Reasoning about types in a general purpose inference engine

Allan Ramsay
Dept of Computation,UMIST, PO BOx 88, Manchester M60 1QD, UK

Abstract

Many reasoning problems involve a mixture of reasoning within some tractable logic
of types and more general reasoning in a general purpose logic (standard first-order logic,
modal logic, default logic, intensional logic, ...). One way to tackle this issue is by trying
to extend the expressive power of the logic of types without compromising its tractability
too badly, as exemplified by description logics. An alternative is to embed special purpose
reasoning about types inside a general purpose inference engine. The current paper shows
how to embed an efficient engine for a fairly expressive logic of types within a theorem prover
which has been extended to cover reasoning about equality and to deal with intensionality.

1 Embedding a logic of types in a general inference
engine

For many tasks, the choice between a simple logic of types and a more complex general
purpose logic leaves you with an awkward dilemma. Logics of types are tractable, but
inexpressive, so you can’t use them because you can’t describe your problem properly in
them. Expressive logics are intractable, so you can’t use them because you can’t afford to
wait indefinitely for the answer to your problem. What should you do?

There seem to be two potential routes out of this impasse:

e You can try to develop a logic that is more expressive than a simple logic of types, but
that is still reasonably tractable. The development of description logics (Ohlbach and
Koehler, 1997; Baader and Sattler, 2001) is an attempt to solve the problem this way,
by increasing the expressive power as much as possible whilst retaining the complexity
of propositional logic.

e You can take a logic that has the expressive power you need, and you can try to make
it tractable.

Of course you can’t hope to make an expressive logic tractable: first-order logic is semi-
decidable, default logic is undecidable, fine-grained intensional logic is incomplete, and
that’s just how things are. But you will often find that large parts of the statement
of a problem can be given without using the full power of your chosen logic, even if
there are still some parts that do require it.

The current paper takes the second of these approaches. For many problems even
the most refined description logics are too inexpressive to specify the knowledge base —
sometimes you need axioms involving two-place relations that go beyond simple selection
restrictions, or you need to talk about equality, or you need defaults or intensional axioms
or other devices that simply cannot be captured in any existing description logics. At the
same time, you may want to do reasoning over types, for which the full power of the more
expressive logic is not actually necessary. The trick is to find ways of combining the two.

We do this by taking an existing theorem prover for an extremely expressive logic and
adding a treatment of sorts to it. The existing theorem prover is an extension of Satchmo
(Manthey and Bry, 1988) to cope with property theory (‘Turner, 1987). Property theory is
an ‘encoding logic’ — you can use it to axiomatise the proof theory of any standard first-
order logic. As such it is about as intractable as a logic can be. We use it because you
need this kind of expressive power for a number of issues in natural language processing,
and because it also provides a vehicle for specifying approaches to epistemic reasoning that



do not rely on possible worlds semantics, and hence are not bedevilled by issues relating to
logical omniscience and logical blindness.

Reasoning in property theory is fairly heavy going. Satchmo provides quite a nice basis
(Cryan and Ramsay, 1997; Ramsay, 2001), but even if you exploit the kinds of relevance
testing described by (Loveland, 1991) the basic Satchmo algorithm still tends to do a lot of
repetitive processing.

We therefore add a generalised logic of types to the basic engine. This logic of types
allows you to construct Boolean combinations of types from a sort lattice, with the results
of the type based reasoning cached in order to avoid repetition. The key properties of this
logic of types are summarised as follows:

e type specifications are encoded as terms which reflect the structure of the type lattice,
with only the relevant parts of the lattice instantiated in any given case. This is an
extension of the use of terms to represent type hierarchies (Fall, 1990), providing
considerable extra expressive power with no increase in complexity.

e Axioms whose consequents are statements in the type logic are used in the forward
chaining part of the Satchmo algorithm, with the results cached for future reference.
This avoids much of the repetition associated with the basic Satchmo algorithm.

e Conjunctions of constraints from the type logic are dealt with using the coroutining
facilities of Sicstus Prolog. This enables the system to monitor the state of conjunctive
constraints, and to react as soon as such a constraint is satisfied. This means that
we do not have to keep checking the individual elements of such a constraint to see
whether they are satisfied.

The fact that we have a type lattice rather than a type hierarchy means that a consider-
able amount of the information that we need for expressing constraints on lexical relations
can be encoded in the type logic (Wedekind, 1996). The resulting system thus allows us
to mix deep reasoning about intensional facets of natural language semantics with efficient
reasoning about simple reasoning about sorts. The use of terms to represent types means
that the two kinds of reasoning can be very smoothly integrated, since we can simply rely
on the fact that the basic Satchmo algorithm uses unification to to manage existential and
universal quantification, so that we do not have to add any new machinery to integrate the
two kinds of reasoning.

References

Baader, F. and Sattler, U. (2001). An overview of tableau algorithms for description logics.
Studia Logica, 69(1).

Cryan, M. and Ramsay, A. M. (1997). A normal form for Property Theory. In Proceedings
of the 14th International Conference on Automated Deduction (CADE-14), volume 1249
of Lecture Notes in Artificial Intelligence, pages 237-251, Berlin. Springer-Verlag.

Fall, A. (1990). Reasoning with tazonomies. PhD thesis, Simon Fraser University.

Loveland, D. W. (1991). Near-horn Prolog and beyond. Journal of Automated Reasoning,
7:1-26.

Manthey, R. and Bry, F. (1988). Satchmo: a theorem prover in Prolog. In Proceedings
of the 9th International Conference on Automated Deduction (CADE-9), volume 310 of
Lecture Notes in Artificial Intelligence, pages 415-434, Berlin. Springer-Verlag.

Ohlbach, H. J. and Koehler, J. (1997). Role hierarchies and number restrictions. In De-
scription Logics 97, Paris.

Ramsay, A. M. (2001). Theorem proving for untyped constructive A-calculus: implemen-
tation and application. Logic Journal of the Interest Group in Pure and Applied Logics,
9(1):89-106.

Turner, R. (1987). A theory of properties. Journal of Symbolic Logic, 52(2):455-472.

Wedekind, J. (1996). On inference-based procedures for lexical disambiguation. In Proceed-
ings of the 16th International Conference on Computational Linguistics (COLING-96),
pages 980-985, Copenhagen.



