

Handheld computing devices in a surgical ward

Advantages on clinical information sharing

Rossana Alloni, Maria Cinque, Roberto Coppola, Michele Crudele, Giulio Iannello, Roberto Valenti Università Campus Bio-Medico, Rome

UM05 - Personalization for e-Health

Contents

- Design of an application for the surgical ward
- Monitoring of communication during users' testing of the application
- Monitoring of users' feedback
- Study of the proposals for further implemention

Background (1): Campus Bio-Medico

Campus Bio-Medico University was founded in Rome in 1991. Currently it includes the Faculty of Medicine and the Faculty of Engineering.

The University Hospital (15 departments - 124 beds) is close to the didactic seat it includes an out patients Clinic, a day-hospital unit, operating theatres, unities of intensive care.

Background (2):

Hardware infrastructure

Ethernet LANs, IEEE 802.11 WLANs, and 2.5/3G cellular data networks WLAN

Software environment

- database SQL
- ASP.NET application

Applications using mobile devices:

- Nurses' drugs administration
- HISS (Hospital information system for students)
 - involved students of Medicine, Nursing and Dietetics courses
- □ Dieticians' menu administration

Bringing mobile devices in the Surgical Ward

Composed by seven surgeons and six residents, the surgical ward staff at Campus Bio-Medico takes care of:

general surgical ward patients (15 to 20);

 out patients clinic (30 hours per week); surgical interventions (30 hours per week);

■diagnostic day hospital.

Challenges

- reducing errors
- enhancing rapid and constant information sharing among the surgical staff
- context-aware interaction
- personalization of content management and interface design

Analysis (1): Data management in surgery ward

 morning briefing of the entire staff, including the nurses of the ward

 daily round, when handwritten notes are taken on a paper sheet over a wooden tablet

 manual up-dating of the clinical documents

Analysis (2)

transcription of clinical data

 writing of a cumulative report for the patient's discharge from the hospital

Content management (a): From unstructured data...

UM05 - Personalization for e-Health

Content management (b):

...to structured data

Patient	Hospital	Surgical Intervention	Post- operative
Name Surname Date of birth Age Diagnosis	Admission date Date of discharge	Procedure Date of surgical intervention (if the surgical intervention has already been perfomed, number of post-operative day)	Physiologic parameters: blood pressure; body temperature etc; diet; ileus or gas canalization; in/outgoing fluids; parenteral fluids or nutrition; urinary output etc

Interface design (1): information display

Screen divided in two parts

Items displayed according to users' preferences

Only last records are visible; archive can be easily accessed

Interface design (2): data entry

- Multiple choice
- Dinamically created forms
 - Iayout can change depending on the quantity and quality of information inserted
- Predefined options/free notes
- Information automatically entered:

Date, time and author of data entry

Personalization

Each user:

- can choose if he wants to work on-line or off-line
- can save his view-state
- can visualize first his/her patients and then the others'
- can visualize different kind of information depending on his role (physician or nurse)

Context awareness

- The information desplayed is functional to the context (nurses/physicians; in the office/at bedside)
- The interface dinamically adapts to the screen size
- The system automatically switches from on-line to offline functioning

Project development

- January-February 2004: analysis
- March-April 2004: software development
- May-September 2004: first experimental phase
- October 2004-June 2005: implementation
- July-August 2005: second experimental phase

First experimental phase: *quantitative* results

Table	Records	Period
tb35NoteInterventi	176	13/05 – 14/09
tb37NotePazienti	297	13/05 – 14/09
tb39EmoderivatiInterventi	7	28/06 – 08/09
tb40EmoderivatiNonAssociati	2	12/07 – 02/08

First experimental phase: *quantitative* results

Records per month		Average: 2-3 records per day		
May	30	Max: 16/07/04-21/07/04 six records per day		
Iviay	50	Pause:10/08 – 25/08		
in June	43	Most performed surgical interventions		
		Colecistectomia	27 records	
July	50	laparoscopica		
		Emicolectomia	10 records	
August	26	dx/sin		
		Tiroidectomia totale	7 records	
September	12	Emorroidectomia	8 records	
		Gastrectomia totale	6 records	

First experimental phase: *quantitative* results

Records per month:

30 in May; 43 in June: 50 in July; 26 in August; 12 in September Average: 2-3 records per day Max: 16/07/04-21/07/04 six records per day **Pause:** 10/08 – 25/08 Most performed surgical interventions Colecistectomia laparoscopica 27 records Emicolectomia dx/sin 10 records Tiroidectomia totale 7 records Emorroidectomia 8 records Gastrectomia totale 6 records

First experimental phase: *qualitative* results

- relative advantage: information is always updated;
- technical problems: wireless connection performance and power supply;
- users' interface: more space for free notes;
- users' interaction: more rapidity in information exchange, more time to discuss about details

Conclusions

- Interaction is strenghtened
- Despite implementation, the surgeons claim more 'freedom' in recording data
- Paper will be completely substituted only when the right balance between structured data and 'freedom' is achieved
- On-line and off-line usage must be transparently performed (users don't have to care about it, although they must be conscious of it)

Future developments

- Can electronic record improve the quality of care into the hospital?
- Can PDAs be used as decision support devices?
- Can students use these technologies to be best prepared to their future professional activity?