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1 INTRODUCTION

Description logics (DLs) [12] are a family of knowledge representation languages which
can be used to represent the terminological knowledge of an application domain in a
structured and formally well-understood way. The name description logics is motivated
by the fact that, on the one hand, the important notions of the domain are described
by concept descriptions, i.e., expressions that are built from atomic concepts (unary
predicates) and atomic roles (binary predicates) using the concept and role constructors
provided by the particular DL. For example, the concept of “a man that is married to a
doctor, and has only happy children” can be expressed using the concept description

Man 4 ∃married.Doctor 4 ∀child.Happy.
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On the other hand, DLs differ from their predecessors in that they are equipped with a
formal, logic-based semantics, which can, e.g., be given by a translation into first-order
predicate logic. For example, the above concept description can be translated into the
following first-order formula (with one free variable x):

Man(x) ∧ ∃y(married(x, y) ∧ Doctor(y)) ∧ ∀y(child(x, y) → Happy(y)).

The motivation for introducing the early predecessors of DLs, such as semantic networks
and frames [133, 125], actually was to develop means of representation that are closer
to the way humans represent knowledge than a representation in formal logics, like first-
order predicate logic. Minsky [125] even combined his introduction of the frame idea
with a general rejection of logic as an appropriate formalism for representing knowledge.
However, once people tried to equip these “formalisms” with a formal semantics, it turned
out that they can be seen as syntactic variants of (subclasses of) first-order predicate
logic [83, 144].

The immediate precursors of DLs, Brachman’s structured inheritance networks [42],
were an attempt to define a formalism that allows for a structured representation of
knowledge in the spirit of semantics networks and frames, but nevertheless is equipped
with a formal semantics. The original description logics used in systems that imple-
mented these ideas in the 1980ies [45, 132, 124, 123] turned out to correspond to rather
inexpressive and somewhat unusual subclasses of first-order predicate logic. On the one
hand, none of them was propositionally closed since they did not allow for disjunction
or negation. On the other hand, they were equipped with certain other complex con-
structors (like number restrictions and role-value-maps), which, though expressible in
first-order predicate logic, are not considered as atomic constructors there. For example,
the number restriction (� 5 child) describes people having at least five children, and the
role-value-map child◦friend ⊆ know describes people that know all their children’s friends.

The main inference problem to be solved in description logics is the subsumption prob-
lem, i.e., deciding whether one concept is a subconcept of another one. The early DL
systems cited above employed so-called structural subsumption algorithms, which first
normalise the concept descriptions, and then recursively compare the syntactic structure
of the normalised descriptions. These algorithms are usually very efficient (polynomial),
but they have the disadvantage that they are complete only for rather inexpressive DLs,
i.e., for more expressive DLs they cannot detect all the existing subsumption relation-
ships. To overcome this problem, Schmidt-Schauß and Smolka [143] made DLs into “real”
logics by introducing negation. Their main motivation for this was that they wanted to
reduce the subsumption problem to the satisfiability problem. They introduced a basic
propositionally closed DL, which they called ALC, developed a tableau-like algorithm
for satisfiability in ALC, and showed that the subsumption and satisfiability problem in
ALC are PSpace-complete.

A reader of the Handbook of Modal Logic who followed us so far may rightfully ask:
And what has all this to do with Modal Logic? The answer was given by Schild, who
noticed that ALC is just a syntactic variant of multi-modal K, i.e., the basic modal logic
of Kripke frames with several accessibility relations (and thus several pairs of box- and
diamond operators). In fact, the translations of ALC and of K into first-order predicate
logic yield exactly the same class of first-order formulae. This connection between DLs
and modal logic was used by Schild and others (see, e.g., [139, 140, 54, 55]) to transfer
decidability and complexity results from modal logic to DLs, but also to extend these
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results to logics with other DL constructors. At the same time, tableau-based algorithms
were developed for more and more expressive DLs (see [30] for an overview), and highly-
optimized implementations of these algorithms [92] turned out to behave quite well on
artificial benchmarks from modal logic [131] and also in practice [78].

Though there is a very close connection between DLs and modal logics (MLs), the
underlying intuition as well as the intended applications differ significantly. As a conse-
quence, the focus of research in DL and in modal logic also differs. While mentioning
the similarities, this chapter will focus on topics that are specific for DLs.

Section 2 formally introduces syntax and semantics of the basic DL ALC, and shows
its relationship to multi-modal K. It then introduces additional DL constructors, and
describes their ML counterparts. In addition to these constructors, DLs provide their
users with a terminological formalism, which (in its simplest form) allows to introduce
names for complex concepts, and an assertional formalism, which allows to state facts
about specific individuals/objects. Though these components are usually not available in
ML, there are some connections to things known in ML (such as nominals, the universal
modality, fixpoint operators, etc.).

In Section 3, we introduce the standard inference problems in description logics, show
how they can be reduced to each other, and how they relate to inference problems in
ML. The standard way of solving these problems in propositionally closed DLs is using
tableau-based algorithms. Since these algorithms are treated in other chapters, we only
give some references to the relevant chapters.

Section 4 considers DLs that are not propositionally closed, and where consequently
subsumption cannot be reduced to satisfiability. We review the known complexity results
for such DLs, and then describe (complete) structural subsumption algorithms for some
of them. In addition, we mention bi-simulation characterizations of the corresponding
ML fragments.

Section 5 is concerned with so-called non-standard inferences in DLs, like computing
the least common subsumer and the most specific concept, and rewriting, unification, and
matching of concepts. These inferences have been introduced with the goal of supporting
the user when building and maintaining large DL knowledge bases. With the exception
of unification, none of them have been investigated in ML.

Finally, Section 6 introduces means of expressiveness that do not have immediate ML
counterparts.

2 BASIC DEFINITIONS AND CONNECTION TO MODAL LOGIC

In this section, we introduce the basic components of description logics: concept lan-
guages, terminological formalisms, and assertional formalisms.

2.1 Concept Languages

We first define the basic propositionally closed concept language ALC introduced by
Schmidt-Schauß and Smolka [143], and then describe a number of natural extensions
that are important for many applications and offered by modern DL reasoners. Assume
that a countably infinite supply of concept names, usually denoted A and B, and of role
names, usually denoted r and s, are available. Concept descriptions in ALC are formed


