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This chapter provides a modern overview of the field of hybrid logic. Hybrid logics are ex-
tensions of standard modal logics, involving symbols that name individual states in models. The
first results that are nowadays considered as part of the field date back to the early work of Arthur
Prior in 1951. Since then, hybrid logic has gone through a number of revivals and reinventions.
Nowaways, it is a field of research in its own right, with a wealth of results, techniques, and
applications.

Our main aim, in this chapter, is to provide a coherent picture of the current state of affairs in
the field of hybrid logic. Rather than a comprehensive summary, we will try to give the reader
a taste for the type of results and techniques that we consider hallmarks of the field. In some
cases, we will only state results, with pointers to relevant literature, while in other cases we will
provide full proofs.

In Section 1, we give an intuitive introduction to hybrid logics, with examples of the extra
expressive power offered by the hybrid operators. This section also contains the basic definitions
of syntax and semantics that are used throughout the chapter. In Section 2 we provide a short
history of the field, discussing the work of Prior in the 50s, of the Sofia School in the 80s, and
the work on very expressive hybrid languages in the 90s. Sections 3 and 4 form the core of
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the chapter. They contain the most important techniques and results in the field, with respect to
completeness, expressive power, frame definability, interpolation and complexity. In Section 5
we briefly present proof systems for hybrid languages (sequents, natural deduction, tableaux,
and resolution), and we discuss some issues concerning the development of automated provers
based on them. In Section 6 we comment on connections with related areas (some of which
are discussed in detail in other chapters of this handbook). Section 7 finishes the chapter with a
summary and general perspectives.

1 WHAT ARE HYBRID LOGICS?

In their simplest form, hybrid languages are modal languages that have special symbols to name
individual states in models. These new symbols, which are called nominals, enter the stage
gracefully: we simply add a new sort of atomic symbols NOM = {i, j, k, . . .} disjoint from the
set PROP of propositional variables and let them combine freely in formulas. For example, if i
is a nominal and p and q are propositional variables, then

�(i ∧ p) ∧�(i ∧ q) → �(p ∧ q), (1)

is a well formed formula. Now for the important twist: since nominals name individual states in
the model, they denote singleton sets. In other words, they are true at a unique point in the model.
Once this step has been taken, the whole landscape changes. For example, (1) becomes a validity:
let M be a model, m a state in the domain of M, and suppose M,m |= �(i ∧ p) ∧ �(i ∧ q).
Then some successor state m′ of m satisfies i ∧ p, and some successor state m′′ of m satisfies
i ∧ q. Since i is a nominal, it is true at a unique point in M. Hence m′ = m′′ and we have
M,m |= �(p ∧ q). Note that (1) could be falsified if i were an ordinary propositional variable.

When we realize the potential that nominals have, an interesting idea suggests itself: to intro-
duce, for each nominal i, an operator @i that allows us to jump to the point named by i. The
formula @iϕ (read “at i, ϕ”) moves the point of evaluation to the state named by i and evaluates
ϕ there. These operators satisfy many nice logical properties. For a start, each @i is a normal
modal operator: it satisfies the distributivity axiom (@i(ϕ → ψ) → (@iϕ → @iψ)) and the ne-
cessitation rule (if ϕ is valid, then @iϕ is also valid). Moreover, it is self-dual: @iϕ is equivalent
to ¬@i¬ϕ. In an intuitive sense, the @i operators provide a bridge between semantics and syntax
by internalizing the satisfaction relation ‘|=’ into the logical language:

M, w |= ϕ iff M |= @iϕ, where i is a nominal naming w.

For this reason, these operators are usually called satisfaction operators.
Aiming to make full use of the flexibility provided by direct reference to specific points in the

model naturally leads to further enrichment of the language. One possibility would be to have
not only names for individual states but also variables ranging over states, with corresponding
quantifiers. We would then be able to write formulas like

∀y.�y. (2)

The first-order translation of this formula is ∀y.∃z.(R(x, z) ∧ z = y) or, simply, ∀y.R(x, y),
forcing the current state to be related to all states in the domain. The ∀ quantifier is very expres-
sive. As discussed in [32], even the basic modal language extended with state variables and this
universal quantifier is undecidable. Moreover, ∀ and @ together give us already full first-order
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expressive power (cf. Section 3.2). Nevertheless, the ∀ quantifier is historically important. The
earliest treatments are probably those of [117, 118, 46].

The ∀ quantifier is very “classical.” If we think modally, and remember that evaluation of
modal formulas takes place at a given point, a different kind of binder suggests itself. The ↓
binder binds variables to points but, unlike ∀, it binds to the current point. In essence, it enables
us to create a name for the here-and-now, and refer to it later in the formula. For example, the
formula

↓y.�y (3)

is true at a state m iff m is related to itself. The intuitive reading of (3) is quite straightforward:
the formula says “call the current state y and check that y is reachable.” The difference between
∀ and ↓ is subtle, but important. ∀ is global, in the sense that formulas containing ∀ are not
preserved under generated submodels [32]. On the other hand, ↓ is intrinsically local and, as
we will show in Theorems 16 and 18, it can be characterized in terms of the operation of taking
generated submodels.

Like ∀, the ↓ binder has been invented independently on several occasions. For example,
in [122], ↓ is introduced as part of an investigation into temporal semantics and temporal data-
bases, [131] uses it to aid reasoning about automata, it is related to the freeze operator in [88],
and [52] employs it as part of his treatment of indexicality. However, none of the systems just
mentioned allows the free syntactic interplay of variables with the underlying propositional logic;
that is, they make use of ↓, but in languages that are not fully hybrid. The earliest paper to
introduce it into a fully hybrid language seems to be [77].

Note that satisfaction operators work in perfect coordination with ↓. Whereas ↓ “stores” the
current point of evaluation (by binding a variable to it), the satisfaction operators enable us to
“retrieve” stored information by shifting the point of evaluation in the model. By using the
“storing and retrieving” intuition it is easy to define complex properties. For example, Kamp’s
temporal until operator U (with semantics: U(ϕ,ψ) is true at a state m if there is a future state
m′ where ϕ holds, such that ψ holds in all states between m and m′) can be defined as follows:

U(ϕ,ψ) := ↓x.�↓y.(ϕ ∧@x�(�y → ψ)).

Let us see how this work. First, we name the current state x using ↓, and use the � operator
to find a suitable successor state, which we call y, where ϕ holds. Without the @ operator we
would be stuck in that successor state, but we can use @ to go back to x and demand that in all
successors of x having y as a successor, ψ holds.

Summarizing the above discussion, we can say that the term hybrid logic refers to a family of
extensions of the basic hybrid language with devices that, in one way or another, allow for explicit
reference to individual states of the Kripke model. But, why are hybrid logics called hybrid?

One explanation comes from the work of Arthur Prior in the 1950s. As we will discuss more
in detail in Section 2, Prior was interested in the relation between what McTaggart called the
A-series and B-series of time [109]. Following McTaggart’s analysis of time in terms of the A-
series of past, present and future and the B-series of earlier and later, Prior discusses two logical
systems: the I-calculus aims to capture the properties of the B-series and takes variables ranging
over instants as primitive, while the T -calculus examines tenses and takes variables ranging over
propositions. In [117, Chapter V.6], Prior proposes a way to develop the I-calculus inside the T -
calculus, and for this he allows instant-variables to be used together with propositional variables.
He will call this step “the third grade of tense-logical involvement” in [118, Chapter XI], where
instant-variables are treated as representing (special) propositions. From this perspective, the


