which can be traced back to Solovay’s work of the 1970s. We devote Section 7 to this
issue.

The reader might perceive a certain bias towards provability logic in this survey. A
possible explanation is that Gödel’s provability semantics of modal logic is the oldest and
arguably the most well-established tradition of applying modal logic to mathematics. It
is perhaps more essential for proof theory and foundations than other applications of
modal logic for the corresponding object areas of mathematics. This observation is not
intended to discount other interpretations of modal logic considered here; we hope that
this survey gives a fair assessment of their beauty and vast potential.

Among other recent surveys in this area, we recommend the article ‘Provability logic’
by Verbrugge in the Stanford Encyclopedia of Philosophy

http://plato.stanford.edu/entries/logic-provability/,
the handbook chapter ‘Provability Logic’ [25], and the forthcoming collection ‘The Logic
of Space’ edited by Aiello, van Benthem, and Pratt-Hartmann.

2 SOME HISTORY

In his 1933 paper [109], Gödel chose the language of propositional modal logic to describe
the basic logical laws of provability. According to his approach, �F should be interpreted
informally as

F is provable,

and the classical modal logic S4 provides a system of plausible postulates for provability.
Gödel’s goal was to provide an exact interpretation of intuitionistic propositional logic
within a classical modal logic of provability, hence giving classical meaning to the basic
intuitionistic logical system.

This line of research attracted a great deal of attention in mathematics and eventually
led to two distinct models of provability based on modal logics:

1. the Provability Logic GL, which was shown by Solovay to be the logic of Gödel’s
formal provability predicate;

2. Gödel’s original logic S4, which was shown by Artemov to be a forgetful projection
of the Logic of Proofs LP.

These two models complement each other and cover a wide range of applications, from
traditional proof theory to formal verification and epistemology.

The use of modal logic in topology was initially motivated by Kuratowski’s axioms for
topological spaces, which were recast in the manner of modal logic by Tarski in the late
1930s. Under this interpretation, the Boolean components were treated in the usual set
theoretical way as subsets of a given topological set, whereas � was interpreted as

the interior operator.


