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1 INTRODUCTION

When can we say that a logic is a combination of others? In general, any logical system
having more than one connective can be considered as a combination of logical systems
having fewer connectives. In particular, any multimodal logic can be considered as a
combination of, say, unimodal logics. So, in this general sense, any result on multimodal
logics can be considered as a result on combining modal logics. What makes this chapter
special among other ones studying multimodal logics is that here we investigate the
following kind of problems:

Given a family L of modal logics and a combination method C, do certain properties
of the ‘component logics’ L € L transfer to their ‘combination’ C(L)?
Most of the combination methods considered in this chapter satisfy the following three
criteria:
(C1) They are finitary, that is, C is defined only on finite families L of modal logics.
(C2) The combination C(L) of (multi)modal logics from L is a (multi)modal logic itself.
(C3) The combined logic C(L) is an extension of each component logic L € L.

For each considered combination method, we discuss in detail the possible transfer of
the following two kinds of properties:
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e Axiomatisation/completeness.
There are two versions, depending on whether the combination method results
in a syntactically or semantically defined logic. In the former case, the question
is whether the combination of recursively (finitely) axiomatisable components re-
mains recursively (finitely) axiomatisable, and in the latter, whether the Kripke
completeness of the components transfers to their combination.

e Decidability /complexity of the validity/satisfiability problem.
We study whether decidability of the validity problem transfers from the compo-
nents to their combination and if so, what is the change in complexity. We also
discuss the possible transfer of the finite model property.

For transfer results about several other properties (like versions of interpolation, decid-
ability of various consequence relations, etc.) see [23] and the references therein. Com-
binations of deductive calculi (such as combined tableaux) are not considered either, see
Chapter 2 of this handbook for some examples.

Combination methods not satisfying (C1)—(C3) are in general out of our scope,
though see Section 5 for a discussion.

Notation and terminology. We will mainly consider possible world (or Kripke)
semantics. Kripke models are pairs 9 = (§,0) that are based on relational structures
5= W,Ry,...,R,), where n > 0 is a natural number, W is a non-empty set and the
R; are binary relations on it. Such structures are called n-frames (or frames, for short).
We say that an n-frame & = (U, Sy,...,S,) is a subframe of an n-frame § (& C §, in
symbols) if U C W and S; = R, N (U x U), fori = 1,...,n. A path of length k from
point z to point y in an n-frame § is a sequence (zo, ..., xx) of points such that zg = z,
zr =y and x;R;x;41, for each 4 < k and some j, 1 < j < n. We call an n-frame §
rooted if there exists some x € W such that for every y € W, y # x there is a path from
x to y. Such an z is called a root of §. We say that § is of depth k if k is the length
of the longest path in §. If such a longest path does not exist, then we say that § is of
infinite depth. An n-frame § is called tree-like if it is rooted and R = U;L:l R; is weakly
connected on the set {y € W | yRz} for every x € W. If a tree-like frame is well-founded
(i.e., there are no infinite descending R-chains ... RzeRx1Rxo of points) then we call §
a tree. The depth d®(z) of a point z in a tree § is defined to be the length of the unique
path from the root to x. If for no n < w the point x is of depth n, then we say that x
is of infinite depth. By the co-depth of a point z in a tree § we understand the depth of
the subtree of § with root .

Given a natural number n, the n-modal language ML, has propositional variables
D,4¢,5,..., Boolean connectives =, A, V, —, <, T, L, and (unary) modal operators
Oq,...,0, and <q,...,0,. ML, -formulas are formed inductively in the usual way.
Given an ML, -formula ¢, we let suby denote the set of all subformulas of ¢, and
md(p) denote the modal depth of p. We will also use the following abbreviations. For
every formula ¢, let

% = and, forn <w, O"Tlp=00%, OS"p= /\ 0.
k<n

The truth-relation ‘(9M, w) = ¢’ connecting syntax and semantics is defined by induc-
tion on the construction of ¢ as usual. We say that ¢ is true in 9 (M |= ¢, in symbols),



