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1 INTRODUCTION

Modal mu-calculus is a logic used extensively in certain areas of computer science, but
also of considerable intrinsic mathematical and logical interest. Its defining feature is the
addition of inductive definitions to modal logic; thereby it achieves a great increase in
expressive power, and an equally great increase in difficulty of understanding. It includes
many of the logics used in systems verification, and is quite straightforward to evaluate.
It also provides one of the strongest examples of the connections between modal and
temporal logics, automata theory and the theory of games.

In this chapter, we survey a range of the questions and results about the modal mu-
calculus and related logics. For the most part, we remain at survey level, giving only
outlines of proofs; but in places, determined partly by our own interests and partly by
our sense of which problems have been — or had been — the longest-standing thorns in
the side of the mu-calculus community, we go into more detail.

We start with an account of the historical context leading to the introduction of the
modal mu-calculus. Then we define the logic formally, describe some approaches to
gaining an intuitive understanding of formulae, and establish the main theorem about
the semantics. Following that, we discuss how the modal mu-calculus has the tree model
property and relates to some other temporal logics, to automata and to games. Next,
an account of decidability is given — this is one of the thorns, at least for those who
find automata prickly. We then consider briefly completeness, bisimulation invariance
and then the concept of fixpoint alternation, which plays a part in several interesting
questions about the logic. Finally, we look at some generalizations of the logic.

Before proceeding to the content of the chapter, we take this opportunity to thank
Yde Venema and Johan van Benthem for extensive and helpful comments on drafts of
this chapter.

Notation: Lµ means the modal mu-calculus, considered as a logical language (not as a
theory). In general, the notation follows as much as possible the standards for this book,
but because Lµ is mostly studied in a setting with rather different traditions, and because
we also need to notate several other concepts, we have made some compromises. Few of
these should cause any difficulty, but let us note the following. Since → is often used
to represent the transition relation in models (alias the accessibility relation from modal
logic), we use ⇒ rather than → for boolean implication. Structures, frames and models
for Lµ are usually viewed as transition systems, and so are usually called T with state
space S. States within systems (i.e. worlds in the language of modal logic) are typically
s, t, whereas p, q, r are states in an automaton. Hence we write atomic propositions with
capital P,Q, . . . rather than p, q, . . ., and similarly variables ranging over sets of states
are written X,Y .

2 CONTEXTUAL BACKGROUND

The modal mu-calculus comes not from the philosophical tradition of modal logic, but
from the application of modal and temporal logics to program verification. In this section,
we outline the historical context for Lµ.
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2.1 Modal logics in program verification

The application of modal and temporal logics to programs is part of a line of program
verification going back to the 1960s and program schemes and Floyd–Hoare logic. Origi-
nally the emphasis was on proof : Floyd–Hoare logic allows one to make assertions about
programs, and there is a proof system to verify these assertions. This line of work has,
of course, continued and flourished, and today there are highly sophisticated theories for
proving properties of programs, with equally sophisticated machine support for these the-
ories. However, the use of proof systems has some disadvantages, and one hankers after
a more purely algorithmic approach to simple problems. One technique was pioneered
by Manna and Pnueli [48], who turned program properties into questions of satisfiability
or validity in first order logic, which can then be attacked by means that are not just
proof-theoretic; this idea was later applied by them to linear temporal logics.

During the 1970s, the theory of program correctness was extended by investigating
more powerful logics, and studying them in a manner more similar to the traditions of
mathematical logic. A family of logics which received much attention was that of dynamic
logics, which can be seen as extending the ideas of Hoare logic [57]. Dynamic logics
are modal logics, where the different modalities correspond to the execution of different
programs — the formula 〈α〉φ is read as ‘it is possible for α to execute and result in a state
satisfying φ’. The programs may be of any type of interest; the variety of dynamic logic
most often referred to is a propositional language in which the programs are built from
atomic programs by regular expression constructors; henceforth, Propositional Dynamic
Logic, PDL, refers to this logic. PDL is interpreted with respect to a model on a Kripke
structure, formalizing the notion of the global state in which programs execute and which
they change — each point in the structure corresponds to a possible state, and programs
determine a relation between states giving the changes effected by the programs.

Once one has the idea of a modal logic defined on a Kripke structure, it becomes
quite natural to think of the finite case and write programs which just check whether
a formula is satisfied. This idea was developed in the early 80s by Clarke, Emerson,
Sistla and others. They worked with a logic that has much simpler modalities than PDL
— in fact, it has just a single ‘next state’ modality — but which has built-in temporal
connectives such as ‘until’. This logic is CTL, and it and its extensions remain some of
the most popular logics for expressing properties of systems.

Meanwhile, the theory of process calculi was being developed in the late 70s, most
notably by Milner [50]. An essential component was the use of labelled Kripke structures
(‘labelled transition systems’) as a raw model of concurrent behaviour. An important
difference between the use of Kripke structures here and their use in program correctness
was that the states are the behaviour expressions themselves, which model concurrent
systems, and the labels on the accessibility relation (the transitions) are simple actions
(and not programs). The criterion for behavioural equivalence of process expressions
was defined in terms of observational equivalence (and later in terms of bisimulation re-
lations). Hennessy and Milner introduced a primitive modal logic in which the modalities
refer to actions: 〈a〉φ ‘it is possible to do an a action and then have φ be true’, and its
dual [a]φ ‘φ holds after every a action’. Together with the usual boolean connectives,
this gives Hennessy–Milner logic [31], HML, which was introduced as an alternative ex-
position of observational equivalence. However, as a logic HML is obviously inadequate
to express many properties, as it has no means of saying ‘always in the future’ or other
temporal connectives — except by allowing infinitary conjunction. Using an infinitary


