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1 INTRODUCTION

Time has always been with us, though few of us have enough of it. The nature of time
itself is a conundrum that we nowadays leave to physicists. But we have always had to
find our way through time, plan our activities, and cope with the uncertain future. This
can be, indeed, has to be done without a deep scientific knowledge of what makes time
tick.

We use language and its rich tense structure to express and reason about events in
time. This of course throws up linguistic and philosophical conundrums of its own. With
the rise in the 20th century of formal logical languages, it became natural to try to express
temporal concepts and arguments in formal terms, and so it was that Arthur Prior from
the 1950s came to develop tense logics. These were modal logics, with box-modalities
H and G for ‘always in the past’ and ‘always in the future’, motivated by tenses in
natural language. The advent of Kripke semantics in the 1960s gave the enterprise a
boost, because a Kripke frame is so naturally seen as a set of time points endowed with
an ‘earlier-later’ relation.

Temporal logic today is a large, busy subject with stakeholders from many disciplines.
Philosophers and linguists have continued to make major contributions to it. Since
Pnueli’s pioneering 1977 paper [147], several branches of computer science and related
fields — such as databases, specification and verification, synthesis of programs, temporal
planning, temporal knowledge representation — have had a huge influence, and the
use of temporal logic in some of these areas has developed to the point of commercial
application. There is even some contact with physics, but so far this has been limited.

Temporal logic is in a way a branch of applied modal logic, but modal logicians may
be disconcerted by what they find here. Temporal logic has always focused on handling
time, it has developed whatever methods it found useful for this end, and not all of them
are modal in a narrow sense. Connectives such as Until and Since, again mimicking the
natural language constructs, go beyond boxes and diamonds and are of great importance
in the subject. Indeed, completely general first-order-definable connectives are used
as well. Bearing in mind the evaluation and reference points of natural language, it
is natural that many-dimensional evaluation has long been of importance in temporal
logic, whereas it only recently attracted great interest in modal logic proper. The focus
in temporal logic is on a fairly narrow range of Kripke frames — nearly always irreflexive
and transitive, and typically linear orders or trees, though relativistic and circular time
are sometimes considered. The natural numbers are the dominant model of linear time,
though dense and continuous and indeed arbitrary linear orders have found their way in
(and in this chapter we are happy to consider them). Sometimes the pressures of time
have led to a style of evaluation of formulas that seems non-modal at first sight (see
Section 3.7). A very influential strand of work, started by Kamp in 1968, compares the
expressive power of modal and first-order languages on the model (rather than frame)
level. Rather than be content with limited but well-behaved modal expressiveness, the
thrust of the work created temporal languages as strong as classical first-order logic
and even monadic second-order logic. Perhaps because the proofs rely heavily on the
assumption that time is linear or even natural number-like, not much similar research in
modal logic has been done. Classical logic is not just a benchmark for the expressiveness
of ‘real’ temporal logics: using first-order logic for handling time is itself a respectable
tradition. In temporal logic there is an unusual (for modal logic) use of methods from
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classical mathematical logic and combinatorial techniques such as automata. Problems
such as model-checking (considered in Chapter 17) are all-important in temporal logic
but do not appear much in modal logic.

Nonetheless, from Prior’s work onwards, modal ideas have been prominent in temporal
logic. Its most basic syntax and Kripke semantics are (multi-)modal; one often comes
across modal techniques such as canonicity and Sahlqvist’s theorem, filtration and non-
standard inference rules; and problems of axiomatisation, decidability, and complexity
are ubiquitous in modal and temporal logic. Sophisticated results on modal logics above
K4 have been transferred to temporal logic. Chapters 2, 3, 4, 9, and 12 are very relevant
to temporal logic. In Chapter 17, the reader will find a concentrated discussion of modal
and temporal logic in computer science. In the current chapter, we will examine some
topics in temporal logic that are considered both in computer science and in other fields.
As we have not the space to provide a rigorous development from scratch, the chapter
is intended more as a gateway to the subject. It is mostly a survey-style commentary
on some important strands, with directions to the literature for those wishing to find
out more. Our priority is range rather than depth, but we cannot be comprehensive.
A chapter of definitions would be indigestible, so we have tried to include some of the
arguments, but space limitations have meant that their level of detail veers wildly from
a few words to (occasionally) something approaching a full proof. Readers may of course
skip details if they so desire.

We start out in Section 2 with a basic round-up of the semantic options for handling
time. In Section 3 we cover some of the logics (syntax and evaluation) that can be used.
Bearing in mind the remarks above, it will be no surprise that we do not confine ourselves
to modal-style logics: first- and second-order logics, and others, find their way in, and
our lack of consideration of mu-calculi is only because chapter 12 is devoted to them.
Cn Section 4 we compare the expressivity of classical and modal-style logics. Kamp’s
famous 1968 expressive completeness theorem makes its appearance here. In Section 5
we discuss temporal reasoning, mainly avoiding automata (see Chapter 17 for them) but
covering Hilbert systems, tableaux, resolution, filtration and the finite model property,
and other methods.

A word about first-order temporal logic. This is a complex issue. There is a con-
fusing variety of ways to add first-order logic to a temporal system, and undecidability
results obtained in the 1960s, accompanied by later expressive incompleteness results,
also cast their shade over the development of this part of the subject. But at the time
of writing, there is something of a resurgence of interest in it from the database and
reasoning communities. We will discuss the rudiments of first-order temporal logic in
Sections refchapter11:sec2–3, and also some of the recent results on expressive complete-
ness and decidability in Sections refchapter11:sec4–5. Chapter 9 is also relevant of course.

Temporal logic, then, is a branch of applied logic that brings to bear a gamut of pow-
erful methods from many fields to study time and temporal phenomena. It is not wholly
modal, but rests on a modal base — it is a meeting ground for concepts from modal logic,
classical first-order logic, and higher-order logic. It has found very successful application
in computing, and embodies seminal contributions from philosophy and linguistics as
well. We hope our chapter, and other chapters here, will serve as a guide for the reader
wishing to discover more about this intensely active field.


